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Preface

The following problem set goes along with Richard Haberman’s Applied Partial
Differential Equations with Fourier Series and Boundary Value Problems.
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Chapter 1

The Heat Equation

We’ll start this semester off by studying how heat flows. By focusing on a phys-
ical context, we can see how mathematics truly does model the world around
us. Before jumping in, let’s review a few concepts from calculus.

Recall that to find the mass of an object, you just need to find the mass of
a small piece of the object (of width, say dx). Once you know the mass dm of a
small piece of the object, you can use integrals to obtain the mass as m =

∫
dm.

Here’s a problem similar to something you have seen before.

Problem 1.1 Suppose you have a thin cylindrical rod lying on the x axis
between x = 0 cm and x = 5 cm. The radius of the rod is a constant r cm, so
the cross sectional area is A = πr2 cm2. The density of the rod (mass per unit
volume) is known to be ρ(x) = (x2 + 100) g/m3 (the rod is made of a blend of
materials that gradually gets heavier as x gets closer to 5).

Find the mass of the rod by first finding the mass of a small piece of the
rod that is dx units wide, and then integrating. As the radius of the rod is
unknown, your solution should involve a constant r.

We will also need two facts about integrals that you will develop in the next
problems. Recall that the fundamental theorem of calculus states that if f is a
continuous function on the interval [a, b], then f has an anti derivative F and∫ b
a
f(x)dx = F (b) − F (a). Notice that the only assumption here is that f is

continuous. We need to learn how to work this theorem in reverse.

Problem 1.2 Use the fundamental theorem of calculus to rewrite the dif-
ference g(a) − g(b) as an integral. Make your bounds go from a to b. What
assumptions must you make about g in order for this to work.

We also need the following crucial fact.

Problem 1.3 Suppose f(x) is a continuous function such that
∫ b
a
f(x)dx =

0 on every interval [a, b]. Show that f(x) = 0 for every x. Give an example of

a nonzero function g(x) so that
∫ 1

0
g(x)dx = 0.

We’re now ready to jump into partial differential equations.

1.1 Heat in a one dimensional rod

Consider a rod of length L whose cross sectional area A is constant. For ease,
we’ll place the rod on the x-axis between x = 0 and x = L.

1



CHAPTER 1. THE HEAT EQUATION 2

Definition 1.1. Define the thermal energy density e(x, t) (or heat energy den-
sity) to be the amount of thermal energy per unit volume of the rod at position
x at time t.

In general, the quantity e(x, t) is unknown. However we’ll find that this
unknown quantity provides the theoretical foundation to our first partial differ-
ential equation. In particular, you can use the thermal energy density to find
the total thermal energy in any portion of the rod at any time t, in the exact
same way we use mass density to find total mass.

Problem 1.4 Suppose the thermal energy density along the entire rod at
time t = 0 is constant, say e(x, 0) = C. The rod has constant cross sectional
area A. As time moves forward, the rod uniformly looses heat with thermal

energy density function e(x, t) =
C

2t
. Find the total thermal energy in the entire

rod at t = 0, t = 1, t = 2, and then at any time t. (Feel free to solve the problem
at any time t first.)

Problem 1.5 Consider a small portion of the rod on the x-axis between
x and x + ∆x units. If the thermal energy density e(x, t) along this small
portion of the rod is constant (though it could change if t changes), and the
cross sectional area A is constant, then find the total thermal energy of this
small portion of the rod. Simplify any integrals.

Problem 1.6 Consider portion of the rod on the x-axis between x = a and
x = b units. The thermal energy density e(x, t) along this portion of the rod
may vary, but the cross sectional area A is constant. Find the total heat energy
of this portion of the rod at time t. Your answer should involve an integral and
the unknown constants.

What is the change per unit time in heat energy?

As time marches forward, the heat energy inside an object can change. Heat
may flow across the surface of the object. Additionally, heat could be generated
(or removed) inside the object itself (a chemical reaction inside the object could
easily add or subtract heat energy). This leads to the following big idea.

Observation 1.2: The Conservation of Heat Energy. The change (per
unit time) in heat energy is equal to the heat energy flowing across the bound-
aries (per unit time) plus the heat energy generated inside (per unit time).

Along a rod, heat can flow out the left end, the right end, or along the lateral
surface. If we perfectly insulate the lateral surface (or pretty close to perfect),
then heat energy loss through the lateral surface can be neglected. This means
we need to know how much heat is flowing out the left surface, and how much
is flowing out the right.

Definition 1.3. We define the heat flux φ(x, t) to be the amount of thermal
energy per unit time flowing to the right per unit surface area. If there is a heat
source in an object, we let Q(x, t) be the heat energy per unit volume generated
per unit time.

Problem 1.7 Suppose a rod is on the x axis from x = 0 to x = L. We’ll
consider a small portion of the rod from x = a to x = b. Make the following
assumptions: (1) the cross sectional area A is constant, (2) the thermal heat
density e(x, t) varies throughout the rod, (3) the lateral surface of the rod is
perfectly insulated so that any heat flow occurs only across the surface at x = a
and x = b, and (4) the functions φ(x, t) and Q(x, t) are as defined above.
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1. What is the total heat energy (per unit time) entering the rod at x = a
and at x = b? You answer should be in terms of φ.

2. What is the total heat energy generated inside the rod (per unit time)
between x = a and x = b? An integral may help here.

Problem 1.8 Use the same assumptions as problem 1.7. Now use the con-
servation of heat energy together with problems 1.6 and 1.7 to explain why

d

dt

∫ b

a

e(x, t)dx = φ(a, t)− φ(b, t) +

∫ b

a

Q(x, t)dx.

Problem 1.9 Again assume as in problem 1.7 Show that

∂e

∂t
= −∂φ

∂x
+Q.

To do so, you’ll want to use the equation in problem 1.8. Problem 1.2 will

help you turn the difference φ into an integral. The fact that
d

dt

∫ b

a

e(x, t)dx =∫ b

a

∂

∂t
e(x, t)dx will help you get everything in terms of an integral. Finally,

problem 1.3 will help you eliminate any integrals.

Once you’ve made it to this stage, the rest of the derivation of the heat
equation requires some facts about temperature and specific heat, together
with Fourier’s law. Let’s introduce specific heat now. Most of the time we talk
about the temperature of an object, not its thermal energy. Specific heat allows
us to connect the temperature of an object to it its thermal heat.

Definition 1.4. • The specific heat c of a material is the heat energy that
must be supplied to a unit mass of a substance to raise its temperature
one unit.

• The function u(x, t) represents the temperature of the rod on the x-axis.

• The thermal energy of an object is the energy it takes to raise the temper-
ature of the object from a reference temperature 0◦ to the temperature
u(x, t).

In this class we’ll assume that c depends only on the composition of the
material, so that c(x) is a function of x. It’s useful to pay attention to the

type of units of the quantities defined. Specific heat has units
(heat energy)

(mass)(degrees)
.

You could write this in terms of Joules (energy), kg (mass), and degrees C
(temperature). How much heat energy is needed to raise the temperature of an
object 10◦ if that object has a mass of 7 units and specific heat c? Multiplying
c by a mass and a change in temperature will result in a heat energy, so the
answer is simply c(10)(7) units of heat energy.

Problem 1.10 Again consider the rod as in problem 1.7. Let c(x) be the
specific heat, and u(x, t) be the temperature. Let ρ(x) be the mass density
(the mass per unit volume). In problem 1.5, you showed that the total thermal
energy in a small slice of a rod from x to x+ ∆x equals e(x, t)A∆x. Use these
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results together with Definition 1.4 to explain why e(x, t) = c(x)ρ(x)u(x, t).
Finish by explaining why

c(x)ρ(x)
∂u

∂t
= −∂φ

∂x
+Q.

