Please Login to access more options.



Today

« October 2016 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31


From Ben:

Please focus your efforts on 41 (15 min), 48, 49, 50, 51, 52, 53.

Here's who we'll have present:

From Ben: We''ll have Teresa share her work on this part. You can move on to the other problems.

We've talked about automorphisms of graphs and directed graphs. We can similarly define automorphisms of colored directed graphs.

Definition (Automorphism Of A Colored Directed Graph)

Let $\mathcal{G}=(V,C,A)$ be a colored directed graph, where the vertex set is $V$ and the list of colored arrows is $A$, where each arrow in the list $A$ is assigned a unique color from $C$. An automorphism of a directed colored graph is a permutation $\sigma:V\to V$ of the vertex set such that $(x,y)$ is an arrow colored $c\in C$ if and only if $(\sigma(x),\sigma(y))$ is an arrow colored $c$. In other words, it's a permutation of $H$ that preserves the arrow and color structure of the graph.

A Cayley graph is a colored directed graph. We've drawn many Cayley graphs and noticed that they are highly symmetric. Every point has the same number of arrows leaving (and entering). Any pattern we see at one vertex appears at every other vertex. If you were to stand at any vertex and look outwards, the graph would appear the same from every point. This next problem has you show this. You'll show that if $s$ is one of the permutations used to create arrows, then the map $f_s:H\to H$ defined by $f_s(\sigma)=\sigma\circ s$ is an automorphism of the Cayley graph. Once you've shown that the graph looks the same by following one arrow, you can repeatedly apply this process to show that the graph looks the same by following any sequence of arrows.

Problem 41 (Translating By An Arrow In A Cayley Graph Is An Automorphism)

Let $X$ be a set and let $S$ be a set of permutations of $X$. Let $H=\text{span}(S)$ and let $\mathcal{G}$ be the Cayley graph $(H,S)$, so we know $(x,y)$ is an arrow colored $c_t$ where $t\in S$ if and only if $y=t \circ x$. Pick an element $s\in S$ (one of the elements used to create arrows). Prove that the function $f_s:H\to H$ defined by $f_s(\sigma)=\sigma\circ s$ is an automorphism of the Cayley graph. You must show the following three things:

  1. The function $f_s$ is a permutation. (State the inverse and show it is the inverse.)
  2. If $(x,y)$ is an arrow colored $c_t$, then $(f_s(x),f_s(y))$ is an arrow colored $c_t$. In other words, if $t\circ x=y$, then explain why $t\circ f_s(x) = f_s(y)$.
  3. If $(f_s(x),f_s(y))$ is an arrow colored $c_t$, then $(x,y)$ is an arrow colored $c_t$.
This should look a lot like the problem Permutations Of $U(n)$. If you find yourself using the associative law and inverses quite a bit, then you're doing this correctly. This problem requires that you use inverses and the associative law, as well as read and use definitions, nothing more. Your solutions on this problem should be quite short. Don't let yourself spend more than 15 minutes on this problem. Move on if you need to.

Definition (Affine Encryption Key)

Suppose we have an alphabet with $n$ letters. Set up a 1-1 correspondence between the letters in your alphabet and the integers 0 to $n-1$. As an example, we could let $n=27$ for the standard alphabet with 26 letters and a space (the 27th letter which we'll number 0), and then use the correspondence in the table below.

 abcdefghijklmnopqrstuvwxyz
01234567891011121314151617181920212223242526

Pick an integer $m\geq n$. Then an affine encryption key is an invertible function \( f:\mathbb{Z}_m \to \mathbb{Z}_m\) defined by $$f(x)=ax+b\pmod {m}$$ for some $a,b\in\mathbb{Z}_m$.

Problem 43 (Affine Encryption Key Introduction)

If we let $m=31$, then we can use the function $f(x)=5x+12\pmod m$ to encrypt the message "save them" by (1) swapping the letters to the numbers (19,1,22,5,0,20,8,5,13) and then (2) applying $f(x)$ to each letter to obtain the encrypted numbers (14, 17, 29, 6, 12, 19, 21, 6, 15).

