Please Login to access more options.
Problem 60 (Properties Of $\langle a \rangle$ When $a$ Has Finite Order)
Let $G$ be a group with $a\in G$. Suppose that the order of $a$ is $|a|=n$. Prove the following:
- We have $\langle a\rangle = \{e,a,a^2,\ldots, a^{n-1}\}$. (You are showing two sets are equal.)
- We have $a^i=a^j$ if and only if $i-j$ is a multiple of $n$.
- The order of an element equals the order of the subgroup generated by that element, namely $|a|=|\langle a\rangle|$. (How can you combine 1 and 2 to get this.)
The following pages link to this page.
- Problem.PropertiesOfLangleARangleWhenAHasFiniteOrder
- Schedule.20161021
- Schedule.20161024
- Schedule.20161026
- Schedule.20171025
- Schedule.20171027
- Schedule.20171030
- Schedule.AllProblems
- Solution.PropertiesOfLangleARangleWhenAHasFiniteOrderJoey
- Solution.PropertiesOfLangleARangleWhenAHasFiniteOrderShaughn