To finish up, we need to connect the heat flux φ to the temperature u. If
we can do this, then the equation above will be a partial differential equation
involving the unknown function u and the independent variables x and t. This
is our main goal. Fourier’s Law is the key to connecting the two. Page 7 in the
text has a good description of why the law is what follows. Please read it.

Observation 1.5: Fourier’s Law. Fourier noticed that heat flows from hot
to cold, the greater the difference in temperature, the greater the flow, and that
different materials allow heat to flow at different rates. He summarized this in
the equation

φ(x, t) = −K0(x)
∂u

∂x
(x, t).

The function K0(x) is a physical constant, determined from experiments, that
tells us how quickly heat flows. Large values of K0 allow heat to flow quickly.

Problem 1.11 Consider a rod on the x axis between x = 0 and x = L.
Suppose the temperature at time t = 0 is u(x, 0) = 2x + 3. Draw the temper-
ature function at time t = 0. Based solely on intuition, will heat flow left or
right? Explain. Then find ux(x, 0), and explain why there is a negative sign in
Fourier’s law.

Problem 1.12: The Heat Equation Derive the heat equation by first show-

ing that under the assumption of problem 1.7, together with Fourier’s law, we
have

c(x)ρ(x)
∂u

∂t
(x, t) =

∂

∂x

(
K0(x)

∂u

∂x
(x, t)

)
+Q(x, t).

If we assume that the rod is uniform (ρ is constant) with constant thermal
properties (c and K0 are constant), and that there are no internal heat sources,
show that for some constant k we have

∂u

∂t
= k

∂2u

∂x2
or ut = kuxx.

What is the constant k? This last equation is call the heat equation.

Problem 1.13 (This is problem 1.2.3 on page 10.) Derive the heat equation
for a rod assuming constant thermal properties with variable cross-sectional
area A(x) assuming no sources by considering the total thermal energy between
x = a and x = b. This basically has you review everything we did prior to now,
but to not assume A is constant along the way.

Problem: 1.13.2 Suppose that f and g are continuous functions, and sup-

pose that for every interval [a, b] we know
∫ b
a
f(x)dx =

∫ b
a
g(x)dx. Prove that

f(x) = g(x).
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This next problem has you change the context to how a pollutant would
spread through a one dimensional region. You’ll show that mathematically we
can model the spread of a contaminant using the same equation as the flow of
heat. There are more things modeled by the heat equation as well, this problem
just shows you one additional application.

Problem 1.14 (This is problem 1.2.4b on page 11.) Derive the diffusion
equation for a chemical pollutant by considering the total amount of the chem-
ical between x = a and x = b. You’ll want to look on page 9 for the definitions
of u(x, t) (the concentration of the chemical per unit volume), φ(x, t) (flux of
the chemical), and Fick’s law of diffusion.

1.2 Initial and Boundary Conditions

The following problem is often solved in the first order ODE section of a differ-
ential equations class. It will help us introduce the material below.

Problem 1.15 A metal pan is placed into an oven. The pan was 70◦ F
prior to being placed into the oven, which is set to 400◦ F (you may assume
that the temperature of the oven does not change). Newton’s law of cooling
states that the rate of change of temperature of an object is proportional to the
difference between the actual temperature of the object and the temperature of
the surrounding atmosphere. So a greater temperature difference between an
object and its surrounding will result in a more rapid change in temperature.

1. Write Newton’s law of cooling as a differential equation. Let T (t) repre-
sent the temperature (◦F) of the metal pan after t minutes.

2. What are the initial conditions?

3. Solve the initial value problem above.

4. After 2 minutes, the metal pan has a temperature of 200◦ F. Solve for the
proportionality constant to complete the solution.

Recall that when solving ODEs, we needed additional conditions to obtain
solutions to the problem. These conditions came in two forms, initial values
and boundary values. When solving a first order ODE, we needed one condition
(as above). When solving a 2nd order ODE, we needed 2 conditions. When
solving a 5th order ODE, we needed 5 conditions.

The heat equation ut = kuxx involves a first partial with respect to t, and a
second partial with respect to x. As such, we’ll need an initial condition (when
t = 0) and two boundary conditions (when x = a and x = b) to find a full
solution to any problem we study.

• The initial condition at time t = 0 is just a statement of the initial tem-
perature inside the rod. Often it is given in the form u(x, 0) = f(x), for
x ∈ [0, L]. The function f(x) tells the initial temperature of the rod at
position x.

• The boundary conditions will come in two main types.

– We may specify the actual temperature at the ends of the rod. This
would mean we state something like

u(0, t) = g(t) and/or u(L, t) = h(t),
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where g(t) represents the temperature on the left end of the rod, and
h(t) represents the temperature on the right end. If the left end of
the rod is in contact with a fluid that has temperature uB(t), we’ll
often use a boundary condition such as u(0, t) = uB(t) to model this.

– We may specify the heat flow instead of the temperature. Recall
from Fourier’s law that the heat flow is given by φ = −K0ux. If we
assume we know φ(0, t) for all t, then a boundary condition would
be

−K0(t)ux(0, t) = φ(0, t).

A very common boundary condition is to assume that the end of the
rod is perfectly insulated. In this case, there is no heat flow through
that end, so φ = 0, and our boundary condition becomes

ux(0, t) = 0.

Another boundary condition would be to assume that the heat flow
in the end of the rod behaves like the metal pan in problem 1.15.
This occurs when the rod is placed in a fluid whose temperature is
different than the rod, and there is some insulation on the end of the
rod. The next problem will help you develop this.

Problem 1.16 Suppose that the left end of a rod (x = 0) is placed in a
fluid whose temperature at time t is uB(t). Suppose that the heat flow φ(0, t)
into the rod is proportional to the difference between the temperature u(0, t)
of the rod at and the temperature uB(t) of the fluid.

• Under these assumptions, show that

−K0(0)ux(0, t) = −H[u(0, t)− uB(t)],

where K0 comes from Fourier’s law and H > 0 is called the heat transfer
coefficient.

• If instead the right end x = L is placed in the fluid, show that Pay attention to the signs in this
problem, and be prepared to
explain why they are as given.−K0(L)ux(L, t) = H[u(L, t)− uB(t)].

• The larger H is, the more quickly heat can flow between the rod and
the fluid. If heat is allowed to move between the rod and fluid without
any resistance, then we can model this by letting H →∞. Suppose that
this is the case at the left end of the rod x = 0. Use your first solution,
together with H → ∞ to show that this is the same as prescribing the
temperature u(0, t) = uB(t).

The boundary conditions described above represent the typical conditions
you’ll see in this class and industry. You may have a prescribed temperature
at one end, and a heat flow at another end. The conditions you choose to use
depend entirely on the physical problem before you. If we choose to prescribe
both end temperatures, then the heat equation together with required initial
and boundary value conditions would be written

ut = kuxx, u(x, 0) = f(x), u(0, t) = T1(t), u(L, t) = T2(t).

One of our main goals this semester will be to solve problems like the one above.
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Definition 1.6. If the temperatures T1(t) and T2(t) are constant, then we
would expect the temperature at each point in the rod to eventually stabilize.
We define a steady-state or equilibrium solution to be a solution that does not
depend on time.

To find a steady-state solution does not require PDEs, as we can remove
t from the problem. The solution involves solving an ODE. The following
problems will show you how to do this.

Problem 1.17 Suppose the ends of a rod are placed in fluids so that the
boundary conditions are steady u(0, t) = T1 and u(L, t) = T2. Find a steady-
state solution to the heat equation ut = kuxx. Show that your solution does
not depend on the initial condition u(x, 0) = f(x).

Problem 1.18 Suppose both ends of a rod are perfectly insulated, so the
boundary conditions are ux(0, t) = 0 and ux(L, t) = 0. Show that a steady-
state solution to the heat equation ut = kuxx is u(x) = C (the temperature is
constant). Then use the initial temperature u(x, 0) = f(x) to find this constant.
Since the rod is perfectly insulated on all ends, how is the total energy in the
rod at the beginning related to the total energy in the rod at the end?

