


- Draw $\vec r(t) = (0,t,9-t^2)$ for $0\leq t\leq 3$.
- Draw $\vec r(x,y) = (x,y,9-x^2-y^2)$ for for $0\leq x \leq 3$ and $-3\leq y\leq 3$.
- Draw $\vec r(u,v) = (u\cos v,u\sin v,9-u^2)$ for $0\leq u\leq 3$ and $0\leq v\leq 2\pi$.
- For the vector field $\vec F = (x^2,3z+x,2y+4z)$, compute both $\vec \nabla \cdot F$ and $\vec \nabla \times F$.
- For the same vector field compute each of the following, or explain why they cannot be computed.
- $\vec \nabla\times(\vec \nabla \cdot \vec F)$
- $\vec \nabla\cdot (\vec \nabla \times \vec F)$
- $\vec \nabla\cdot (\vec \nabla \cdot \vec F)$
- $\vec \nabla\times(\vec \nabla \times \vec F)$
- For the vector field $\vec F = (M,N,P)$, compute each of the above that can be computed.
Sun |
Mon |
Tue |
Wed |
Thu |
Fri |
Sat |