Please Login to access more options.
Definition (Convergent Sequence)
Let $(a_1,a_2,\ldots)$ be a sequence of real numbers.
- We say that $(a_n)$ converges to $L$ and write $(a_n)\to L$ if and only if for every $\varepsilon>0$, there exists a real number $M$ such that for every $n\in \mathbb{N}$ we have $n> M$ implies $|a_n-L|<\varepsilon$.
- When $(a_n)$ converges to $L$, we call $L$ the limit of $(a_n)$.
- We say that $(a_n)$ is a convergent sequence if and only if $(a_n)$ converges to $L$ for some real number $L$.
- We say that $(a_n)$ is a divergent sequence if and only if $(a_n)$ is not a convergent sequence.