Please Login to access more options.


Problem 17(Computing Powers Modn Conjecture)

We need to be able to compute $a^k\pmod n$.

  1. Compute $2^k\pmod 5$ for $k=1,2,3,4,5,6,7$. What pattern do you see. What is $2^k\pmod 5 $ for $k=257$ and for $k=49827512$.
  2. Compute $5^k\pmod {11}$ for $k=1,2,3,4,5,6,7,8,9,10,11,12$. Can you discover a pattern. What if $k=3047$ or $k=478209183234$?
  3. Make a conjecture about $a^k\pmod n$. Come up with a different example to back your conjecture.


The following pages link to this page.