  1. Find $c,d\in \mathbb{Z}_{31}$ so that the inverse of $f$ is $f^{-1}(x)=cx+d$ where $c,d\in \mathbb{Z}_{31}$.
  2. If instead we let $m=27$, then find the inverses of $f(x)=2x+17\pmod{27}$ or explain why it cannot be done.
  3. Give an example of nonzero $a,b\in \mathbb{Z}_{27}$ so that $f(x)=ax+b\pmod{27}$ is not invertible.

Because of how we defined groups, anytime we span a collection of permutations of a set $X$ we should get a group. The next problem has you show this. Each question can be answered by referring to things we have already shown. Feel free to look at the pages September 2016 and October 2016 for a list of all the problems we have solved each day. If you have not yet printed the work we are doing, I would suggest that you print a copy for reference as you work on new problems.

Problem 45 (Spans Of Permutations Are Subgroups)

Let $X=\{1,2,3,\ldots,n\}$. Let $S_n$ be the set of all permutations of $X$ (so we know there are $n!$ such permutations).

  1. Show that $S_n$ is a group under function composition $\circ$.
  2. If $H$ is a subset of $S_n$ that is closed (under composition combinations of permutations), prove that $H$ is a group under function composition.
  3. Let $S$ be a nonempty subset of $S_n$. Show that $\text{span}(S)$ is a group under function composition.

In the previous problem, we saw if $S\subseteq S_n$ then $\text{span}(S)$ is a not only just a subset of the group $S_n$, but is itself a group. The operation we use in the smaller group $(\text{span}(S),\circ)$ comes from the operation we used in the larger group $(S_n,\circ)$. Because of this close connection, we call $\text{span}(S)$ a subgroup of $S_n$ and write $\text{span}(S)\leq S_n$. Let's now make a formal definition.

Definition (Subgroup)

Let $(G,\cdot)$ be a group, and let $H$ be a nonempty subset of $G$. Then $H$ is called a $\textdef{subgroup}$ of $G$ if the following hold:

  1. $\textbf{[Closure]}$ for all $h,k\in H$ we have $h\cdot k\in H$, and
  2. $(H,\cdot)$ is a group.

When $H$ is a subgroup of $G$, we write $H\le G$. Any subgroup of $G$ that is not equal to $G$ itself we call a $\textdef{proper subgroup}$. The subset of $G$ consisting of just the identity we call the $\textdef{trivial subgroup}$.

In the proof of problem Characterizing Closed Sets Of Permutations, we did not need to use the first and fourth properties listed to show that the set of permutations $H$ was closed. The next problem replicates this, but now in terms of subgroups instead of in terms of closed sets of permutations.

Problem 46 (The Subgroup Test - Subgroups Are Subsets That Are Closed Under Products And Taking Inverses)

Suppose that $G$ is a
group
Definition (Group)

Let $G$ be a nonempty set, and let $*$ be a binary operation on $G$, which means for every $x,y\in G$ we have $x*y\in G$ $\textbf{[Closure]}$. The structure $\mathbb{G} = (G,*)$ is called a $\textdef{group}$ if the following hold.

  1. $\textbf{[Associativity]}$ For all $x,y,z\in G$ we have $(x* y)* z = x* (y* z)$.
  2. $\textbf{[Identity]}$ There is an $e\in G$ such that for all $x\in G$ we have $x * e = e* x = x$.
  3. $\textbf{[Inverses]}$ For all $x\in G$ there is a $y\in G$ such that $x* y = y* x = e$.

