Let $P=(3,4)$ and $Q=(-1,2)$.

  1. Give a vector equation of the line that passes through $P$ and $Q$.
  2. Find the angle between $\vec P$ and $\vec Q$.
  3. Give two vectors that are orthogonal to $\vec P$.
  4. The projection of $\vec P$ onto $\vec Q$ is $\ds \text{proj}_\vec Q\vec P = \frac{\vec P\cdot \vec Q}{\vec Q\cdot \vec Q}\vec Q$. Compute the projection of $\vec P$ onto $\vec Q$. Then draw $\vec P$, $\vec Q$ and $\text{proj}_\vec Q\vec P $ on the same grid, all with their base at the origin.
  5. Compute the projection of $\vec Q$ onto $\vec P$. Then draw $\vec P$, $\vec Q$ and $\text{proj}_\vec P\vec Q $ on the same grid, all with their base at the origin.
  6. Draw two random vectors on your chalk board, with their base at the same point. Label them $\vec u$ and $\vec v$. Then draw both $\text{proj}_\vec v\vec u $ and $\text{proj}_\vec u\vec v $.
  7. Draw the vector field $\vec F(x,y) = (2x+y,x+2y)$.
  8. Draw the vector field $\vec F(x,y) = \langle y,-x\rangle$.

Problem Set
Today

« January 2018 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31