Please Login to access more options.
Definition ($|a|$ and $|G|$ - Order For Elements and Groups)
Let $G$ be a group with identity $e$, and let $g\in G$.
- The $\textdef{order}$ of $G$, denoted $|G|$, is the cardinality of $G$.
- The $\textdef{order}$ of $g$, denoted $|g|$, is the smallest positive integer $n$ such that $g^n = e$, if such an $n$ exists. If no such $n$ exists, we say $g$ has infinite order.
The following pages link to this page.
- Definition.OrderForGroups
- Schedule.20131016
- Schedule.20131025
- Schedule.20161010
- Schedule.20161012
- Schedule.20161014
- Schedule.20161019
- Schedule.20161024
- Schedule.20161026
- Schedule.20161028
- Schedule.20171013
- Schedule.20171016
- Schedule.20171020
- Schedule.20171025
- Schedule.20171027
- Schedule.20171030
- Schedule.20171101
- Schedule.AllProblems