Please Login to access more options.


Theorem (First Isomorphism Theorem For Rings)

Let $\phi$ be a ring homomorphism from $R$ to $S$. The mapping from $R/\ker\phi$ to $\phi(R)$, given by $r+\ker\phi \to \phi(r)$ is an isomorphism. In symbols, we have $R/\ker\phi\cong \phi(R).$


The following pages link to this page.