We usually simply write $G$ when referring to the entire structure $\mathbb{G}=(G,*)$. The element $e$ from the second point is called the $\textdef{identity}$. The element $y$ from the third point is called the $\textdef{inverse}$ of $x$ and is usually denoted $x^{-1}$. One often simply writes $xy$ in place of $x*y$, and for every positive integer $n$, we'll write $x^n$ as shorthand for $x* x* \cdots * x$ ($n$ times).

and $H$ is a nonempty subset of $G$ that satisfies the following properites:
  1. If $a,b\in H$, then $ab\in H$. (We say $H$ is closed under the group operation.)
  2. If $a\in H$, then $a^{-1}\in H$. (We say $H$ is closed under taking inverses.)
Prove that $H$ is a
subgroup
Definition (Subgroup)

Let $(G,\cdot)$ be a group, and let $H$ be a nonempty subset of $G$. Then $H$ is called a $\textdef{subgroup}$ of $G$ if the following hold:

  1. $\textbf{[Closure]}$ for all $h,k\in H$ we have $h\cdot k\in H$, and
  2. $(H,\cdot)$ is a group.

When $H$ is a subgroup of $G$, we write $H\le G$. Any subgroup of $G$ that is not equal to $G$ itself we call a $\textdef{proper subgroup}$. The subset of $G$ consisting of just the identity we call the $\textdef{trivial subgroup}$.

of $G$.

The following problem again asks you to make sure you are comfortable with the definitions of a binary operation and a group.

Problem 47 (Can We Use Division To Create A Group)

Let $G=\mathbb{R}$ and $H=\mathbb{R}\setminus \{0\}$.

  1. Show that division $a\div b$ is not a
    binary operation
    Definition (Binary Operation)

    Let $G$ be a set. A binary operation on $G$ is a way of combining two elements of $G$ to obtain a new element in $G$. Formally, we just say that a binary operation $*$ is function $*:G\times G\to G$, and we use the notation $a*b$ to represent the function notation $*(a,b)$.

    on $G$.
  2. Show that division $a\div b$ is a binary operation on $H$.
  3. Since division is a binary operation on $H$, determine if $(H,\div)$ is a
    group
    Definition (Group)

    Let $G$ be a nonempty set, and let $*$ be a binary operation on $G$, which means for every $x,y\in G$ we have $x*y\in G$ $\textbf{[Closure]}$. The structure $\mathbb{G} = (G,*)$ is called a $\textdef{group}$ if the following hold.

    1. $\textbf{[Associativity]}$ For all $x,y,z\in G$ we have $(x* y)* z = x* (y* z)$.
    2. $\textbf{[Identity]}$ There is an $e\in G$ such that for all $x\in G$ we have $x * e = e* x = x$.
    3. $\textbf{[Inverses]}$ For all $x\in G$ there is a $y\in G$ such that $x* y = y* x = e$.

    We usually simply write $G$ when referring to the entire structure $\mathbb{G}=(G,*)$. The element $e$ from the second point is called the $\textdef{identity}$. The element $y$ from the third point is called the $\textdef{inverse}$ of $x$ and is usually denoted $x^{-1}$. One often simply writes $xy$ in place of $x*y$, and for every positive integer $n$, we'll write $x^n$ as shorthand for $x* x* \cdots * x$ ($n$ times).

    .
    • Does $e=1$ satisfy the property of being an identity?
    • If $x\in H$, find an inverse $x^{-1}\in H$ or explain why none exists.
    • Is the operation $\div$ associative?

Just as we spanned sets of permutations, we can span subsets of a group. After defining this, we'll show that spanning a subset of a group always gets you a subgroup of the group. This should be analogous to the fact that spanning a subset of permutations leads to a closed set of permutations.

Definition (The Subgroup Generated By A Subset)

Let $G$ be a group. Suppose that $S$ is a subset of $G$.

