Please Login to access more options.
Problem 95 (Subgroups And Normality)
Suppose that $G$ is a group and that $A\leq B\leq G$.
- If $A$ is normal in $G$, prove that $A$ is normal in $B$.
- If $A$ is normal in $B$ and $B$ is normal in $G$, must $A$ be normal in $G$? Find a counter example to this.
The following pages link to this page.