


- Consider the function $w=f(x,y,z)=-x^2-y^2+z^2$.
- Draw the level surface $w=1$.
- Draw the level surface $w=-1$.
- Draw the level surface $w=0$.
- Give a parametrization of the ellipse $\ds\frac{x^2}{16}+\frac{(y-3)^2}{25}=1$.
- Give a parametrization of the surface $z=x^2+y^2$.
- Using rectangular coordinates.
- Using polar coordinates.
- Give bounds for the portion of this surface below $z=4$, for each parametrization above.
- Give a parametrization of a cylinder of radius 3 whose axis of rotation is the $x$-axis.
- Give a parametrization of a sphere of radius 3 centered at the origin. Give bounds to traverse the sphere exactly once.
- Repeat the above, but center the sphere at $(a,b,c)$.
Sun |
Mon |
Tue |
Wed |
Thu |
Fri |
Sat |