Problem 1.19 Suppose the right end of a rod is placed in a fluid, and the
left end is perfectly insulated, so that the boundary conditions are u(0, t) = T1
and ux(L, t) = 0. Find a steady-state solution to the heat equation ut = kuxx.
Does your solution depend on the initial condition u(x, 0) = f(x)?

The following problem will help remind you how to work with problems if
there is heat generated inside a rod (or chemical pollutant produced inside a 1
dimensional region).

Problem 1.20 (Problem 1.2.5 from the text.) Derive an equation for the
concentration u(x, t) of a chemical pollutant if the chemical is produced due to
chemical reaction at the rate of α(β − u)u per unit volume. This problem will
will basically cause you to review the first section, but remember that Q 6= 0
here.

Problem 1.21 (Problem 1.4.2 from the text.) Consider the equilibrium
temperature distribution for a uniform one-dimensional rod with sourcesQ/K0 =
x of thermal energy, subject to the boundary conditions u(0) = 0 and u(L) = 0.

(a) Determine the heat energy generated per unit time inside the entire rod.

(b) Determine the heat energy flowing out of the rod per unit time at x = 0
and at x = L.

(c) What relationship should exist between the answers in parts (a) and (b)?

Problem 1.22 (Problem 1.4.12 from the text.) Suppose the concentration
u(x, t) of a chemical satisfies Fick’s law, and the initial concentration is given
u(x, 0) = f(x). Consider a region 0 < x < L in which the flow is specified
at both ends by −k ∂u∂x (0, t) = α and −k ∂u∂x (L, t) = β. Assume α and β are
constants.



CHAPTER 1. THE HEAT EQUATION 8

(a) Express the conservation law for the entire region.

(b) Determine the total amount of chemical in the region as a function of
time (using the initial conditions).

(c) Under what conditions is there an equilibrium chemical concentration and
what is it?

1.3 The heat equation in 2 or 3 dimensions

We are now prepared to develop the heat equation in 2D and 3D. The solutions
are essentially identical, and parallel what we did in 1D. We need a brief review
of some ideas from multivariate calculus. This is perhaps the only other class
for many of you where you will use these ideas as an undergraduate. If you
forgot some of them, I understand completely. Well review them with some
problems.

Problem 1.23 Consider the function f(x, y) = 9x2y2.

1. Construct a 3D graph of the function f .

2. Construct a contour plot of f . In other words, construct a graph in the
plane of several level curves of f .

3. Compute the gradient f . On your plot contour plot, pick several points
and draw the gradient at those points.

4. In which direction does the gradient point? How is the gradient related
to level curves?

Problem 1.24 Let ~F (x, y, z) = 〈x, y, z〉, a radial vector field. Determine

the flux of ~F outward across the surface of the sphere x2 + y2 + z2 = 9. Recall
that the formula for flux is the surface integral∫ ∫

S

~F · ~ndσ or

∫ ∫
S

~F~ndS

where ~n is a unit normal vector to the surface S. The choice of notation dσ or
dS depends on the author.

The divergence theorem is often discussed in the last few days of multivariate
calculus. The physics majors in our class have mostly likely used it a few times
since, but the math majors may have not. The divergence theorem allows us to
convert a flux integral into a volume integral. It states that for closed surface
S whose interior is the 3D solid D, if ~F is continuously differentiable then we
have ∫ ∫

S

~F · ~ndS =

∫ ∫ ∫
D

div(~F )dV,

where the divergence of ~F = 〈M,N,P 〉 is

div(~F ) = ∇ · ~F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
=
∂M

∂x
+
∂N

∂y
+
∂P

∂z
= Mx +Ny + Pz.

The divergence represents an outward flux density.
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Problem 1.25 Repeat problem 1.24, but this time use the divergence the-
orem to perform your computation.

We are now ready to develop the heat equation in 3D. Recall the law of
conservation of heat (Observation 1.2) which states

The change (per unit time) in heat energy is equal to the heat energy
flowing across the boundaries (per unit time) plus the heat energy
generated inside (per unit time).

We now develop these three quantities in 3D.

Definition 1.7. Consider a solid object in space occupying the region R. Let
S be surface of the object.

• Let e(x, y, z, t) = c(x, y, z)ρ(x, y, z)u(x, y, z, t) be the thermal energy den-
sity (energy per unit volume) of an object at (x, y, z) at time t.

• Let ~φ(x, y, z, t) be the heat flux vector defined on the surface S. The
magnitude of φ is the amount of heat energy flowing per unit time per
unit surface area. The direction of the heat flux vector is the direction of
heat flow.

• Let Q(x, y, z, t) be the rate of heat energy generated per unit time per
unit volume.

Problem 1.26 Show that the law of conservation of heat energy is mathe-
matically modeled by the equation

d

dt

∫ ∫ ∫
R

cρudV = −
∫ ∫

S

~φ · ~ndS +

∫ ∫ ∫
R

QdV.

Compare this with problem 1.8.

Problem 1.27 Show that the equation above can be reduced to

cρ
∂u

∂t
= −∇ · ~φ+Q.

Fouriers law holds in high dimensions. Heat will still flows from greatest
heat to lowest heat, and is proportional to the slope of the temperature in that
direction.

Problem 1.28 Explain why Fouriers law can be written in the form

~φ = −K0∇u.

Then use Fouriers law to show that the heat equation can be written as

cρ
∂u

∂t
= ∇ · (K0∇u) +Q.

If we assume K0 is constant and there are no heat sources, show that the heat
equation can be written in the form

∂u

∂t
= k∇2u,

where the symbol∇2 means∇2u = ∇·∇u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= uxx+uyy+uzz.
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Definition 1.8. The expression ∇2u = ∇ · ∇u is called the Laplacian of u.

This next problem will cause you to revisit the derivation of the heat equa-
tion, but from the context of a pollutant. Think of the pollutant as a noxious
gas that is spreading throughout a region.

Problem 1.29 (Problem 1.5.1 in text.) Let c(x, y, z, t) denote the concen-
tration of a pollutant (the amount per unit volume).

(a) What is an expression for the total amount of pollutant in some region
R.

(b) Suppose the heat flow ~J of the pollutant is proportional to the gradient
of the concentration. (Is this reasonable?) Express conservation of the
pollutant.

(c) Derive the partial differential equation governing the diffusion of the pol-
lutant.

The heat equation as derived above is best suited for regions that are rect-
angular. If the region is spherical, we would need a way to write the Laplacian
in terms of spherical coordinates. If the region is in 2D, or cylindrical, then we
would need a way to write the Laplacian in polar/cylindrical coordinates. The
follow problems will help you develop the formula for the Laplacian in polar
coordinates. The formulas for cylindrical and spherical coordinates are on page
28 in the text.

Problem 1.30 The equations for polar coordinates are x = r cos θ and y =
r sin θ. These equations implicitly define r and θ as functions of x and y. By
implicitly computing the partial derivatives of each equation above with respect
to x and y, obtain 4 equations involving the partial derivatives ∂r

∂x , ∂r
∂y , ∂θ

∂x , ∂θ
∂y .

Solve this system of 4 equations to show that

∂r

∂x
= cos θ,

∂r

∂y
= sin θ,

∂θ

∂x
=
− sin θ

r
,
∂θ

∂y
=

cos θ

r
.

When working the plane, the most common set of basis vectors is î = (1, 0)
and ĵ = (0, 1). These vectors are sometimes called x̂ and ŷ as they represent
motion in the x and y directions. If you are working with a problem that has
radial symmetry, then the directions of interest are the outward r direction,
and rotational θ direction. The corresponding vectors are

r̂ =
x̂i + ŷj√
x2 + y2

and θ̂ =
−ŷi + x̂j√
x2 + y2

.

Notice that the dot product of these two vectors is 0, so the vectors are orthog-
onal.

