


Let $\vec u = (-2,0,0)$, $\vec v=(3,4,0)$, and $\vec w=(2,4,-1)$.
- Compute $\text{proj}_{\vec u}\vec v$. Draw $\vec u$, $\vec v$, and $\text{proj}_{\vec v}\vec u$ in the $xy$ plane.
- Compute $\text{proj}_{\vec v}\vec u$. Draw $\vec u$, $\vec v$, and $\text{proj}_{\vec u}\vec v$ in the $xy$ plane.
- Compute the work done by $\vec w$ to move an object through the displacement $\vec v$.
- Compute the cross product $\vec v\times \vec w$.
- Compute the cross product $\vec w\times \vec v$.
- Compute the area of the parallelogram whose edges are parallel to $\vec v$ and $\vec w$.
- Place each of the vectors in 3D with the base at the origin, and then find the the area of the triangle that whose vertices are the heads of $\vec u$, $\vec v$, and $\vec w$.
Sun |
Mon |
Tue |
Wed |
Thu |
Fri |
Sat |