1. Find the arc length of $\vec r(t) = (t^3,3t^2)$ for $t\in [1,3]$.
  2. Draw the curve $x=\sec t$, $y=-\tan t$. Put an arrow on your drawing to show direction of motion.
  3. Find focus of the parabola $x=5t+3$, $y=-t^2+2$.
  4. Plot the polar points with $(r,\theta)$ given by $(2,0)$, $(2,\pi/6)$, $(-2,\pi/6)$, $(4,\pi/2)$, $(-4,\pi/2)$.
  5. Give a Cartesian equation of the polar curve $r=\tan\theta\sec\theta$. Then find the focus.

Problem Set
Today

« January 2017 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31