Problem 1.31 Show that r̂ = cos θ̂i + sin θ̂j and θ̂ = − sin θ̂i + cos θ̂j. Then
use the chain rule, together with the previous problem, to show that

∇u =
∂u

∂r
r̂ +

1

r

∂u

∂θ
θ̂.
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The previous problem shows that in polar coordinates, we have ∇ = r̂
∂

∂r
+

1

r
θ̂
∂

∂θ
. For a vector field in polar form, such as ~A = Ar r̂ +Aθ θ̂, we compute

∇ · ~A =

(
r̂
∂

∂r
+

1

r
θ̂
∂

∂θ

)
·
(
Ar r̂ +Aθ θ̂

)
= r̂ · ∂

∂r
(Ar r̂) +

1

r
θ̂ · ∂

∂θ
(Ar r̂) + r̂ · ∂

∂r

(
Aθ θ̂

)
+

1

r
θ̂ · ∂

∂θ

(
Aθ θ̂

)
.

Problem 1.32 Explain (either geometrically or computationally) why

∂r̂

∂r
= ~0,

∂θ̂

∂r
= ~0,

∂r̂

∂θ
= θ̂, and

∂θ̂

∂θ
= −r̂.

Then use this information together with the fact that θ̂ and r̂ are an orthogonal
set of unit vectors to explain why

∇ · ~A =
1

r

∂

∂r
(rAr) +

1

r

∂

∂θ
(Aθ).

[Hint: it might be easiest to first show why∇· ~A = 1
r

(
Ar + r ∂∂r (Ar)

)
+ 1
r
∂
∂θ (Aθ).]

Using problem 1.32, we can replace ~A with ∇u = ∂u
∂r r̂+ 1

r
∂u
∂θ θ̂ (from problem

1.31). This shows the Laplacian in polar coordinates is

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r

∂

∂θ

(
1

r

∂u

∂θ

)
=

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
.

We’ll finish this chapter with 2 final problems. These problems will help
you learn to work with the heat equation in 3D.

Problem 1.33 (Problem 1.5.12 from the text). I’ll call on multiple people
in class to put up different parts.

Assume that the temperature is spherically symmetric, u = u(r, t), where r
is the distance from a fixed point (r2 = x2 + y2 + z2). Consider the heat flow
(without sources) between any two concentric spheres of radii a and b.

(a) Show that the total heat energy is 4π
∫ b
a
cpur2dr.

(b) Show that the flow of heat energy per unit time out of the spherical shell
at r = b is −4πb2K0

∂u
∂r

∣∣
r=b

. A similar result holds at r = a.

(c) Use parts (a) and (b) to derive the spherically symmetric heat equation

∂u

∂t
=

k

r2
∂

∂r

(
r2
∂u

∂r

)
.

Here’s some hints, if you want them. For part (a), just set up the triple
integral and compute two of the integrals. Don’t forget the Jacobian in spherical
coordinates. For (b), you’ll want to use Fourier’s law to get this in terms of
the gradient of u. Note that ∇u = ∂u

∂r r̂ since the temperature is spherically
symmetric. For (c), you’ll want to repeat what we have done with the laws
of conservation of heat energy, and then use the integral cancellation laws to
remove some integrals.
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Problem 1.34 (Problem 1.5.13 from the text.)
Determine the steady-state temperature distribution between two concentric

spheres with radii 1 and 4 units, respectively, if the temperature of the outer
sphere is maintained at 80◦ and the inner sphere at 0◦. [Hint: Use part (c)
from the previous problem. You should be able to reduce this to a second order
ODE (not time dependent). If you let z = du

dx , you can reduce the problem to
solving 2 first order ODEs, both of which are separable.]



Chapter 2

Separation of Variables

In this chapter, we will solve the heat equation ∂u
∂t = k ∂

2u
∂x2 subject to various

boundary conditions. In order to do so, we will need to first introduce the con-
cepts of linearity and the principle of superposition. We’ll develop our solution
to the heat equation by finding multiple solutions, and then using the principle
of superposition to add the solutions together.

2.1 Linearity

An operator is a function whose domain is functions. The gradient operator
∇ is an operator on differentiable functions, as once you know u, the operator
∇(u) gives you the vector (ux, uy, uz).

Definition 2.1. A linear operator L is an operator so that if c1 and c2 are
scalars and u1 and u2 are functions to be operated on, then we have

L(c1u1 + c2u2) = c1L(u1) + c2L(u2).

Problem 2.1 Use the definition of a linear operator to show that the heat
operator, given by

L(u) =
∂u

∂t
− k∂

2u

∂x2
,

is a linear operator. You should assume that any function placed inside the
operator L is a function of x and t.

Definition 2.2. If L is a linear operator, then a linear equation for u is an
equation of the form L(u) = f , where f is a known function. If the linear
operator involves partial derivatives, then the equation L(u) = f is called a
linear partial differential equation. In the special case f = 0, we say that the
equation L(u) = 0 is a linear homogeneous equation.

Problem 2.2: Principle of Superposition Suppose that u1 and u2 both

satisfy the linear equation L(u) = 0. Show that any linear combination of u1
and u2, written c1u1 + c2u2 where c1 and c2 are scalars, also satisfies the linear
equation. This is called the principle of superposition.

Problem 2.3 (Exercise 2.2.4 from the text.) In this exercise we derive su-
perposition principles for non homogeneous problems.

13
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(a) Consider the linear equation L(u) = f . If up is a particular solution, so
L(up) = f , and if u1 and u2 are homogeneous solutions, so L(ui) = 0,
show that u = up + c1u1 + c2u2 is another particular solution.

(b) Suppose up1 is a particular solution of L(u) = f1, and suppose up2 is a
particular solution of L(u) = f2. What is a particular solution of L(u) =
f1 + f2? Make sure you justify your answer.

2.2 Separation of Variables

We now focus on the solution to the heat equation in one dimension, namely
∂u
∂t = k ∂

2u
∂x2 . Recall that to solve the heat equation fully, we need an initial

condition u(x, 0) = f(x) and then some kind of boundary conditions at x = 0
and x = L. For the time being, we’ll use the boundary conditions u(0, t) = 0 and
u(L, t) = 0, so the ends of the rod are kept at 0 degrees. This gives us linear
homogeneous boundary conditions. We’ll change these boundary conditions
later.

The following problem uses a technique invented by Fourier called separation
of variables. The idea is to assume that the function u(x, t) is just the product
of two functions, namely u(x, t) = φ(x)G(t). This effectively splits the solution
up as the product of two disjoint pieces that we can then find independently.
Some people write u(x, t) = X(x)T (t) to simplify the book keeping. I’ll use the
notation from the book as it turns out to be helpful later on when we study
Sturm-Liouville theory. The next problem shows you the value of separation of
variables.

Problem 2.4 Use separation of variables (so suppose that u(x, t) is the
product of two functions, namely u(x, t) = φ(x)G(t)) to show that you can

reduce the heat equation ∂u
∂t = k ∂

2u
∂x2 to the two single variable ODEs

dφ

dx2
= λφ and

dG

dt
= λkG,

where the unknown constant λ is the same in both equations. [Hint: try sep-
arating the heat equation so that time dependence is on one side, and spacial
dependence is on another. Oh, and I left off the negative sign that you see in
the book on purpose.]

Problem 2.5 Find a general solution to the time dependent ODE

dG

dt
= λkG.

Once you obtain your solution, discuss what happens to your solution as t→∞,
based upon different value of λ. If this solution is to model a real world situation,
what must be true about the unknown constant λ?

Remark 2.3. The problem above suggest that if we use the ODEs dφ
dx2 = λφ

and dG
dt = λkG, then the unknown constant λ is a negative number. It’s often

easier to assume that constants are positive. To simplify our work later on,
we’ll make a change to our notation and replace each λ with −λ. This gives us
the two ODEs

dφ

dx2
= −λφ and

dG

dt
= −λkG,

We’ll show shortly that using these new ODEs, the constant λ must now be
positive.
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The following is a review problem from your ODE class.

