


- Consider the function $w=f(x,y,z)=x^2-y^2-z^2$.
- Draw the level surface $w=1$.
- Draw the level surface $w=4$.
- Draw the level surface $w=-1$.
- Draw the level surface $w=0$.
- Give a parametrization of the line segment connecting the points $(1,2,3)$ and $(2,-3,5)$.
- Give a parametrization of the ellipse $\ds\frac{x^2}{16}+\frac{(y-3)^2}{25}=1$.
- Give a parametrization of the function $y=x^3-3x+7$ for $x\in [-2,3] $.
- Give a paremetrization of the surface $z=x^2+y^2$.
- Using rectangular coordinates.
- Using polar coordinates.
- Give bounds for the portion of this surface below $z=4$, for each parametrization above.
Sun |
Mon |
Tue |
Wed |
Thu |
Fri |
Sat |