1. Find a function $f(x,y)$ so that $Df(x,y) = \begin{bmatrix}2x+3y&3x+4y\end{bmatrix}.$
  2. Find the work done by $\vec F = (3,4,-2)$ on an object that moves from $(0,2,1)$ to $(3,1,5)$. Does the path matter?
  3. Consider the function $f(x,y)=x^2+\frac{3y^2}{2}$
    • Set up an integral for $\int_C f \, ds$ where $C$ is a circle of radius 3.
    • Compute $\nabla f$ and then find the circulation and total flux of $\nabla f$ on the contour $C$.

Problem Set
Today

« March 2018 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31