  1. A word from the alphabet $S$ is a product of the form $$x=s_1s_2\cdots s_k$$ where for each $i$ either $s_i\in S$ or $s_i^{-1}\in S$.
  2. The subgroup generated by $S$ is the set of words from the alphabet $S$, namely $$\left<S\right> = \{s_1s_2\cdots s_k\mid k\in \mathbb{N} \text{ and either $s_i\in S$ or $s_i^{-1}\in S$ for each } i\in\{1,2,\ldots, k\}\}.$$
  3. If $H=\left<S\right>$, then we say that $H$ is the subgroup generated by $S$, or that $S$ is a generating set for $H$.
  4. If $S=\{a\}$, then we'll write $\left<a\right>$ instead of $\left<\{a\}\right>$. We call $\left<a\right>$ the subgroup generated by $a$.
We'll be using this notation to develop the game of scoring for groups. We'll call the game "Generate/Don't Generate."

We call $\left<S\right>$ the subgroup of $G$ generated by $S$, but we have not yet shown this is in fact a subgroup. The next problem has you verify this, so that we can definitely refer to $\langle S\rangle$ as a subgroup.

Problem 51 (The Subgroup Generated By S Is Actually A Subgroup)

Let $G$ be a group and $S$ be a nonempty subset of $G$. Prove that $\left<S\right>$ is a subgroup of $G$.

Any time you want to show something is a subgroup, the subgroup test (see problem (Subgroups Are Subsets That Are Closed Under Products And Inverses)) will simplify your work. So you just need to show that $\left<S\right>$ is a nonempty subset of $G$ and if $a,b\in \left<S\right>$, then both $ab\in \left<S\right>$ and $a^{-1}\in \left<S\right>$.

Definition ($|a|$ and $|G|$ - Order For Elements and Groups)

Let $G$ be a group with identity $e$, and let $g\in G$.

  • The $\textdef{order}$ of $G$, denoted $|G|$, is the cardinality of $G$.
  • The $\textdef{order}$ of $g$, denoted $|g|$, is the smallest positive integer $n$ such that $g^n = e$, if such an $n$ exists. If no such $n$ exists, we say $g$ has infinite order.
Definition (The Euler Phi Function)

The Euler phi function $\varphi:\mathbb{Z}\to\mathbb{Z}$ is defined by letting $\varphi(n)$ equal the order of $U(n)$.


A graph of the first 1000 values of $\varphi(n)$. See Wikipedia.

Problem 48 (Orders Of $\mathbb{Z}_n$ And $U(n)$ And Their Elements)

We've already shown that $\mathbb{Z}_n$ under addition mod $n$ and $U(n)$ under multiplication mod $n$ are groups.

  1. For each $n$ between 2 and 10, compute the order of $Z_n$ and the order of each element of $\mathbb{Z}_n$. Organize your work into a table where you first make a list of the elements, and then underneath each element state the order. For example, if $n=6$ then our table would look like the one below. $$\begin{array}{|c|c|c|c|c|c|c|} \hline \text{Element}&0&1&2&3&4&5\\\hline \text{Order}&1&6&3&2&3&6\\\hline \end{array}$$
  2. For each $n$ between 2 and 10, compute the order of $U(n)$ (state $\varphi(n)$) and then compute the order of each element of $U(n)$. You can check your work with the sage code below. I kept the numbers under 10 because you can do these by hand (or in your head) fairly quickly. Make sure you do enough by hand that you feel comfortable with this process.
  3. You should have noticed that $U(8)$ and $U(10)$ both have order 4. Is there a 1-1 correspondence between these two groups that matches elements with the same order?

Here's some Sage code you can use to check your computations with $U(n)$.

for n in (2..20):
 Zn = Integers(n)
 Un = [x for x in Zn if gcd(ZZ(x), n) == 1]  #This creates Un
 show(table(["U("+str(n)+r") has order $\varphi($"+str(n)+"$)=$"+str(len(Un))+
             ".The elements, with orders below them, are listed below."]))
 orders=[x.multiplicative_order() for x in Un] #This computes the multiplicative order of each element.
 show(table([Un,orders])) #This creates a table of elements (top row) and their orders (bottom row).


Click to see the definitions of a group and subgroup, as well as the subgroup test.

