1. Consider the integral $\ds \int_{y=1}^{y=4}\left(\int_{x=-2}^{x=3}dx\right)dy$.
    • Shade the region describe by the inequalities $1\leq y\leq 4$ and $-2\leq x\leq 3$.
    • Compute the double integral.
  2. Consider the integral $\ds \int_{x=0}^{x=3}\int_{y=0}^{y=x}dydx$.
    • Shade the region describe by the bounds of the integral.
    • Compute the double integral.
  3. Compute the integral $\ds \int_{y=0}^{y=x}\int_{x=0}^{x=3}dxdy$. Why do you not get a number?
  4. Use a double integral to compute the area of the region between the curves $y=x^2$ and $y=x+2$.

Problem Set
Today

« February 2017 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28