Announcements

  • Coach is at MathFest 2024 till next week.
  • I'll host office hours both Wed and Fri in room 247 (a couple doors down from Coach's).

Brain Gains

  1. In section 5.5's homework, we showed the first few terms of the Laurent series of $\frac{1}{\sin{z}}$ for $0<|z|<\pi$ is $$\frac{1}{z}+\frac{z}{6}+\frac{7}{360}z^3 +\cdots.$$ Compute each of the following integrals (the path around $|z|=1$ is traversed counter clockwise):
    • $\ds\int_{|z|=1}\frac{dz}{\sin(z)}$, $\ds\int_{|z|=1}\frac{dz}{z\sin(z)}$, $\ds\int_{|z|=1}\frac{dz}{z^2\sin(z)}$, $\ds\int_{|z|=1}\frac{dz}{z^3\sin(z)}$, $\ds\int_{|z|=1}\frac{dz}{z^4\sin(z)}$
  2. Explain why $\ds\left|\frac{1}{1+z^4}\right|\leq \frac{1}{R^4-1}$ for $|z|=R>1$.
  3. Let $\gamma$ the the portion of the circle $|z|=R$ with non-negative imaginary part (so a parametrization is $z(t)=Re^{i\theta}$ for $0\leq \theta\leq \pi$. Show that $$\lim_{R\to\infty}\int_\gamma\frac{1}{1+z^4}dz=0.$$

Group problems

  1. Compute $\ds\int_{-\infty}^{\infty}\frac{x^2}{(x^2+9)^2}dx$

Problem Set
Today

« August 2024 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31