Problem 2.6 Find a general solution to the following ODEs. Assume that
y is a function of x.

• y′′ − 9y = 0.

• y′′ = 0.

• y′′ + 9y = 0.

Problem 2.7 Find a general solution to the spacial dependent ODE from
remark 2.3.

d2φ

dx2
= −λφ.

There are three cases to consider, namely λ > 0, λ = 0, and λ < 0. Make sure
you show what the solution is in all three cases.

It’s now time to use our boundary conditions to simplify the general solutions
obtained above. Suppose that u(x, t) = φ(x)G(t) satisfies the heat equation
∂u
∂t = k ∂

2u
∂x2 . Also suppose that the boundary conditions are u(0, t) = 0 and

u(L, t) = 0. At x = 0, we have 0 = φ(0)G(t). If G(t) is identically zero, then
u(x, t) = φ(x) ·0 = 0 is the trivial solution, and not very useful. So we’ll assume
G(t) is not identically zero which means that 0 = phi(0) after dividing by G(t).
Similarly we have 0 = φ(L).

Problem 2.8 In problem 2.7 we found the general solution to the x depen-

dent ODE given by
d2φ

dx2
= −λφ. The solution split into 3 cases. Apply the

boundary conditions φ(0) = 0 and φ(L) = 0 to this solution.

1. Show that if λ = 0 or λ < 0, then φ(x) = 0 for all x. This is the trivial
solution and is not useful.

2. If λ > 0, show that the nontrivial solutions to the ODE are

φn(x) = c2 sin(
√
λn x)

where we have λn =
(nπ
L

)2
for n = 1, 2, 3, 4 . . ..

Definition 2.4. In the solution of the boundary value problem (BVP)

d2φ

dx2
= −λφ, φ(0) = 0, φ(L) = 0,

we call the scalars λn =
(nπ
L

)2
the eigenvalues of the BVP. For each λn, we call

the corresponding nonzero function φn(x) = c2 sin(
√
λn x) the eigenfunction

corresponding to λn.

Problem 2.9 In problem 2.5, we showed that G(t) = Ae−kλt (where we
replaced λ with −λ because of remark 2.3). In problem 2.8, we found that λ
must be specific values, and also obtained multiple solutions for φ(x).
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Explain why for each n = 1, 2, 3, . . ., the function

un(x, t) = Bn sin
(nπx
L

)
e−k(nπ/L)

2t

is a solution to the heat equation ut = kuxx with boundary conditions u(0, t) =
0 = u(L, t). The numbers Bn represent arbitrary constants, and could be
different for each n. Then explain why

M∑
n=1

un(x, t) =

M∑
n=1

Bn sin
(nπx
L

)
e−k(nπ/L)

2t

is also a solution for any positive integer M . If we let t = 0, how does this
change the solution?

Since the solution above is valid for any M , we will consider the infinite
series solution

u(x, t) =

∞∑
n=1

un(x, t) =

∞∑
n=1

Bn sin
(nπx
L

)
e−k(nπ/L)

2t.

We have not shown this series converges, nor will we till next chapter. Now,
notice that in our solution above, we have not yet included the initial condition
u(x, 0) = f(x). If we blindly insert this initial condition into our series solution,
we obtain the equation

f(x) = u(x, 0) =

∞∑
n=1

Bn sin
(nπx
L

)
e−k(nπ/L)

20 =

∞∑
n=1

Bn sin
(nπx
L

)
.

Definition 2.5. Suppose f is a function defined on [0, L]. Then the Fourier
sine series for f is defined to be the infinite series

f(x) =

∞∑
n=1

Bn sin
(nπx
L

)
.

The series above will converge to f(x) for each x with reasonable assump-
tions on f (like f is continuous). We’ll determine the constants Bn after we
introduce orthogonality.

Definition 2.6: Orthogonal Functions. Suppose f and g are continuous See the first paragraph on page
58 for a good explanation of how
this definition is similar to how
we talk about orthogonal vectors.

functions. We say that f and g are orthogonal over the interval [a, b] if∫ b

a

f(x)g(x)dx = 0.

Theorem 2.7 (Orthogonality of trig functions.). The following functions are
orthogonal over the intervals given. Assume that n and m are non-negative
integers with n 6= m.

1. sin
(
nπx
L

)
and sin

(
mπx
L

)
over [0, L].

2. cos
(
nπx
L

)
and cos

(
mπx
L

)
over [0, L].

3. sin
(
nπx
L

)
and sin

(
mπx
L

)
over [−L,L].

4. cos
(
nπx
L

)
and cos

(
mπx
L

)
over [−L,L].

5. sin
(
nπx
L

)
and cos

(
mπx
L

)
over [−L,L] (including if n = m).
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If n = m above, then on [0, L] we have∫ L

0

sin
(nπx
L

)2
dx =

{
L
2 n 6= 0

0 n = 0
and

∫ L

0

cos
(nπx
L

)2
dx =

{
L
2 n 6= 0

L n = 0
.

On the interval [−L,L] we have∫ L

−L
sin
(nπx
L

)2
dx =

{
L n 6= 0

0 n = 0
and

∫ L

−L
cos
(nπx
L

)2
dx =

{
L n 6= 0

2L n = 0
.

To prove the entire theorem above, we would just need to compute lots and
lots of integrals. We will use the theorem above whenever, but only prove a
small part in class.

Problem 2.10 Prove that for non-negative integers n 6= m, the functions

sin
(nπx
L

)
and sin

(mπx
L

)
are orthogonal over [0, L]. Then show that if n = m,

we have ∫ L

0

sin2
(nπx
L

)
dx =

{
L
2 n 6= 0

0 n = 0
.

Problem 2.11 Suppose that the set of functions gn(x) for n = 1, 2, 3, . . . are

orthogonal to each other on the interval [a, b] (so
∫ b
a
gn(x)gm(x)dx if n 6= m).

Suppose that

f(x) =

∞∑
n=1

Bngn(x).

• Let m be a specific integer. Multiply both sides of the equation above by
gm(x) and integrate over the interval [a, b].

• Swap the sum and the integral, and then simplify the integrals inside.

• Solve for the unknown constant Bm.

[Hint: you should get Bm =
1∫ b

a
g2m(x)dx

∫ b

a

f(x)gm(x)dx.]

Problem 2.12 Suppose f is a function defined on [0, L], and that

f(x) =

∞∑
n=1

Bn sin
(nπx
L

)
.

Determine the constants Bn. Compute any integrals that can be computed
exactly.

Remark 2.8. You have now solved the heat equation with homogeneous bound-
ary values u(0, t) = 0 and u(L, 0) = 0, and initial value u(x, 0) = f(x). The
solution is

u(x, t) =

∞∑
n=1

un(x, t) =

∞∑
n=1

Bn sin
(nπx
L

)
e−k(nπ/L)

2t,

where the coefficients Bn are determined from the Fourier sine series of f(x).
The results are summarized in the first column on the front end page of your
text. The remaining problems in this chapter have you solve the heat equation
with various other boundary conditions.
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Let’s start by first practicing the separation of variables technique used in
Problem 2.4

Problem 2.13 (Exercise 2.3.1(ac) in the book.) For the following partial
differential equations, what ordinary differential equations are implied by the
method of separation of variables?

(a)
∂u

∂t
=
k

r

∂

∂r

(
∂u

∂r

)

(c)
∂2u

∂x2
+
∂2u

∂y2
= 0

Problem 2.14 (Exercise 2.3.2(d) on page 55 in the book.) Consider the

differential equation
d2φ

dx2
+λφ = 0.Determine the eigenvalues and corresponding

eigenfunctions if φ satisfies the boundary conditions

φ(0) = 0 and
dφ

dx
(L) = 0.

