Consider the vector field $\vec F = (M,N,P)$. Compute each of the following symbolically, or explain why it is impossible.

  1. $D\vec F$
  2. $\vec \nabla \cdot \vec F$
  3. $\vec \nabla\times \vec F$
  4. $\vec \nabla\times(\vec \nabla \cdot \vec F)$
  5. $\vec \nabla\cdot (\vec \nabla \times \vec F)$
  6. $\vec \nabla\cdot (\vec \nabla \cdot \vec F)$
  7. $\vec \nabla\times(\vec \nabla \times \vec F)$
  8. Green's Theorem states $ \oint_{C} M dx+Ndy=\iint_R N_x-M_y dA$. In which of the above computations do you find this quantity?
  9. Compute the work done by $\vec F = (-3y,3x)$ along the circle $\vec r(t) = (5\cos t, 5\sin t).$
    • Compute this work using $ \oint_{C} M dx+Ndy$.
    • Compute this work using $\iint_R N_x-M_y dA$.
  10. Compute the work done by $\vec F = (2x-y,2x+4y)$ along the triangle with corners $(0,0)$, $(2,0)$, and $(0,3)$.
    • Set up the single double integral $\iint_R N_x-M_y dA$.
    • Set up three integrals needed using $ \oint_{C} M dx+Ndy$.
    • Compute one of these integrals.
  11. Consider the surface parametrized by $\vec r(u,v) = (u\cos v, u\sin v, u^2+v^2)$ for $-3\leq u\leq 3$ and $0\leq v\leq 3$.
    • Draw the surface.
    • Compute $d\sigma = \left |\dfrac{\partial \vec r}{\partial u}\times\dfrac{\partial \vec r}{\partial u}\right|dudv$.
    • Set up an integral formula to compute $\bar z$ for this surface.

Problem Set
Today

« December 2018 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31