1. Draw the curve $r(t)=(t+2,t^2-4)$ for $0\leq t\leq 3$.
  2. Compute the velocity $\vec v(t)$, acceleration $\vec a(t)$, and speed $v(t)$ at any time $t$.
  3. At time $t=3$ state the position $\vec r(3)$ and velocity $\vec v(3)$, and then give a vector equation of the tangent line to the curve at $t=3$.
  4. Draw $\vec r(t) = (3 \cos t, 3 \sin t)$.
  5. Draw $\vec r(t) = (3 \cos 2t, 3 \sin 2t)$.
  6. Hurricane Matthew has a diameter of 28 miles. Assuming the eye is at the origin $(0,0)$, give a parametrization of the exterior edge of the hurricane.
  7. Sustained winds are 128 mi/hr. Modify your parametrization above so that the speed is 128 mi/hr.
  8. The eye of the hurricane is moving north west at a speed of 12 mi/hr. Modify your parametrization so that the center moves north west at 12 mi/hr.

Problem Set
Today

« May 2017 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31