Let $\vec F=(3,4)$ and $\vec d=(-2,4)$. Recall the projection of $\vec F$ onto $\vec d$ is $\ds \text{proj}_\vec d\vec F = \frac{\vec F\cdot \vec d}{\vec d\cdot \vec d}\vec d$.

  1. Compute the projection of $\vec F$ onto $\vec d$.
  2. Draw $\vec F$, $\vec d$ and $\text{proj}_\vec d\vec F $ on the same grid, all with their base at the origin. Try your best to give the $x$ and $y$ directions the same scale, otherwise you won't be able to see the connections among vectors.
  3. Add to your picture the vector difference $\vec F - \text{proj}_\vec d\vec F $. Which vectors in your picture are orthogonal?
  4. How much work is done by $\vec F$ through the displacement $\vec d$?
  5. Draw $\text{proj}_\vec F\vec d $, without doing any computations. Make sure you compare with neighbors at some point.
  6. Draw the vector field $\vec F(x,y) = \langle2x+y,x+2y\rangle$. (Based at $(x,y)$, draw the vector $\langle2x+y,x+2y\rangle$.)
  7. Draw the vector field $\vec F(x,y) = \langle y,-x\rangle$.
  8. Let $x=2u+3$ and $y=4v-5$. Complete the $u,v,x,y$ table below, and then construct a graph of both $u^2+v^2=1$ (in the $uv$-plane) and the corresponding equation in the $xy$-plane. $$ \begin{array}{c|c|c|c} u&v&x&y\\\hline 0&0&3&-5\\ 1&0&5&-5\\ 0&1&&\\ -1&0&&\\ 0&-1&&\\ \end{array} $$

Problem Set
Today

« September 2018 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30