1. Consider the function $w=f(x,y,z)=-x^2-y^2+z^2$.
    • Draw the level surface $w=1$.
    • Draw the level surface $w=-1$.
    • Draw the level surface $w=0$.
  2. Give a parametrization of the ellipse $\ds\frac{x^2}{16}+\frac{(y-3)^2}{25}=1$.
  3. Give a parametrization of the surface $z=x^2+y^2$.
    • Using rectangular coordinates.
    • Using polar coordinates.
    • Give bounds for the portion of this surface below $z=4$, for each parametrization above.
  4. Give a parametrization of a cylinder of radius 3 whose axis of rotation is the $x$-axis.
  5. Give a parametrization of a sphere of radius 3 centered at the origin. Give bounds to traverse the sphere exactly once.
  6. Repeat the above, but center the sphere at $(a,b,c)$.

Problem Set
Today

« June 2017 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30