Problems to work for tomorrow

  • 6.1 - 6.9. Skip 6.4 (unless you want to complete a proof).
  • We'll see all of these tomorrow. I'll have solutions provided for the ones that no one completes.

Rapid Recall (More like Jivin' Generation)

Let $$\vec \nabla = \left(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}\right).$$

  • For the vector field $\vec F(x,y,z) = (3xy,2x+y+5z,yz^2)$, compute the derivative $D \vec F$.

Solution

It is a 3 by 3 matrix with the partial derivatives in columns.

  • For the vector field $\vec F(x,y,z) = (3xy,2x+y+5z,yz^2)$, compute $\vec \nabla \cdot \vec F$.

Solution

We compute $$\begin{align} \vec \nabla \cdot \vec F &=\left(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}\right)\cdot (3xy,2x+y+5z,yz^2)\\ &=\frac{\partial}{\partial x}(3xy)+\frac{\partial}{\partial y}(2x+y+5z)+\frac{\partial}{\partial z}(yz^2)\\ &=(3y)+(1)+(2yz) .\end{align}$$

  • For the vector field $\vec F(x,y,z) = (3xy,2x+y+5z,yz^2)$, compute $\vec \nabla \times \vec F$.

Solution

We compute $$\begin{align} \vec \nabla \cdot \vec F &=\left(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}\right)\times (3xy,2x+y+5z,yz^2)\\ &=\left( \frac{\partial}{\partial y}(yz^2) - \frac{\partial}{\partial z}(2x+y+5z), \frac{\partial}{\partial z}(3xy) - \frac{\partial}{\partial x}(yz^2), \frac{\partial}{\partial x}(2x+y+5z) - \frac{\partial}{\partial y}(3xy) \right)\\ &=\left( (z^2) - (5), (0) - (0), (2) - (3x) \right) .\end{align}$$

  • For the vector field $\vec F(x,y,z) = (3xy,2x+y+5z,yz^2)$ and the curve $\vec r(t) = (t,t^2,t^3)$ for $-1\leq t\leq 2$, set up the work integral $\int_C\vec F\cdot d\vec r$.

Solution

In the second unit, we learned that $$W=\int_C\vec F\cdot d\vec r = \int_a^b \vec F(\vec r(t))\cdot \frac{d\vec r}{dt}dt.$$ We have

  • $\vec F(\vec r(t)) = (3(t)(t^2),2(t)+(t^2)+5(t^3),(t^2)(t^3)^2)$
  • $\frac{d\vec r}{dt} = (1,2t,3t^2)$

This means $$ \begin{align} W &= \int_{-1}^{2}(3(t)(t^2),2(t)+(t^2)+5(t^3),(t^2)(t^3)^2)\cdot (1,2t,3t^2)dt \\ &= \int_{-1}^{2}3(t)(t^2) + \left(2(t)+(t^2)+5(t^3)\right)(2t)+ (t^2)(t^3)^2(3t^2)dt. \end{align} $$

Operators - Discussion

  1. What is an operator?
    • The derivative $\frac{df}{dx}$
    • The integral $\int_a^b f(x) dx$
    • The del operator $\vec \nabla = \left(\frac{\partial}{\partial x},\frac{\partial}{\partial y}\right)$ or $\vec \nabla = \left(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}\right)$.
  2. Three new quantities (A great book: "Div, Grad, Curl, and all that" by H. M. Schey - Electrostatics)
    • Gradient of a function $f$: $\vec \nabla f$.
    • Divergence of a vector field $\vec F$: $\vec \nabla \cdot \vec F$.
    • Curl of a vector field $\vec F$: $\vec \nabla\times \vec F$.

Class Practice

  1. Let $f(x,y,z) = 3xe^{yz^2}$. Compute the gradient $\vec \nabla f$.
  2. Let $\vec F(x,y,z) = (3x+4y+5z, xy, yz^2)$. Compute the divergence $\vec \nabla \cdot \vec F$.
  3. Let $\vec F(x,y,z) = (3x+4y+5z, xy, yz^2)$. Compute the curl $\vec \nabla \times \vec F$.
  4. Compute $Df$ and $D\vec F$, using the function $f$ from 1, and the vector field $\vec F$ from 2.

