Please Login to access more options.
Problem 16(Remainders Equal Iff Difference Is A Multiple)
Let $a,b,n\in\mathbb{Z}$ with $n>0$. Prove that $a\pmod n = b \pmod n$ if and only if $a-b$ is a multiple of $n$.
The following pages link to this page.
- Problem.ModularArithmeticProperties
- Problem.RemaindersEqualIffDifferenceIsAMultiple
- Schedule.20160919
- Schedule.20160921
- Schedule.20160923
- Schedule.20160926
- Schedule.20170918
- Schedule.20170920
- Schedule.20170922
- Schedule.20170925
- Schedule.AllProblems
- Solution.RemaindersEqualIffDifferenceIsAMultipleChristian