Definition (Group)

Let $G$ be a nonempty set, and let $*$ be a binary operation on $G$, which means for every $x,y\in G$ we have $x*y\in G$ $\textbf{[Closure]}$. The structure $\mathbb{G} = (G,*)$ is called a $\textdef{group}$ if the following hold.

  1. $\textbf{[Associativity]}$ For all $x,y,z\in G$ we have $(x* y)* z = x* (y* z)$.
  2. $\textbf{[Identity]}$ There is an $e\in G$ such that for all $x\in G$ we have $x * e = e* x = x$.
  3. $\textbf{[Inverses]}$ For all $x\in G$ there is a $y\in G$ such that $x* y = y* x = e$.

We usually simply write $G$ when referring to the entire structure $\mathbb{G}=(G,*)$. The element $e$ from the second point is called the $\textdef{identity}$. The element $y$ from the third point is called the $\textdef{inverse}$ of $x$ and is usually denoted $x^{-1}$. One often simply writes $xy$ in place of $x*y$, and for every positive integer $n$, we'll write $x^n$ as shorthand for $x* x* \cdots * x$ ($n$ times).

Definition (Subgroup)

Let $(G,\cdot)$ be a group, and let $H$ be a nonempty subset of $G$. Then $H$ is called a $\textdef{subgroup}$ of $G$ if the following hold:

  1. $\textbf{[Closure]}$ for all $h,k\in H$ we have $h\cdot k\in H$, and
  2. $(H,\cdot)$ is a group.

When $H$ is a subgroup of $G$, we write $H\le G$. Any subgroup of $G$ that is not equal to $G$ itself we call a $\textdef{proper subgroup}$. The subset of $G$ consisting of just the identity we call the $\textdef{trivial subgroup}$.

Problem 46 (The Subgroup Test - Subgroups Are Subsets That Are Closed Under Products And Taking Inverses)

Suppose that $G$ is a
group
Definition (Group)

Let $G$ be a nonempty set, and let $*$ be a binary operation on $G$, which means for every $x,y\in G$ we have $x*y\in G$ $\textbf{[Closure]}$. The structure $\mathbb{G} = (G,*)$ is called a $\textdef{group}$ if the following hold.

  1. $\textbf{[Associativity]}$ For all $x,y,z\in G$ we have $(x* y)* z = x* (y* z)$.
  2. $\textbf{[Identity]}$ There is an $e\in G$ such that for all $x\in G$ we have $x * e = e* x = x$.
  3. $\textbf{[Inverses]}$ For all $x\in G$ there is a $y\in G$ such that $x* y = y* x = e$.

We usually simply write $G$ when referring to the entire structure $\mathbb{G}=(G,*)$. The element $e$ from the second point is called the $\textdef{identity}$. The element $y$ from the third point is called the $\textdef{inverse}$ of $x$ and is usually denoted $x^{-1}$. One often simply writes $xy$ in place of $x*y$, and for every positive integer $n$, we'll write $x^n$ as shorthand for $x* x* \cdots * x$ ($n$ times).

and $H$ is a nonempty subset of $G$ that satisfies the following properites:
  1. If $a,b\in H$, then $ab\in H$. (We say $H$ is closed under the group operation.)
  2. If $a\in H$, then $a^{-1}\in H$. (We say $H$ is closed under taking inverses.)
Prove that $H$ is a
subgroup
Definition (Subgroup)

Let $(G,\cdot)$ be a group, and let $H$ be a nonempty subset of $G$. Then $H$ is called a $\textdef{subgroup}$ of $G$ if the following hold:

  1. $\textbf{[Closure]}$ for all $h,k\in H$ we have $h\cdot k\in H$, and
  2. $(H,\cdot)$ is a group.

When $H$ is a subgroup of $G$, we write $H\le G$. Any subgroup of $G$ that is not equal to $G$ itself we call a $\textdef{proper subgroup}$. The subset of $G$ consisting of just the identity we call the $\textdef{trivial subgroup}$.

of $G$.

