Please Login to access more options.



Exercise /
EveryFiniteCyclicGroupOfOrderNIsIsomorphicToZn
IfAKEThenTheOrderOfADividesK
PracticeWithEvenPermutations
PropertiesOfAnElementWithInfiniteOrder
TheProductOfTheGCDAndLCM
WhatIsTheGroupOperationOnTheIntegers
Problem /
AbelianGroupsHaveAnElementOfOrderPForEveryPrimeThatDividesTheOrderOfTheGroup
ADirectProductOfCyclicGroupsIsCyclicIfAndOnlyIfTheGroupsHaveRelativelyPrimeOrders
AKAGcdKA
AnInfiniteCayleyGraph
AnIsomorphismFromUStToUSOplusUTWhenSAndTAreRelativelyPrime
BothZAndFXAreEuclideanDomains
CayleyGraphPatterns
CayleyGraphsAndIsomorphismsBetweenZNAndUM
CayleyGraphsFromRelations
CayleyGraphsOfExternalDirectProductsOfCyclicGroups
CayleyGraphsOfTwoAutomorphismGroups
CharacterizingClosedSetsOfPermutations
ClosedUnderFunctionComposition
CollapsingAFactorOfAnExternalDirectProductYieldsTheOtherFactors
ConjugacyIsAnEquivalenceRelation
CosetProductsOfTheAutomorphismsOfTheSquare
EveryDisjointCycleCanBeWrittenAsAProductOfTranspositions
EveryFiniteCyclicGroupOfOrderNIsIsomorphicToZn
ExternalDirectProductsOfAbelianAndCyclicGroups
FactorGroupsPreserveBeingCyclicAndAbelian
FermatsLittleLemma
FunctionCompositionIsAssociative
GModZGIsIsomorphicToInnG
GroupsOfOrderP2AreAbelian
GroupsOfOrderPq
HomomorphismsPreserveNormalSubgroups
HowDoYouBuildAMultiplicationTableFromACayleyGraph
IdentificationGraphsUsingNormalSubgroupsAreCayleyGraphs
IfAFactorGroupGNHasAnElementOfOrderKThenSoDoesG
IfTheFactorGroupOfGByTheCenterIsCyclicThenGIsAbelian
ImagesOfAbelianAndCyclicGroups
InnGIsANormalSubgroupOfAutG
InternalDirectProductsAreIsomorphicToExternalDirectProducts
IntroductionToInternalDirectProducts
InvertingFunctionComposition
IsomorphismsYieldAnEquivalenceRelationOnTheSetOfAllGroups
LangleAIRangleLangleAJRangleIffGcdINGcdJN
LangleAKRangleLangleAGcdKARangle
OneStepSubgroupTest
OpenProblems
PracticeWithCyclicSubgroups
PracticeWithHomomorphismsFromZnToZd
PracticeWithIdentificationGraphsOfZ
PracticeWithSetProducts
SubgroupsAndNormality
SubgroupsOfAQuotientGroupCorrespondToSubgroupsOfTheOriginalGroup
SubgroupsOfCyclicGroupsAreCyclic
SubgroupsOfIndex2AreNormal
TheAlternatingGroupIsASubgroupOfTheSymmetricGroup
TheFirstIsomorphismTheoremProof
TheIdealGeneratedByASubsetIsAnIdeal
TheNormalSubgroupTest
TheOrderOfAnElementInAnExternalDirectProductIsTheLeastCommonMultipleOfTheOrdersOfTheElements
ThePointGroupOfACube
ThePreimageOfASubgroupUnderAHomomorphismIsASubgroup
TheQuotientGroupIsAGroup
TheSetUDNAndTheHomomorphismFromUNToUD
TheSubgroupGeneratedBySEqualsTheSpanOfS
TheSubgroupGeneratedBySIsActuallyASubgroup
VisualizingCosetsInACayleyGraph
WhenIsXModDAHomomorphismFromZnToZd
Solution /
AutomorphismsOfADirectedSquareBen
ComputingPowersModnConjectureBen
FiniteSubgroupTestBen
FiniteSubgroupTestLevi
TheCompositionOfPermutationsIsAPermutationBen
ZNAndUNAreGroupsLevi
Template /
Exercise
Problem
Solution