1. Let $C$ be the right half $x\geq 0$ of a circle of radius 5. Compute the line integral $\ds \int_C xds$.
  2. Find the average value of $T(x,y,z)=x^2+y^2+z$ along the helix $\vec r(t)=(3\cos t,3\sin t, 4t)$ for $0\leq t\leq 2\pi$. Recall that average value is $\bar T=\ds\frac{\int_C Tds}{\int_Cds}.$
  3. Let $\vec F = (-y,x+y)$ and $C$ be the straight line segment from $(2,0)$ to $(0,2)$.
    • Compute $\ds\int_C Mdx+Ndy$.
    • Compute $\ds\int_C Mdy-Ndx$.

Problem Set
Today

« June 2017 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30