Please Login to access more options.


Exercise (Order Is The Smallest Positive Integer)

Suppose we know that $a^6=e$.

  1. Explain why this is not enough information to state the order of $a$. (Look at the definition. What are we missing?)
  2. In addition to knowing that $a^6=e$, someone else notices that $a^4=e$. Prove that the order of $a$ cannot be 4. In particular show that $a^2=e$, so the order of $a$ is either $2$ or $1$.

Click to see a solution.

  1. The order of an element is the SMALLEST positive integers $n$ such that $a^n=e$. If all we know is that $a^6=e$, then the order might be 6, or some number less.
  2. If we know that both $a^6=e$ and $a^4=e$, then since $6=4+2$ (the division algorithm), we know that $e=a^6=a^{4+2}=a^4a^2=ea^2=a^2$. This shows that $e=a^2$, which means the order now can at most be 2.