Problem 49 (Cancellation Laws For Groups)

Suppose $G$ is a group. Let $a,b,c\in G$. Prove that if $ca=cb$, then $a=b$. A similar proof will show that if $ac=bc$, then $a=b$.


Problem 50 (The Inverse In A Finite Group Is A Power Of The Element)

Let $G$ be finite group with $a\in G$. Prove that there exists a positive integer $k$ such that $a^k=a^{-1}$.

Hint: Consider the sequence $a, a^2, a^3, a^4, \ldots$. Why must you eventually have a repeated element? So if $a^i=a^j$ for some $j>i$, how can you use this to find $a^{-1}$?

Problem 51 (Inverses In Groups)

Suppose that $G$ is a group with $a,b\in G$.

  1. Prove that the inverse of $a^{-1}$ is $a$.
  2. Prove that the inverse of $ab$ is $b^{-1}a^{-1}$.
  3. If $a_1,a_2,a_3,\ldots, a_n\in G$, state the inverse of $a_1a_2a_3\cdots a_n$. Use induction to prove your claim.
If you see yourself repeating an induction proof similar to what we've been doing, then you're on the right track.

Problem 52 (Heisenberg Matrix Group)

Let $G$ be the set of all 3 by 3 matrices with entries in the real numbers of the form $$\begin{bmatrix}1&a&b\\0&1&c\\0&0&1\end{bmatrix}.$$ Prove that $G$ is group under matrix multiplication. This group is often called the Heisenberg group and is connected to the Heisenberg uncertainty principle. See page 51 in your text for an interesting historical fact.


Problem 53 (Finite Subgroup Test)

Let $G$ be a group. Suppose that $H$ is a nonempty finite subset of $G$ and that $H$ is closed under the operation of $G$ (so if $a,b\in H$, then we must have $ab\in H$). Prove that $H$ is a subgroup of $G$.

Hint. If you use the subgroup test (show that $H$ is a nonempty subset of $G$ that is closed under the operation and taking inverses), then we get to assume it's a nonempty subset of $G$ that is closed under the operation. All you have to do is explain why it's closed under taking inverses. The work you did in the problem The Inverse In A Finite Group Is A Power Of The Element should help you quite a bit. However, you can't use this theorem directly because you do not know that $G$ is a finite group. You'll want to reuse your work from that problem, not refer to the problem.

Problem 54 (The Intersection Of Two Subgroups)

Suppose that $G$ is a group and that $H$ and $K$ are subgroups of $G$. Prove that $H\cap K$ is a subgroup of $G$.


Problem 55 (The Union Of Two Subgroups)

Suppose that $G$ is a group and that $H$ and $K$ are subgroups of $G$. Is $H\cup K$ a subgroup of $G$? Either prove that is, or find a counterexample.


Definition (Abelian Group)

Let $G$ be a group. If $ab=ba$ for every $a,b\in G$ (so the group operation is commutative), then we say that $G$ is Abelian.

Definition ($Z(G)$ - Center Of A Group)

Let $G$ be a group. The center of the group, written $Z(G)$, is the set of elements $x\in G$ that commute with every element of $G$, which we can write symbolically as $$Z(G)=\{x\in G\mid gx=xg \text{ for all } g\in G\}.$$

The $Z$ comes from the german word "Zentrum" (see Wikipedia).

Problem 56 (The Center Of Group Is A Subgroup)

Prove that the center $Z(G)$ of a group $G$ is a subgroup of $G$. If $G$ is Abelian, then what is $Z(G)$?


Problem 57 (Powers Of Products In An Abelian Group)

Suppose $G$ is an Abelian group. Prove that if $a,b\in G$, then $(ab)^2=a^2b^2$. Then use induction to prove that if $a,b\in G$, then $(ab)^n=a^nb^n$ for each $n\in \mathbb{N}$.



For more problems, see AllProblems