Please Login to access more options.
Definition (Irreducible Polynomial Reducible Polynomial)
Let $D$ be an integral domain. A polynomial $f(x)$ from $D[x]$ that is neither the zero polynomial nor a unit in $D[x]$ is said to be irreducible over $D$ if, whenever $f(x)$ is expressed as a product $f(x)=g(x)h(x)$, with $g(x)$ and $h(x)$ from $D[x]$, then $g(x)$ or $h(x)$ is a unit in $D[x]$. A nonzero, nonunit element of $D[x]$ that is not irreducible over $D$ is called reducible over $D$.
The following pages link to this page.