Rapid Recall

  • Write the following antiderivatives:
  1. $\int x^3-2x^2+x+5\,dx$
  2. $\displaystyle \int e^{3x}\,dx$
  3. $\displaystyle \int x\sin x^2\,dx$

Solution

The solutions are

  1. $\displaystyle \frac{x^4}{4}-\frac{2x^3}{3}+\frac{x^2}{2}+5x+C$,
  2. $\displaystyle \frac{e^{3x}}{3}+C$, and
  3. $-\frac{1}{2}\cos(x^2)+C$.

For the last problem, did you remember substitution? If we let $u=x^2$, then $du =2xdx$, or $\frac{du}{2} = xdx$. This means $$ \begin{align} \displaystyle \int x\sin x^2\,dx &=\displaystyle \int \sin u (x\,dx)\\ &=\displaystyle \int \sin u(\frac{1}{2}\,du)\\ &=\displaystyle \frac{1}{2}(-\cos u)+C\\ &=\displaystyle -\frac{1}{2}\cos(x^2)+C. \end{align} $$ Anyone forget the $+C$?

  • Give a vector equation of a line that passes through $(1,2)$ and is parallel to $(3,4)$.

Solution

$\vec r(t)=\left<3,4\right>\,t + \left<1,2\right>$

  • Give a vector of length 4 that is parallel to the vector $\vec v = (-1,2,-2)$.

Solution

A quick answer is $$\frac{4}{3}(-1,2,-2)=\left(-\frac{4}{3}, \frac{8}{3}, -\frac{8}{3} \right).$$ The length of $\vec v$ is $|\vec v| = \sqrt{(-1)^2+(2)^2+(-2)^2} = \sqrt{9} =3$. A unit vector is then $$\hat v = \frac{\vec v}{|\vec v|} = \frac{(-1,2,-2)}{3}=\left(-\frac{1}{3}, \frac{2}{3}, -\frac{2}{3} \right).$$ The requested vector is then $$\vec w = 4\hat u = \frac{4}{3}(-1,2,-2)=\left(-\frac{4}{3}, \frac{8}{3}, -\frac{8}{3} \right).$$

  • Use the law of cosines ($c^2=a^2+b^2-2ab\cos\theta$) to find the angle between the vectors $\vec u = (-1,5)$ and $\vec v = (2,4)$.

Solution

The vectors have lengths $a=|\vec u| = \sqrt{(-1)^2+(5)^2} = \sqrt{26}$ and $b=|\vec v| = \sqrt{(2)^2+(4)^2} = \sqrt{20}$. The difference is $\vec v-\vec u = (3, -1)$, and has length $c = |\vec v - \vec u| = \sqrt{10}$. From the law of cosines, we get $10 = 26+20-2\sqrt{26}\sqrt{10}\cos \theta$. Solving for $\cos\theta$ gives $\cos \theta = \frac{10-26-20}{-2\sqrt{26}\sqrt{10}}$, which means $$\theta = \arccos\left(\frac{10-26-20}{-2\sqrt{26}\sqrt{10}}\right).$$

Group problems

(Don't forget to PTC after each problem)

  1. Give a vector equation of the line that passes through the point $(1,2,3)$ and $(-2,4,9)$ (all distances are in meters, and times in minutes).
  2. Modify your vector equation from the previous part so that the speed of an object that is tracked with this equation is 3 meters per unit time.
  3. An object starts at $P=(1,2,3)$ and each unit of time its displacement is 2 units in the direction of $\vec v=(-4,5,1)$. Give an equation for the position $(x,y,z)$ at any time $t$.
  4. Use the law of cosines ($c^2=a^2+b^2-2ab\cos\theta$ or $\vec u\cdot \vec v = |\vec u||\vec v|\cos\theta$) to find the angle between each pair of vectors below.
  • $(-2,1)$ and $(1,3)$.
  • $(2,3)$ and $(-1,4)$
  • $(\pi,e)$ and $(\sqrt{17},c)$
  • $(1,2,3)$ and $(-7,2,1)$
  • $(1,2,3)$ and $(x,y,z)$.

Problem Set
Today

« September 2019 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30