Rapid Recall

  1. Which problems are you ready to present?
  2. Which problems did you sincerely attempt
  3. Given the vectors $\vec F$ and $\vec d$ on the board, draw the projection of $\vec F$ onto $\vec d$.
  4. If I know that $\vec F=(0,-3)$ and $\vec F_{\parallel \vec d} = (1,-2)$, then state $\vec F_{\perp \vec d}$.
  5. The force $\vec F = (3,5)$ acts on an object which undergoes a displacement $(-2,1)$. Find the work done by $\vec F$ though this displacement.

Group problems

  1. The projection of $\vec F$ onto $\vec d$ is $(3,0)$. Give two vectors $\vec F$ and $\vec d$ so that this can occur.
  2. Give a different pair $\vec F$ and $\vec d$ with the same projection.
  3. Repeat the previous problem, assuming that $\text{proj}_{\vec d}{\vec F} = (-1,2)$.
  4. Let $x=2u+3$ and $y=4v-5$. Complete the $u,v,x,y$ table below, and then construct a graph of both $u^2+v^2=1$ (in the $uv$-plane) and the corresponding equation in the $xy$-plane. $$ \begin{array}{c|c|c|c} u&v&x&y\\\hline 0&0&3&-5\\ 1&0&5&-5\\ 0&1&&\\ -1&0&&\\ 0&-1&&\\ \end{array} $$
  5. Draw the three circles $x^2+y^2=1$, $(x-2)^2+(y-5)^2=1$, and $(x+2)^2+(y+3)^2=1$.
  6. Draw $\left(\frac{x}{3}\right)^2+\left(\frac{y}{5}\right)^2=1$.
  7. Draw $\ds \frac{(x-2)^2}{16}+\frac{(y-3)^2}{9}=1$.
  8. Draw $\ds \frac{(x-2)^2}{16}-\frac{(y-3)^2}{9}=1$.
  9. Draw $\ds \frac{(y-3)^2}{9}-\frac{(x-2)^2}{16}=1$.

Problem Set
Today

« January 2019 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31