Group Practice

  1. Let $f(x,y,z) = x^2yz^3$ and vector field $\vec F(x,y,z) = (x+2y+3z,4xy+z^2, 5xyz)$.
    1. Compute the gradient $\vec \nabla f$.
    2. Compute the divergence $\vec \nabla \cdot \vec F$.
    3. Compute the curl $\vec \nabla \times \vec F$.
    4. Compute the derivatives $Df$ and $D \vec F$.
  2. Use the function $f$ from #4, and compute $\vec \nabla f$ followed by $\vec \nabla \times \vec \nabla f$. Simplify your answer.
  3. Let $f$ now represent any function. Symbolically compute $\vec \nabla f$ followed by $\vec \nabla \times \vec \nabla f$. Simplify your answer.
  4. Use the vector field $\vec F$ from #4. Then compute $\vec \nabla \times \vec F$ followed by $\vec \nabla \cdot ( \vec \nabla \times \vec F)$.
  5. Let $\vec F=(M,N,P)$ represent any vector field. Symbolically compute $\vec \nabla \times \vec F$ followed by $\vec \nabla \cdot ( \vec \nabla \times \vec F)$. Simplify your answer.
  6. Pick a specific vector field $\vec F$. Then compute $\vec \nabla \cdot \vec F$ followed by $\vec \nabla ( \vec \nabla \cdot \vec F)$.
  7. Let $\vec F=(M,N,P)$ represent any vector field. Symbolically compute $\vec \nabla \cdot \vec F$ followed by $\vec \nabla ( \vec \nabla \cdot \vec F)$.

Connecting Gradients and Vector Fields - Potential Functions

  1. For $f(x,y)$, recall the gradient is the vector field $\vec \nabla f = (f_x,f_y)$ and the differential is $df = f_xdx+f_ydy = (f_x,f_y)\cdot(dx,dy)$.
  2. The derivative of the gradient is $D(\vec \nabla f) = \begin{bmatrix}f_{xx}&f_{xy}\\f_{yx}&f_{yy}\end{bmatrix}$.
  3. For a vector field $\vec F = (M,N)$, recall the derivative is $D\vec F = \begin{bmatrix}M_{x}&M_{y}\\N_{x}&N_{y}\end{bmatrix}$.
  4. The differential of $f$ is $df = f_x dx+f_y dy$. The differential of work done by the vector field $\vec F = (M,N)$ is $dW = Mdx+Ndy$.
    • Physically, what does the integral $\int_C df$ compute? (Add up ... to get ...)
    • Physically, what does the integral $\int_C dW$ compute? (Add up ... to get ...)
    • Suppose $f_x dx+f_y dy = Mdx+Ndy$. then how are $f$ and $\vec F$ related?
    • When $f_x dx+f_y dy = Mdx+Ndy$, then we have $\int_C dW = \int_C df$. What does this mean in words?
    The work done by $\vec F$ along a curve $C$ is equal to ....