Analyze all three cases (λ > 0, λ = 0, λ < 0). You may assume that the
eigenvalues are real (Sturm-Liouville will give us this for free eventually).

The next two problems walk you through solving the heat equation with
insulated ends. The solution to this problem shows up as the middle column
on the front end cover of your book.

Problem 2.15 (Exercise 2.3.7(ab) on page 56 in the book.) Consider the
boundary value problem given by

∂u

∂t
= k

∂2u

∂x2
with

∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0, and u(x, 0) = f(x).

(a) Give a one-sentence physical description of this problem.

(b) Solve by the method of separation of variables. First show that there
are no separated solutions which exponentially grow in time. You should
obtain

u(x, t) = A0 +

∞∑
n=1

Ane
−λnkt cos

nπx

L
.

What is λn?

Problem 2.16 (Exercise 2.3.7(cde) on page 57 in the book.) Continue from
the above.

(c) Show that the initial condition, u(x, 0) = f(x), is satisfied if

f(x) = A0 +

∞∑
n=1

An cos
nπx

L
.

(d) Using the theorem about the orthogonality of trig functions, solve for A0

and An (n ≥ 1).
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(e) What happens to the temperature distribution as t → ∞? Show that it
approaches the steady-state temperature distribution.

The next two problems have you use the general solution above to give
specific solutions for specified initial temperature distribution f(x). Actually
compute any integrals. Be prepared to show how to compute the integrals.

Problem 2.17 (Exercise 2.4.1(a) on page 69 in the book.) Solve the heat

equation
∂u

∂t
= k

∂2u

∂x2
(for t > 0) subject to the boundary conditions ∂u

∂x (0, t) = 0

and ∂u
∂x (L, t) = 0, together with the initial condition u(x, 0) =

{
0 x < L/2

1 x > L/2
.

Problem 2.18 (Exercise 2.4.1(d) on page 69 in the book.) Solve the heat

equation
∂u

∂t
= k

∂2u

∂x2
(for t > 0) subject to the boundary conditions ∂u

∂x (0, t) = 0

and ∂u
∂x (L, t) = 0, together with the initial condition u(x, 0) = −3 cos 8πx

L .

We now turn our attention to solving the heat equation on a thin circular
ring. We’ll assume that the rod is insulated perfectly on the lateral sides, the
material has constant thermal properties and uniform density, and that the
length of the rod is 2L. To mathematically model this problem, let x represent
the angle from the x-axis up to the point on the rod. We’ll consider x ∈ [−L,L].
The function u(x, t) represents the temperature of the rod if you rotate x radians
up from the x-axis. We’ll assume the temperature is a continuous function,
which means that u(−L, t) = u(L, t). We’ll also assume that the heat flux is
continuous, which means that ∂u

∂x (−L, t) = ∂u
∂x (L, t). The initial temperature

along the ring is u(x, 0) for x ∈ [−L,L]. Mathematically, we’ll summarize this
as the boundary value problem

∂u

∂t
= k

∂2u

∂x2
, u(−L, t) = u(L, t),

∂u

∂x
(−L, t) =

∂u

∂x
(L, t), u(x, 0) = f(x).

Problem 2.19 Consider the boundary value problem

∂u

∂t
= k

∂2u

∂x2
, u(−L, t) = u(L, t),

∂u

∂x
(−L, t) =

∂u

∂x
(L, t), u(x, 0) = f(x).

Use the method of separation of variables u(x, t) = φ(x)G(t) to show that the
eigenfunctions are φn(x) = c1 cos nπxL + c2 sin nπx

L for n = 0, 1, 2, 3, . . ..

Problem 2.20 Using the same set up as problem 2.19, show that the general
solution is

u(x, t) =

∞∑
n=0

(
an cos

nπx

L
+ bn sin

nπx

L

)
e−(nπ/L)

2kt,

if you neglect the initial condition u(x, 0) = f(x). Then use the orthogonality
of cosines and sines to give formulas for an and bn when you apply the initial
condition u(x, 0) = f(x). [The case n = 0 is different than all the others.]

Problem 2.21 Complete problem 2.4.6.

This is all we’ll do before the first exam.



Chapter 3

Fourier Series

3.1 Graphs and Computations

Definition 3.1: Piecewise Smooth. We say that function f(x) is smooth
on an interval [a, b] if the function and its derivative are both bounded and
continuous on (a, b). We say that a function f(x) is piecewise smooth on an
interval (a, b) if the interval can be partitioned into a finite number of pieces
and on each piece the function f(x) is smooth (so f ′(x) may not exist at finitely
many points).

Problem 3.1 Complete each of the following. See page 90.

1. Give an example of a function that is not continuous on [0, 1], but is
piecewise smooth.

2. Give an example of a function that is continuous on [0, 1] and is piecewise
smooth, but is not differentiable on [0, 1].

3. Give an example of a function that is continuous on [0, 1], but is not
piecewise smooth.

Definition 3.2. Let f(x) be a function defined on [−L,L] such that the Fourier
coefficients

a0 =
1

2L

∫ L

−L
f(x)dx,

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, and

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx

exist. We define the Fourier series of f over the interval [−L,L] to be the formal
infinite series

a0 +

∞∑
n=1

an cos
(nπx
L

)
+

∞∑
n=1

bn sin
(nπx
L

)
.

Regardless of whether or not the series converges, we will write

f(x) ∼ a0 +

∞∑
n=1

an cos
(nπx
L

)
+

∞∑
n=1

bn sin
(nπx
L

)
.

20
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Remark 3.3. In the definition above, we do not require the Fourier series to
actually converge to f . The following theorem, which we will give without
proof, provides the needed conditions for the series to converge. We will use
this theorem (which requires some real analysis) to prove other facts about
Fourier series throughout this chapter.

Theorem 3.4 (Fourier’s Theorem). Suppose f(x) is piecewise smooth on the
interval −L ≤ x ≤ L. Then the Fourier series of f(x) converges to the periodic
extension of f at the points where f is continuous. If the periodic extension
of f is not continuous at a point x, then the Fourier series converges to the

average of the left and right limits at x, namely
f(x+) + (f(x−)

2
.

Problem 3.2 For each function below, consider the Fourier series of f over
the interval −L ≤ x ≤ L. Sketch a graph of the Fourier series over the interval
−3L ≤ x ≤ 3L. At points of discontinuity, place an × on the graph at the point
to which the Fourier series converges.

1. f(x) = 1 + x

2. f(x) =

{
x x < 0

x2 x > 0

3. f(x) =

{
x x < L/2

0 x > L/2

Problem 3.3 For the function f(x) = x over [−L,L], determine the Fourier
coefficients and sketch a graph of the Fourier series (your graph should use the
bounds [−3L, 3L]). Be prepared to show the integration steps.

Problem 3.4 For the function f(x) =

{
1 x < 0

2 x > 0
over [−L,L], determine

the Fourier coefficients and sketch a graph of the Fourier series (your graph
should use the bounds [−3L, 3L]).

Definition 3.5. Let f(x) be a function defined on [0, L]. We define the Fourier
sine series and Fourier cosine series of f (on [−L,L]) to be the series

∞∑
n=1

Bn sin
(nπx
L

)
and

∞∑
n=0

An cos
(nπx
L

)
,

respectively. The coefficients above are given by the formulas

Bn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx and

A0 =
1

L

∫ L

0

f(x)dx,

An =
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx.

Definition 3.6. We say that a function f(x) is odd if f(−x) = −f(x) for all x
in the domain of f . We say that a function is even if f(−x) = f(x) for all x in
the domain of f .
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Problem 3.5 Suppose that f is an odd function defined on [−L,L]. Prove Be prepared to explain why the
products of even and odd
functions are either even and/or
odd.

that the Fourier series of f and the Fourier sine series of f are the same (start
with the Fourier series definition, and then show that an = 0 and bn = Bn).
Then suppose f is an even function and prove that the Fourier series of f is
equal to the Fourier cosine series.

