Please Login to access more options.
Problem 47 (Can We Use Division To Create A Group)
Let $G=\mathbb{R}$ and $H=\mathbb{R}\setminus \{0\}$.
- Show that division $a\div b$ is not a binary operationon $G$.
Definition (Binary Operation)
Let $G$ be a set. A binary operation on $G$ is a way of combining two elements of $G$ to obtain a new element in $G$. Formally, we just say that a binary operation $*$ is function $*:G\times G\to G$, and we use the notation $a*b$ to represent the function notation $*(a,b)$.
- Show that division $a\div b$ is a binary operation on $H$.
- Since division is a binary operation on $H$, determine if $(H,\div)$ is a group.
Definition (Group)
Let $G$ be a nonempty set, and let $*$ be a binary operation on $G$, which means for every $x,y\in G$ we have $x*y\in G$ $\textbf{[Closure]}$. The structure $\mathbb{G} = (G,*)$ is called a $\textdef{group}$ if the following hold.
- $\textbf{[Associativity]}$ For all $x,y,z\in G$ we have $(x* y)* z = x* (y* z)$.
- $\textbf{[Identity]}$ There is an $e\in G$ such that for all $x\in G$ we have $x * e = e* x = x$.
- $\textbf{[Inverses]}$ For all $x\in G$ there is a $y\in G$ such that $x* y = y* x = e$.
We usually simply write $G$ when referring to the entire structure $\mathbb{G}=(G,*)$. The element $e$ from the second point is called the $\textdef{identity}$. The element $y$ from the third point is called the $\textdef{inverse}$ of $x$ and is usually denoted $x^{-1}$. One often simply writes $xy$ in place of $x*y$, and for every positive integer $n$, we'll write $x^n$ as shorthand for $x* x* \cdots * x$ ($n$ times).
- Does $e=1$ satisfy the property of being an identity?
- If $x\in H$, find an inverse $x^{-1}\in H$ or explain why none exists.
- Is the operation $\div$ associative?
The following pages link to this page.