Let $\vec F = (3x,4y,2z)$. Let $S$ be the surface parametrized by $\vec r(u,v) = (u,v,9-u^2-v^2)$.

  1. Compute $d\sigma$.
  2. State a unit normal vector $\hat n$ to the surface that points upwards at all points along the surface.
  3. Compute $\vec F\cdot\hat n d\sigma$. What does this quantity represent?
  4. Change the surface to the 6 faces of a rectangular box with $x\in [0,2], y\in [0,3], z\in [0.5] $. For each surface, state a normal vector and $\vec F\cdot\hat n d\sigma$.

Problem Set
Today

« December 2018 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31