Remark 3.7. Let f be defined on [0, L]. The problem above shows that the
Fourier sine series of f is the Fourier series of the odd extension of f (extend
f as an odd function on [−L,L]). Similarly, the Fourier cosine series of f is
the Fourier series of the even extension of f (extend f as an even function on
[−L,L]). We can then use Fourier’s theorem to graph both the Fourier sine
series and Fourier cosine series of a function.

Problem 3.6 Consider the function f(x) =

{
x x < 0

x2 x > 0
for x ∈ [−L,L].

Construct a graph of the Fourier series of f , the Fourier sine series of f , and
the Fourier cosine series of f . Graph the functions over the interval [−3L, 3L].

Problem 3.7 Consider the function f(x) =

{
0 x < 0

1 x > 0
for x ∈ [−L,L].

1. Construct a graph of the Fourier series of f , the Fourier sine series of f ,
and the Fourier cosine series of f . Graph the functions over the interval
[−3L, 3L].

2. Compute the coefficients of the Fourier series of f .

3. Compute the coefficients of the Fourier sine series of f , and the Fourier
cosine series of f .

Problem 3.8 Consider the function f(x) = x for x ∈ [−L,L]. In problem

3.3, we showed the Fourier coefficients are an = 0 and bn =
2L

nπ
(−1)n+1.

1. Construct a graph of the Fourier series of f , the Fourier sine series of f ,
and the Fourier cosine series of f . Graph the functions over the interval
[−3L, 3L].

2. What are the coefficients of the Fourier sine series and Fourier cosine
series of f? Only perform a computation if necessary.

Problem 3.9 Consider the function f(x) = cos
(
πx
L

)
on [0, L]. Sketch the

graph of the Fourier sine series of f for−3L ≤ x ≤ 3L. Then find the coefficients
of the Fourier sine series of f . What does your result say about the orthogonality
of cos(nπx/L) and sin(nπx/L) over the interval [0, L]? Without doing any
computations at all, what are the coefficients of the Fourier cosine series of f?

Problem 3.10 Suppose f is a continuous function defined on [−L,L].

1. Under what conditions does the Fourier series converge to f(x) for every
x in [−L,L]? Note that this says every

x ∈ [−L,L], which includes the
endpoints.2. Under what conditions does the Fourier sine series converge to f(x) for

every x in [−L,L]?

3. Under what conditions does the Fourier cosine series converge to f(x) for
every x in [−L,L]?
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3.2 Term-by-Term Differentiation

In our solution to the heat equation in chapter 2 (see the comments after prob-
lem 2.9 on page 15), we blindly inserted an infinity symbol on the top of our
sum, and said that adding together infinitely many solutions to the heat equa-
tion would still produce a solution to the heat equation. In many physics an
engineering environments, jumps are made from finite sums (using the principle
of superposition) to an infinite sum, without ever checking if such a change is
valid. In this section, we’ll show that replacing a finite sum with an infinite one
does not always produce a solution. We’ll also provide conditions where such a
replacement is valid. My hope, after you finish this section, is that you remem-
ber to always ask yourself “Does this infinity symbol cause problems with my
ability to interchange the order of operations.”

Problem 3.11 Consider the heat equation ut = kuxx. We would like to
know if the infinite sum

u(x, t) = a0 +
∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
e−(nπ/L)

2kt

is a solution to the heat equation. In this problem, we’ll provide a partial proof
that u(x, t) is a solution.

1. By interchanging the derivative and the sum, compute

∂

∂t

( ∞∑
n=0

(
an cos

nπx

L
+ bn sin

nπx

L

)
e−(nπ/L)

2kt

)
.

2. By interchanging the derivative and the sum, compute

∂2

∂x2

( ∞∑
n=0

(
an cos

nπx

L
+ bn sin

nπx

L

)
e−(nπ/L)

2kt

)
.

3. Using your results above, show that
∂u

∂t
= k

∂2u

∂t2
.

The problem above would be a proof that the infinite series is a solution
to the heat equation, if it were true that you can always interchange a deriva-
tive and an infinite sum. Beware. Any time you want to swap the order of
two operations, and one has an infinity in it, you may not be able to without
completely changing the meaning. If you do interchange the order, and then
proceed without verifying you can, you may be surprised later on when your
solution doesn’t make sense (your solution may not even converge anywhere).
The following problem illustrates this issue.

Problem 3.12 Consider the function f(x) = x on [0, L]. We computed the
Fourier sine series in problem 3.8. The Fourier sine series is

x ∼
∞∑
n=1

2L

nπ
(−1)n+1 sin

nπx

L
.

1. We know the derivative of x is 1. What is the cosine series of f ′(x) = 1?

2. Compute the derivative of the Fourier sine series (incorrectly) by inter-
changing the derivative and infinite sum (so compute the derivative of
each term). Compare with (a).
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3. The nth term test states that if the nth term of a series does not approach
0, then the series does not converge. Does the nth term of the series in
(b) approach 0? Why or why not?

Theorem 3.8. Let f be a piecewise smooth function defined on [−L,L] with
f ′ piecewise smooth (so that f ′ has a Fourier series). If the Fourier series of f
is continuous, then the Fourier series can be differentiated term-by-term.

We’ll prove this theorem shortly. The next problem provides some quick
conditions to check prior to using term-by-term differentiation. Problem 3.10
is quite similar.

Problem 3.13 Suppose f is a continuous function and that f ′ is piecewise
smooth. We know that we can perform term-by-term differentiation if the
Fourier series is continuous. Give relevant boundary conditions to answer each
of the following.

1. Under what conditions is the Fourier series of f continuous?

2. Under what conditions is the Fourier sine series of f continuous?

3. Under what conditions is the Fourier cosine series of f continuous?

4. Why did term-by-term differentiation of the series in problem 3.12 fail?

Problem 3.14 Let f and f ′ be piecewise smooth functions (with f being
continuous to validate integration by parts). Suppose that f has the Fourier
sine series

f(x) ∼
∞∑
n=1

(
Bn sin

nπx

L

)
.

Then the derivative of f should be give the cosine series

f ′(x) ∼ A0 +

∞∑
n=1

(
An cos

nπx

L

)
.

In this problem you will prove when it is valid to differentiate a sine series term
by term.

1. If term-by-term differentiation is to be valid, what relationship must exist
between Bn and An?

2. Show that A0 =
1

L
[f(L)− f(0)]? Under what conditions is A0 = 0?

3. Use integration by parts to show that An =
nπ

L
Bn+

2

L
[(−1)nf(L)−f(0)].

4. Under what conditions is term-by-term differentiation valid?

In the problem above, we did more than prove when term-by-term differen-
tiation is valid. We also showed how to find the Fourier cosine series of f ′, if
we know the Fourier sine series of f . If we know f ∼

∑∞
n=1

(
Bn sin nπx

L

)
, then

we can say

f ′(x) ∼ 1

L
[f(L)− f(0)] +

∞∑
n=1

((
nπ

L
Bn +

2

L
[(−1)nf(L)− f(0)]

)
cos

nπx

L

)
.
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Problem 3.15 Complete problem 3.4.5. We already know the Fourier sine
series of cos(πx/L). So use the results above to rapidly find the Fourier cosine
series of sin(πx/L). See page 104, the bottom left corner, for the facts you need
to complete this problem.

Problem 3.16 Let f and f ′ be piecewise smooth functions (with f being
continuous to validate integration by parts). Suppose that f has the Fourier
cosine series

f(x) ∼ A0 +

∞∑
n=1

(
An cos

nπx

L

)
.

Then the derivative of f should be give the sine series

f ′(x) ∼
∞∑
n=1

(
Bn sin

nπx

L

)
.

Prove that term-by-term differentiation is always valid. [First note the rela-
tionship that must exist between An and Bn, and then use integration by parts
on Bn to show that this condition is always satisfied.]

