1. Draw the curve $u^2+v^2=1$ in the $xy$ plane using the change of coordinates $x=3u-1$ and $y=2v+4$. Give a Cartesian equation of the curve.
  2. Draw $\ds \frac{(x-1)^2}{16}+\frac{(y-5)^2}{9}=1$ and then draw $\ds \frac{(x-1)^2}{16}-\frac{(y-5)^2}{9}=1$.
  3. Draw $\ds \frac{(x+2)^2}{9}+\frac{(y-4)^2}{25}=1$ and then draw $\ds -\frac{(x+2)^2}{9}+\frac{(y-4)^2}{25}=1$.
  4. Draw the parametric curve $x=2+3\cos t$, $y=5+2\sin t$. Make a $t,x,y$ table of points, and then graph the $(x,y)$ coordinates.
  5. Draw $x^2+4x+y^2-10y=7$ by first completing the square.
  6. Draw $x^2-6x+2y^2+8y=8$ by first completing the square.
  7. Draw the hyperbola $x^2+6x-4y^2+8y=3$.

Problem Set
Today

« January 2018 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31