Please Login to access more options.
Problem 59 (Irreducibles Behave Like Prime Numbers)
Let $F$ be a field and suppose that $p(x)\in F[x]$ is irreducible over $F$. Suppose also that $p(x)$ divides the product $a_1(x)a_2(x)\cdots a_n(x)$ where $a_i(x)\in F[x]$ for each $i$. Prove that $p(x)$ must divide $a_k(x)$ for some $k$.
The following pages link to this page.