Big View
  • Home
  • Login
  • Edit
  • History
  • Recent Changes
  • HomePage
  • Current Problems
  • All Problems
  • Pictures
  • ProblemsByWeek
  • List of Problems
  • List of Definitions
  • List of Theorems
  • List of Conjectures
  • All Recent changes (use this to find a page that may have been lost)

Problem

The Inverse In A Finite Group Is A Power Of The Element

Please Login to access more options.


Problem 50 (The Inverse In A Finite Group Is A Power Of The Element)

Let $G$ be finite group with $a\in G$. Prove that there exists a positive integer $k$ such that $a^k=a^{-1}$.

Hint: Consider the sequence $a, a^2, a^3, a^4, \ldots$. Why must you eventually have a repeated element? So if $a^i=a^j$ for some $j>i$, how can you use this to find $a^{-1}$?


The following pages link to this page.

  • Problem.FiniteSubgroupTest
  • Problem.TheInverseInAFiniteGroupIsAPowerOfTheElement
  • Schedule.20161014
  • Schedule.20161017
  • Schedule.20171013
  • Schedule.20171016
  • Schedule.20171020
  • Schedule.20171023
  • Schedule.AllProblems
  • Solution.TheInverseInAFiniteGroupIsAPowerOfTheElementChristian
  • Solution.TheInverseInAFiniteGroupIsAPowerOfTheElementJason
  • Solution.TheInverseInAFiniteGroupIsAPowerOfTheElementTyler
  • Solution.TheInverseInAFiniteGroupIsAPowerOfTheElementChristian
  • Solution.TheInverseInAFiniteGroupIsAPowerOfTheElementJason
  • Solution.TheInverseInAFiniteGroupIsAPowerOfTheElementTyler
  • Edit
  • Page History
  • Source
  • Attach File
  • Backlinks
  • List Group
Page last modified on November 01, 2018, at 02:49 PM

skin config ** pmwiki-2.2.142 **