You can access this page from the homepage in I-Learn.

Pre-Class Chatter

Feel free to turn on your mic and chat with people or use the zoom chat. Or chat with your group in your Jamboard.

9:00 AM Jamboard Links

G1 G2 G3 G4 G5 G6 G7
  • Kallan DuPaix
  • Spencer Hatch
  • Zack Kunkel
  • Marissa Mavy
  • Santiago Meza Jr
  • Spencer Blau
  • Jordan Cluff
  • Ryan Cox
  • Makenzy Pharis
  • Gavin Slater
  • Ethan Barrus
  • Rachel Hardy
  • Parker Kemp
  • Denali Russell
  • Cecilia Sanders
  • Jeremy Boyce
  • Karen Castillo Avendano
  • Mason Peterson
  • Luke Romeril
  • Nathan Thompson
  • Kylar Dominguez Pluma
  • Logan Grover
  • Tanner Harding
  • Olivia Houghton
  • Jae Kim
  • Kai Alger
  • Nathan Bryans
  • Lucy Fisher
  • Chase Fry
  • Braydon Robinson
  • Evan Duker
  • Ralph Oliver
  • Tyler Stokes

12:45 PM Jamboard Links

G1 G2 G3 G4 G5 G6
  • Adam Hopkins
  • Oscar Enrique Gonzalez Mosqueda
  • Reed Hunsaker
  • Rick Miller
  • Trevor Fike
  • Forrest Thompson
  • Hamilton Birkeland
  • Jeremy Jacobsen
  • Michael Clarke
  • Adrick Checketts
  • Alan Loureiro
  • Christian Shamo
  • Preston Yost
  • Carter Cooper
  • Chad Larkin
  • Joshua Strang
  • Michael Ruiz
  • Brian Odhiambo
  • Cheyenne Pratt
  • Jacob Gravelle
  • Matty Davis
  • Aaron Reed
  • Brad Johnston
  • Hayley Kerkman
  • Jaden Camargo
  • Tanner Anderson

Rapid Recall

  • Give a vector of length 10 that is parallel to the vector $\vec v = (4,-3)$.

Solution

The length of the original vector is 5. A vector of length 10 parallel to the original is $$\frac{10}{5}(4,-3)=(8,-6).$$

  • Let $\vec u = (2,3,-1)$ and $\vec v = (-4,1,7)$. Compute the dot product $\vec u\cdot \vec v$.

Solution

The dot product is $$ \vec u\cdot\vec v = (2,3,-1)\cdot(-4,1,7) = -8+3-7 = -12. $$

  • Using the same vectors as above, compute $\vec u\cdot \vec u$ and the magnitude $\left|\vec u\right|$.

Solution

The dot product is $$ \vec u\times\vec u = (2,3,-1)\cdot(2,3,-1) = 4+9+1 = 14. $$ The magnitude is $$ |\vec u|=\sqrt{4+9+1} = \sqrt{14}. $$

  • What is the angle between $\vec u = (1,2,3)$ and $\vec v = (1,1,-1)$.

Solution

The dot product gives $\vec u\cdot\vec v = 1+2-3=0$. Since the dot product is zero, and the law of cosines in dot product form is $\vec u\cdot\vec v=|\vec u||\vec v|\cos\theta$, we know that $0 = |\vec u||\vec v|\cos\theta$. The only way the product on the right can be zero is if either one of the vectors has zero length (not true), or we have $\cos\theta = 0$. Since the latter is true, this means $\theta =\pi/2$ (or alternately $\theta = 90^\circ$).

Group problems (Jamboards)

The law of cosines, in dot product form, is $$\vec u\cdot \vec v = |\vec u||\vec v|\cos\theta.$$

  1. Find the angle between each pair of vectors below, using the dot product law above.
    • $(-2,1)$ and $(1,3)$
    • $(2,3)$ and $(-1,4)$
    • $(-5,1)$ and $(2,10)$
    • $(1,2,3)$ and $(-7,2,1)$
    • $(1,2,3)$ and $(x,y,z)$.
    • Give a set of values for $x,y,z$ above so that the angle is 90 degrees. Then give another. Then give another.
  2. The (vector) projection of $\vec P$ onto $\vec Q$ is given by the formula $$\ds \text{proj}_\vec Q\vec P = \frac{\vec P\cdot \vec Q}{\vec Q\cdot \vec Q}\vec Q.$$ Compute the projection of $\vec P$ onto $\vec Q$.
    • $\vec P = (-2,1)$ and $\vec Q = (1,3)$
    • $\vec P = (2,3)$ and $\vec Q = (-1,4)$
    • $\vec P = (-5,1)$ and $\vec Q = (2,10)$
  3. If you ever finish early as a group, you can use the link below to open up the problem set and discuss some of the problems due tomorrow.

Problem Set
Today

« September 2020 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30