Please Login to access more options.
Definition (Affine Encryption Key)
Suppose we have an alphabet with $n$ letters. Set up a 1-1 correspondence between the letters in your alphabet and the integers 0 to $n-1$. As an example, we could let $n=27$ for the standard alphabet with 26 letters and a space (the 27th letter which we'll number 0), and then use the correspondence in the table below.
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z | |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
Pick an integer $m\geq n$. Then an affine encryption key is an invertible function \( f:\mathbb{Z}_m \to \mathbb{Z}_m\) defined by $$f(x)=ax+b\pmod {m}$$ for some $a,b\in\mathbb{Z}_m$.
The following pages link to this page.