Please Login to access more options.


Exercise (Cyclic Groups Are Abelian)

Suppose that $G$ is a cyclic group. Prove that $G$ is an Abelian group.

Click to see a solution.

Since $G$ is cyclic, we know that there exists some $a\in G$ with $\langle a\rangle = G$. Let $x,y\in G$. We need to show that $xy=yx$. But we know that $x=a^m$ and $y=a^n$ for some $n,m\in \mathbb{Z}$ because $G$ is cyclic. This means that $$xy=a^ma^n=a^{m+n}=a^{n+m}=a^na^m=yx,$$ which is what we needed to show.