Rapid Recall

  • Recall for a two dimensional region that $\bar x = \dfrac{\iint_R xdA}{\iint_R dA}$. If you know that the area of a region is $A = 3$ and the centroid is $(5,7)$, compute $\iint_R 2xdA$.

Solution

  • A curve $C$ traverses around a region $R$ with $A = 3$ and the centroid is $(5,7)$. Compute the work done by $\vec F = (2x+3y,x^2+y^2)$ along $C$.

Solution

  • For the surface $\vec r(u,v) = (u\cos v,u\sin v,9-u^2)$, compute the normal vector $\vec n = \frac{\partial \vec r}{\partial u}\times \frac{\partial \vec r}{\partial v}$.

Solution

Group problems

  1. Compute the work done by $\vec F = (-3y,3x)$ to move an object counterclockwise once along the circle $\vec r(t) = (5\cos t, 5\sin t),$ using Green's theorem $\iint_R N_x-M_y dA$.
  2. Compute the work done by $\vec F = (y^2,3x)$ to move an object counterclockwise once along the circle $\vec r(t) = (5\cos t, 5\sin t),$ using Green's theorem $\iint_R N_x-M_y dA$.
  3. Compute the work done by each vector field below to move an object counterclockwise once along the triangle with corners $(0,0)$, $(2,0)$, and $(0,3)$.
    • $\vec F = (2x-y,2x+4y)$
    • $\vec F = (x^2+y^2,x+y)$
  4. Consider the parametric surface $\vec r(u,v) = (u\cos v, u\sin v, u^2)$ for $u\in [1,2]$ and $v\in [0,2\pi]$.
    • Compute a normal vector to the surface (so $\vec n = \vec r_u\times \vec r_v$).
    • Give an equation of the tangent plane to the surface at $(u,v)=(3/2,\pi/2)$.
    • Set up an integral to compute the surface area of the surface.
  5. Consider the surface parametrized by $\vec r(u,v) = (u, v, u^2+v^2)$ for $-3\leq u\leq 3$ and $0\leq v\leq 3$.
    • Compute $d\sigma = \left |\dfrac{\partial \vec r}{\partial u}\times\dfrac{\partial \vec r}{\partial u}\right|dudv$.
    • Set up an integral formula to compute $\bar z$ for this surface.
  6. Consider the parametric surface $\vec r(u,v) = (u^2\cos v, u, u^2\sin v)$ for $u\in [1,2]$ and $v\in [0,2\pi]$.
    • Compute a normal vector to the surface (so $\vec n = \vec r_u\times \vec r_v$).
    • Give an equation of the tangent plane to the surface at $(u,v)=(3/2,\pi/2)$.
    • Set up an integral to compute the surface area of the surface.
  7. Draw each curve or surface given below.
    1. $\vec r(u,v) = (4\cos u,v, 3\sin u)$ for $0\leq u\leq \pi$ and $0\leq v\leq 7$.
    2. $\vec r(t) = (3\cos t,3\sin t,t)$ for $0\leq t\leq 6\pi$.
    3. $\vec r(u,v) = (u\cos v,u\sin v,v)$ for $0\leq v\leq 6\pi$ and $2\leq u\leq 4$.
    4. $\vec r(t) = (0,t,9-t^2)$ for $0\leq t\leq 3$.
    5. $\vec r(x,y) = (x,y,9-x^2-y^2)$ for for $0\leq x \leq 3$ and $-3\leq y\leq 3$.
    6. $\vec r(u,v) = (u\cos v,u\sin v,9-u^2)$ for $0\leq u\leq 3$ and $0\leq v\leq 2\pi$.

Problem Set
Today

« April 2019 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30