Big View
  • Home
  • Login
  • Edit
  • History
  • Recent Changes
  • HomePage
  • Current Problems
  • All Problems
  • Pictures
  • ProblemsByWeek
  • List of Problems
  • List of Definitions
  • List of Theorems
  • List of Conjectures
  • All Recent changes (use this to find a page that may have been lost)

Problem

Remainders Equal Iff Difference Is A Multiple

Please Login to access more options.


Problem 16(Remainders Equal Iff Difference Is A Multiple)

Let $a,b,n\in\mathbb{Z}$ with $n>0$. Prove that $a\pmod n = b \pmod n$ if and only if $a-b$ is a multiple of $n$.



The following pages link to this page.

  • Problem.ModularArithmeticProperties
  • Problem.RemaindersEqualIffDifferenceIsAMultiple
  • Schedule.20160919
  • Schedule.20160921
  • Schedule.20160923
  • Schedule.20160926
  • Schedule.20170918
  • Schedule.20170920
  • Schedule.20170922
  • Schedule.20170925
  • Schedule.AllProblems
  • Solution.RemaindersEqualIffDifferenceIsAMultipleChristian
  • Solution.RemaindersEqualIffDifferenceIsAMultipleChristian
  • Edit
  • Page History
  • Source
  • Attach File
  • Backlinks
  • List Group
Page last modified on October 08, 2018, at 07:38 AM

skin config ** pmwiki-2.2.142 **