9:00 AM Jamboard Links

G1 G2 G3 G4 G5 G6 G7
  • Kallan DuPaix
  • Spencer Hatch
  • Zack Kunkel
  • Marissa Mavy
  • Santiago Meza Jr
  • Spencer Blau
  • Jordan Cluff
  • Ryan Cox
  • Makenzy Pharis
  • Gavin Slater
  • Ethan Barrus
  • Rachel Hardy
  • Parker Kemp
  • Denali Russell
  • Cecilia Sanders
  • Jeremy Boyce
  • Karen Castillo Avendano
  • Mason Peterson
  • Luke Romeril
  • Nathan Thompson
  • Kylar Dominguez Pluma
  • Logan Grover
  • Tanner Harding
  • Olivia Houghton
  • Jae Kim
  • Kai Alger
  • Nathan Bryans
  • Lucy Fisher
  • Chase Fry
  • Braydon Robinson
  • Evan Duker
  • Ralph Oliver
  • Tyler Stokes

12:45 PM Jamboard Links

G1 G2 G3 G4 G5 G6
  • Adam Hopkins
  • Oscar Enrique Gonzalez Mosqueda
  • Reed Hunsaker
  • Rick Miller
  • Trevor Fike
  • Forrest Thompson
  • Hamilton Birkeland
  • Jeremy Jacobsen
  • Michael Clarke
  • Adrick Checketts
  • Alan Loureiro
  • Christian Shamo
  • Preston Yost
  • Carter Cooper
  • Chad Larkin
  • Joshua Strang
  • Michael Ruiz
  • Brian Odhiambo
  • Cheyenne Pratt
  • Jacob Gravelle
  • Matty Davis
  • Aaron Reed
  • Brad Johnston
  • Hayley Kerkman
  • Jaden Camargo
  • Tanner Anderson

Rapid Recall

  • Compute the derivatives:
  1. $f(x) = \ln (2x+1)$
  2. $g(x) = \cos 3x$
  3. $p(x) = e^{2x} \sin x$

Answer:

  1. $\ds \frac{df}{dx} = \left(\frac{1}{ (2x+1) }\right)(2)=\frac{2}{2x+1}$
  2. $g'(x) = -3\sin 3x$
  3. $p'(x) = 2e^{2x} \sin x + e^{2x}\cos x$
  • Draw $\ds \frac{x^2}{16}+\frac{y^2}{9}=1$ and $\ds \frac{x^2}{16}-\frac{y^2}{9}=1$. Use the same set of axes if you'd like.

Answer:

The solution is an ellipse centered at the origin that goes left and right 4 units, while it goes up and down 3 units. Draw a box around this ellipse, and then connect opposing corners with lines to get the hyperbola that opens left and right.

  • Sketch the curve $\vec r(t)=\left<t^2+2,-2t+1\right>$ for $-1\leq t\leq 2$.

Answer:

The graph is a small portion of a parabola. The vertex is at $ (2,1) $. It opens towards the right. At time $t=0$, it passes through the point $ (3,3) $, then through $(2,1)$, then through $ (3,-1)$, and then finishes at $t=2$ at $ (6,-3) $.

Group problems

  1. Draw $\ds \frac{(x+2)^2}{9}+\frac{(y-4)^2}{25}=1$ and then draw $\ds -\frac{(x+2)^2}{9}+\frac{(y-4)^2}{25}=1$.
  2. Draw the parametric curve $x=2+3\cos t$, $y=4+5\sin t$. Make a $t,x,y$ table of points, and then graph the $(x,y)$ coordinates.
  3. Draw the parametric curve $x=4+5\cos t$, $y=3+7\sin t$. Give a Cartesian equation of the curve.
  4. Draw $\vec r(t) = (3 \cos t, 3 \sin t)$.
  5. Find the velocity of an object parametrized by the curve above. Then state the speed. [Hint: derivatives will help.]
  6. Draw $\vec r(t) = (3 \cos 2t, 3 \sin 2t)$. What is the speed of this curve?

Problem Set
Today

« September 2020 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30