Please Login to access more options.


Problem 63(Irreducible Polynomials Have A Zero In Some Extension Field)

Let $F$ be a field and suppose that $p(x)$ is an irreducible polynomial over $F$.

  1. Prove that $E=F[x]/\left<p(x)\right>$ is an extension field of $F$. (Note: An extension field of $F$ is a field $E$ such that $E$ contains a subfield isomorphic to $F$.)
  2. Show that the element $x+\left<p(x)\right>\in E$ is a zero of $p(x)$ in $E$.

The following pages link to this page.