1. Set up an iterated double integral to find the area of each region described.
    • The region cut from the first quadrant by the cardioid $r=1+\sin \theta$
    • The region inside one leaf of the rose $r=\cos 3\theta$
    • Inside the cardioid $r=1+\cos \theta$ and outside the curve $r=1$.
  2. Change the following Cartesian integrals into polar integrals (Hint: draw the region to determine the bounds)
    • $\int_{-1}^1 \int_0^{\sqrt{1-x^2}} dy \, dx$
    • $\int_{0}^2 \int_0^{\sqrt{4-y^2}} \, (x^2 + y^2) \, dx \, dy$
    • $\int_{0}^6 \int_0^y \, x \, dx \, dy$

Problem Set
Today

« February 2018 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28