You can access this page from the homepage in I-Learn.

Pre-Class Chatter

Feel free to turn on your mic and chat with people or use the zoom chat. Or chat with your group in your Jamboard.

9:00 AM Jamboard Links

G1 G2 G3 G4 G5 G6 G7
  • Kallan DuPaix
  • Spencer Hatch
  • Zack Kunkel
  • Marissa Mavy
  • Santiago Meza Jr
  • Spencer Blau
  • Jordan Cluff
  • Ryan Cox
  • Makenzy Pharis
  • Gavin Slater
  • Ethan Barrus
  • Rachel Hardy
  • Parker Kemp
  • Denali Russell
  • Cecilia Sanders
  • Jeremy Boyce
  • Karen Castillo Avendano
  • Mason Peterson
  • Luke Romeril
  • Nathan Thompson
  • Kylar Dominguez Pluma
  • Logan Grover
  • Tanner Harding
  • Olivia Houghton
  • Jae Kim
  • Kai Alger
  • Nathan Bryans
  • Lucy Fisher
  • Chase Fry
  • Braydon Robinson
  • Evan Duker
  • Ralph Oliver
  • Tyler Stokes

12:45 PM Jamboard Links

G1 G2 G3 G4 G5 G6
  • Adam Hopkins
  • Oscar Enrique Gonzalez Mosqueda
  • Reed Hunsaker
  • Rick Miller
  • Trevor Fike
  • Forrest Thompson
  • Hamilton Birkeland
  • Jeremy Jacobsen
  • Michael Clarke
  • Adrick Checketts
  • Alan Loureiro
  • Christian Shamo
  • Preston Yost
  • Carter Cooper
  • Chad Larkin
  • Joshua Strang
  • Michael Ruiz
  • Brian Odhiambo
  • Cheyenne Pratt
  • Jacob Gravelle
  • Matty Davis
  • Aaron Reed
  • Brad Johnston
  • Hayley Kerkman
  • Jaden Camargo
  • Tanner Anderson

Rapid Recall

1. Give a vector equation of the line that passes through $P=(3,4)$ and $Q=(-2,5)$.

Solution

A vector from $P$ to $Q$ is $\vec {PQ}= (-2-3,5-4) = (-5,1)$, which is a direction vector for the line. Two options for a vector equation of the line are $$(x,y) = (-5,1)t+(3,4) \quad \text{or}\quad (x,y) = (-5,1)t+(-2,5).$$ Any nonzero multiple of the direction vector would work as well, as well as any other form of writing equations of lines. As an example, we could have written this as $$ x\hat i +y\hat j = (-10t+3)\hat i + (2t+4)\hat j \quad\text{or}\quad \begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}5\\-1\end{pmatrix}t+\begin{pmatrix}3\\4\end{pmatrix}. $$

2. Compute the dot product of $\vec P$ and $\vec Q$. Then begin finding the angle between $\vec P$ and $\vec Q$.

Solution

We compute $$\vec P\cdot \vec Q=(3,4)\cdot(-2,5) = \underbrace{(3)(-2)+(4)(5)}_{\text{sufficient}} = -6+20 = 14.$$ The angle is $$\theta = \cos^{-1}\left(\frac{\vec P\cdot \vec Q}{|\vec P||\vec Q|}\right) = \cos^{-1}\left(\frac{(3)(-2)+(4)(5)}{\sqrt{3^2+4^2}\sqrt{(-2)^2+5^2}}\right) = \cos^{-1}\left(\frac{14}{5\sqrt{29}}\right) .$$

3. Give two vectors that are orthogonal to $\vec P$.

Solution

We need a vector $S=(x,y)$ so $\vec P\cdot \vec S=0$, or in other words $3x+4y=0$. Two options are $(0,0)$ and $(4,-3)$. All other options (since we are in 2D) are a multiple of $(4,-3)$, so you might have $(-4,3)$ or $(-8,6)$ as well as many other options.

4. The (vector) projection of $\vec P$ onto $\vec Q$ is given by the formula $$\ds \text{proj}_\vec Q\vec P = \frac{\vec P\cdot \vec Q}{\vec Q\cdot \vec Q}\vec Q.$$ Compute the projection of $\vec P$ onto $\vec Q$.

Solution

We compute $$\ds \text{proj}_\vec Q\vec P = \frac{\vec P\cdot \vec Q}{\vec Q\cdot \vec Q}\vec Q = \frac{(3)(-2)+(4)(5)}{(-2)^2+5^2}(-2,5) = \frac{14}{29}(-2,5) .$$ Note that this is a little less than half $\vec Q$.

Group problems

Let $P=(3,4)$ and $Q=(2,0)$.

  1. Using the formula $$\ds \text{proj}_\vec Q\vec P = \frac{\vec P\cdot \vec Q}{\vec Q\cdot \vec Q}\vec Q,$$ compute $\text{proj}_\vec Q\vec P$, the project of $\vec P$ onto $\vec Q$. We may also write this as $\vec P _{\parallel \vec Q}$, which we read as, "The vector component of $\vec P$ that is parallel to $\vec Q$."
  2. Draw $\vec P$, $\vec Q$ and $\text{proj}_\vec Q\vec P $ on the same grid with their base at the origin.
  3. Add to your picture the vector difference $\vec P_{\perp \vec Q} = \vec P - \text{proj}_{\vec Q}\vec P$, which we call "The vector component of $\vec P$ that is orthogonal to $\vec Q$." How is $\vec P_{\perp \vec Q}$ related to the other vectors?
  4. Now compute the projection of $\vec Q$ onto $\vec P$ (so swap which vector is projected onto the other).
  5. Draw $\vec P$, $\vec Q$ and $\text{proj}_\vec P\vec Q $ on the same grid with their base at the origin, and add to your picture the vector difference $\vec Q_{\perp \vec P} = \vec Q - \text{proj}_{\vec P}\vec Q $.
  6. How much work is done by $\vec P$ through a displacement $\vec Q$?

If you finish the above, then repeat it with Let $P=(3,4)$ and $Q=(-2,5)$.


Problem Set
Today

« September 2020 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30