Big View
  • Home
  • Login
  • Edit
  • History
  • Recent Changes
  • HomePage
  • Current Problems
  • All Problems
  • Pictures
  • ProblemsByWeek
  • List of Problems
  • List of Definitions
  • List of Theorems
  • List of Conjectures
  • All Recent changes (use this to find a page that may have been lost)

Problem

The Kernel Of A Homomorphism Is A Subgroup

Please Login to access more options.


Problem 77 (The Kernel Of A Homomorphism Is A Subgroup)

Suppose that $f:G\to H$ is a homomorphism and that $e_H$ is the identity in $H$. Prove that the kernel of $f$, namely $\ker f$ or $f^{-1}(e_H)$, is a subgroup of $G$.



The following pages link to this page.

  • Problem.TheKernelOfAHomomorphismIsASubgroup
  • Schedule.20161111
  • Schedule.20161114
  • Schedule.20171113
  • Schedule.20171115
  • Schedule.AllProblems
  • Solution.TheKernelOfAHomomorphismIsASubgroupChristian
  • Solution.TheKernelOfAHomomorphismIsASubgroupJason
  • Solution.TheKernelOfAHomomorphismIsASubgroupChristian
  • Solution.TheKernelOfAHomomorphismIsASubgroupJason
  • Edit
  • Page History
  • Source
  • Attach File
  • Backlinks
  • List Group
Page last modified on December 03, 2019, at 09:32 PM

skin config ** pmwiki-2.2.142 **