Please Login to access more options.
Theorem (Unique Factorization In ZX)
Every polynomial that is not the zero polynomial or a unit in $Z[x]$ can be written in the form $b_1b_2\cdots b_sp_1(x)p_2(x)\cdots p_m(x)$, where the $b_i$'s are irreducible polynomials of degree 0, and the $p_i(x)$'s are irreducible polynomials of positive degree. Furthermore, if we completely factor in 2 ways, $$b_1b_2\cdots b_sp_1(x)p_2(x)\cdots p_m(x)=c_1c_2\cdots c_tq_1(x)q_2(x)\cdots q_n(x),$$ then $s=t$, $m=n$, and after renumbering the $c$'s and $q(x)$'s, we have $b_i=\pm c_i$ and $p_j(x)=\pm q_j(x)$ for all $i$ and $j$.
The following pages link to this page.