Please Login to access more options.
Problem 27: (Practice Finding Truth Values With Universal Quantifiers)
Determine the truth value of each statement below. Be prepared to justify your claim.
- $\forall x\in \mathbb{R}$ and $\forall y\in \mathbb{R}$, $\exists z\in \mathbb{R}$ such that $x+y=z$.
- $\forall x\in \mathbb{R}$ and $\forall y\in \mathbb{R}$, $\exists z\in \mathbb{R}$ such that $xz=y$.
- $\forall x\in \mathbb{R}$, $\exists y\in \mathbb{R}$ such that $\forall z\in \mathbb{R}$, $z>y$ implies $z>x+y$.
- $\exists x\in \mathbb{R}$ such that $\forall y\in \mathbb{R}$, $\exists z\in \mathbb{R}$ such that $z>y$ implies $z>x+y$.
The following pages link to this page.
Here are the old pages.