Please Login to access more options.


Problem 59 (The Intersection Of Two Subgroups Of $\mathbb{Z}$)

Let $G=\mathbb{Z}$. Because the group operation is addition, remember that $a^2$ actually means $a+a$, and $a^5=a+a+a+a+a=5a$. Beware of this issue, as $a^n$ actually means $na$ because the group operation is addition when working in $\mathbb{Z}$.

  1. What is $\langle 2\rangle$? What is $\langle 3\rangle$? Convince yourself that $\langle 2\rangle\cap \langle 3\rangle = \langle 6\rangle$.
  2. What is $\langle 4\rangle$? What is $\langle 6\rangle$? Find an integer $c$ so that $\langle c\rangle=\langle 4\rangle\cap \langle 6\rangle$? Prove that your result is true.
  3. If $a,b\in \mathbb{Z}$, then conjecture what $c$ should equal so that $\langle c\rangle=\langle a\rangle\cap \langle b\rangle$. You don't have to prove this result (unless you'd rather prove this result than proving part 2).


The following pages link to this page.