With each problem today, don't worry about completing each integral. Instead, set up each integral in terms of $t$, and then move to the next.

  1. Let $C$ be the right half $x\geq 0$ of a circle of radius 5. Set up the line integral $\ds \int_C xds$.
  2. Let $T(x,y,z)=x^2+y^2+z$ and the curve $C$ be parametrized by $\vec r(t)=(3\cos t,3\sin t, 4t)$ for $0\leq t\leq 2\pi$. That average value is given by $\bar T=\ds\frac{\int_C Tds}{\int_Cds}.$ Set up this integral.
  3. Let $\vec F = (-y,x+y)$ and $C$ be the straight line segment from $(3,0)$ to $(0,2)$.
    • Set up the work integral $\ds\int_C Mdx+Ndy$.
    • Set up the flux integral $\ds\int_C Mdy-Ndx$.
  4. Repeat the previous part with $\vec F = (2x+y,3x)$ for the curve $x=y^2$ from $(1,-1)$ to $(4,2)$.

Problem Set
Today

« March 2018 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31