Practice

  1. Let $\vec F=(2x+3y, 3x+4y)$. Let $C$ be the curve parametrized by $\vec r(t) = (2-2t,3t)$ for $0\leq t\leq 1$.
    • Draw the curve. At a few points on the curve, draw the vector field.
    • From your picture, will the work done by $\vec F$ along $C$ be positive or negative?
    • Compute the work done by $\vec F$ along the curve.
  2. Let $f(x,y) = x^2+3xy+2y^2$.
    • Compute $\vec \nabla f$ and $df$.
    • State $\vec r(0)$ and the value of $f$ at $t=0$? Then repeat this at $t=1$.
    • Compute $\int_C df$. In other words, state the total change in $f$ along the curve $C$. Compare this to the first question.
  3. Let $f = xy^2+3x$.
    • Compute $\vec \nabla f$.
    • Compute $D^2f$.
    • Compute $\int_{ (2,1) }^{ (-1,3) } df$
  4. Let $\vec F = (2xy+4, x^2+2y)$.
    • Compute $D\vec F$.
    • Find a function $f$ so that $\vec F = \vec \nabla f$.
    • Find the work done by $f$ to get from $(2,0)$ to $(0,3)$. (Hint, what is $\int_C df$?)
  5. Let $\vec F = (2x+3y, 4x+5y)$.
    • Compute $D\vec F$.
    • Explain why is it impossible to find a function $f$ so that $\vec F = \vec \nabla f$.
  6. Under what conditions will a vector field $\vec F$ have a function $f$ such that $\vec\nabla f = \vec F$. We call such function $f$ a potential for $\vec F$.
  7. Find a potential for each of the following, or explain why none exists.
    • $\vec F = (2x,3y)$
    • $\vec F = (2y,3x)$
    • $\vec F = (3y,3x)$
    • $\vec F = (4x,5y,6z)$
    • $\vec F = (4x,5z,6y)$
    • $\vec F = (4x,5z,5y)$
    • $\vec F = (2x-y,-x+4y)$
    • $\vec F = (y^2+2x,2xy)$
    • $\vec F = (x+yz,xz+4yz,xy+2y^2)$
    • $\vec F = (x+yz,4yz,xy+2y^2)$
    • $\vec F = (x+yz,xz+4yz,xy)$
    • $\vec F = (yz,xz+4yz,xy+2y^2)$

Boundaries

  1. Given a line segment on the $x$-axis, what's the boundary? How do we describe the segment mathematically. How do we describe the boundary mathematically? What does $\int_C \frac{df}{dx}dx = f(b)-f(a)$ say in terms of boundaries?
  2. Given a wire, what's the boundary? How do we describe the wire mathematically. How do we describe the boundary mathematically?
  3. Given a region $R$ in the plane, what's the boundary? How do we describe the region mathematically? How do we describe the boundary mathematically?
  4. Given a solid $D$ in space, what's the boundary? How do we describe the solid mathematically? How do we describe the boundary mathematically?

Wires and Surfaces

  1. What is the difference between $y=f(x)$ and $\vec r(x) = (x,f(x))$?
  2. What is the difference between $z=f(x,y)$ and $\vec r(x,y) = (x,y,f(x,y))$?
  3. How do we mathematically describe a wire?
  4. How do we mathematically describe a surface?
  5. How do we find the length $s$ of a wire? We add up little bits of length $ds$.
    • What does each part of $\int_C ds = \int_C |\frac{d\vec r}{dt}|dt$ mean?
  6. How do we find the surface area $\sigma$ of a surface? We add up little bits of surface area $d\sigma$.
    • What does each part of $\iint_S d\sigma = \iint |\frac{\partial\vec r}{\partial u}\times\frac{\partial\vec r}{\partial v}|dudv$ mean?

Fundamental Theorems

In the work below, note that $\vec T$ is a unit tangent vector to a curve, while $\vec n$ is a unit vector that is normal to a boundary and pointing away from a region.

  • $f(b)-f(a) = \int_a^b \frac{df}{dx} dx$ - Fundamental Theorem of Calculus
  • $f(B)-f(A) = \int_C \vec \nabla f\cdot d\vec r$ - Fundamental Theorem of Line Integrals
  • $\int_C \vec F\cdot \vec T ds = \iint_R (\vec \nabla \times \vec F)\cdot (0,0,1)dA$ - Green's Theorem
  • $\int_C \vec F\cdot \vec T ds = \iint_S (\vec \nabla \times \vec F)\cdot \vec n d\sigma$ - Stokes's Theorem
  • $\int_C \vec F\cdot \vec n ds = \iint_R (\vec \nabla \cdot \vec F)dA$ - Green's theorem
  • $\iint_R \vec F\cdot \vec n d\sigma = \iiint_D (\vec \nabla \cdot \vec F)dV$ - Divergence Theorem

Problem Set
Today

« December 2019 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31