Problem 3.17 Complete problem 3.4.7 on page 125. See the top of page
124 for the mathematical statement of this theorem. This will justify why we
can term-by-term differentiate with respect to t in a Fourier series.

Problem 3.18 Consider the initial value boundary value problem (IVBP)
for x ∈ [−L,L] and t > 0 given by

∂u

∂t
= k

∂2u

∂x2
, u(0, t) = 0, u(L, t) = 0, u(x, 0) = f(x).

We showed in problem 3.11 that term-by-term differentiation shows that

u(x, t) =

∞∑
n=1

(
Bn sin

nπx

L

)
e−(nπ/L)

2kt,

is a solution to this IVBP, where the Bn are the Fourier coefficients of the sine
series of f(x). The only missing piece was why term-by-term differentiation is
valid. Explain why term-by-term differentiation is valid in this IVBP. See page 123.

Problem 3.19 Consider the initial value boundary value problem (IVBP)
for x ∈ [−L,L] and t > 0 given by

∂u

∂t
= k

∂2u

∂x2
,

∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0, u(x, 0) = f(x).

We showed in problem 3.11 that term-by-term differentiation shows that

u(x, t) = A0 +

∞∑
n=1

(
An cos

nπx

L

)
e−(nπ/L)

2kt,

is a solution to this IVBP, where the An are the Fourier coefficients of the cosine
series of f(x). Explain why term-by-term differentiation is valid in this IVBP.
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Problem 3.20 Consider the initial value boundary value problem (IVBP)
for x ∈ [−L,L] and t > 0 given by

∂u

∂t
= k

∂2u

∂x2
, u(−L, t) = u(L, t),

∂u

∂x
(−L, t) =

∂u

∂x
(L, t), u(x, 0) = f(x).

We showed in problem 3.11 that term-by-term differentiation shows that

u(x, t) =

∞∑
n=0

(
an cos

nπx

L
+ bn sin

nπx

L

)
e−(nπ/L)

2kt,

is a solution to this IVBP. where an and bn are the Fourier coefficients of f(x).
Explain why term-by-term differentiation is valid in this IVBP.



Chapter 4

The Wave Equation

4.1 Developing the Wave Equation

We now turn our attention to the one dimensional wave equation, namely

∂2u

∂t2
= k

∂2u

∂x2
.

Let’s start by describing a physical context which is modeled by this equation.
Then we will derive the wave equation and then solve it.

Start with a violin, that has been placed sideways on the x-axis. One of
the violin strings begin at x = 0 and end at x = L (where at x = L is a nob
for tightening the string). The violin string is plucked and starts to vibrate.
Our goal is to understand the vibration of the string based on the initial pluck.
At time t, let u(x, t) represent the deflection of the string above (or below) the
x coordinate of the x-axis. To solve this problem, we’ll start by making the
following assumptions.

• The initial deflection of the string, given by u(x, 0) = f(x), is small.

• The string has uniform density, so that ρ(x) is constant.

• The tension in the string is so great that we can ignore gravity.

• As the string vibrates, the portion of the string above spot x will only
move vertically. There is no left/right movement, rather only vertical
movement.

• The string is perfectly elastic. It can expand and contract as needed
without introducing any additional forces other than the tension.

Under these assumptions, we will show that
∂2u

∂t2
= k

∂2u

∂x2
.

We need to review a tiny bit of physics before proceeding. Newton’s second
law of motion states that the ~F = m~a, or rather that the total force acting on
an object equals the mass of the object multiplied by the acceleration of the
object. Forces causes masses to accelerate (~F = m~a). The total force on an
object is found by summing all the forces acting on the object.

Consider the portion of the violin string between x and x + ∆x. Let’s
consider the external forces acting on this tiny segment of the string.

• At x, the tension in the string from the left end, which we’ll call ~T1(t),

wants to pull this little segment left. The tension ~T1 has both a vertical
and horizontal component, and we know the horizontal component acts
left.

27
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• At x + ∆x, the tension in the string from the right end, which we’ll call
~T2(t), wants to pull this little segment right. There is again both a vertical
and horizontal component, and we know the horizontal component acts
right.

• Gravity acts on the string, but we assumed the tension was so great that
we’ll neglect it’s effect. If we want to model the vibrations of electrical
wires, or cables in a suspension bridge, then we shouldn’t neglect gravity.

• We assumed the string was perfectly elastic. If it is not, then as the string
stretches or contracts, we would have additional external forces acting on
this bit of string.

x x+ ∆x
~T1(t)

~T2(t)

θ1

θ2

Problem 4.1 Let ~T1(t) and ~T2(t) be defined as above. Let T1(t) and T2(t)
be the magnitudes of these vectors. Let θ1(t) and θ2(t) be the angles between
the x-axis and the tension vectors. Choose the angles to be between −π/2 and
π/2, where we measure a positive angle as a counter-clockwise rotation from
the x-axis.

1. Explain why 0 = −T1 cos θ1+T2 cos θ2. In what follows, let T = T1 cos θ1 =
T2 cos θ2.

2. Explain why ρ∆x
∂2u

∂t2
≈ −T1 sin θ1 + T2 sin θ2.

3. Show that ρ∆x
∂2u

∂t2
≈ T (tan θ2 − tan θ1).

Problem 4.2: Approximate derivation of the wave equation Continue

from problem 4.1

1. Explain why we can write

tan θ2 − tan θ1 =
∂u

∂x
(x+ ∆x, t)− ∂u

∂x
(x, t).

2. Explain why we can write

ρ∆x
∂2u

∂t2
(x, t) ≈ T

(
∂u

∂x
(x+ ∆x, t)− ∂u

∂x
(x, t)

)
.

3. By considering the limit at ∆x→ 0, explain why

∂2u

∂t2
(x, t) ≈ c2 ∂

2u

∂x2
(x, t)

for some constant c. What is the constant c? Show that the units of c
are those of speed.
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The solution above suffers from the fact that it contains the symbol ≈ in
the solution. Most physics and engineering applications will turn the symbol
≈ to an = in the limit process. This is justified, provided an appropriate mean
value theorem applies. The following problem shows you how this is done.

Problem 4.3: Exact derivation of the wave equation Continue from prob-

lem 4.2.1.

1. The mean value theorem states that (under reasonable assumptions) there
exists some k in the interval [a, b] with f ′(k)(b− a) = (f(b)− f(a)). Use
this theorem to rewrite the expression

(
∂u
∂x (x+ ∆x, t)− ∂u

∂x (x, t)
)

as a
derivative evaluated at some point k, multiplied by a distance. What are
the bounds for k?

2. The force acting on the small segment from x to x+∆x is the mass of the
segment multiplied by an unknown acceleration which we’ll call a(x, t).
Explain why

ρ∆xa(x, t) = T∆x
∂2u

∂x2
(k, t).

The equal sign here is emphasized. We no longer have an approximation.

3. By considering the limit as ∆x → 0 of each side of the equation above,
explain why

∂2u

∂t2
(x, t) =

T

ρ

∂2u

∂x2
(x, t).

[Why can we replace a(x, t) with ∂2u
∂t2 , and why did the k turn into an x?]

4.2 Solving the Wave Equation with Fourier Se-
ries

We’ve now got another partial differential equation. In order to give a full
solution to the wave equation, we need some boundary and initial conditions.
We’ll consider many of the same boundary conditions as we saw in the solution
to the heat equation. The initial conditions are the initial displacement of the
string, given by u(x, 0) = f(x), and the initial velocity of the string, given by
∂u
∂t (x, 0) = g(x). If the string is displaced, and then released with no initial
velocity, we know that g(x) = 0.

Problem 4.4 Consider the initial value boundary problem (IVBP) for 0 ≤
x ≤ L and t > 0 given by

∂2u

∂t2
= c2

∂2u

∂x2
, u(0, t) = 0, u(L, t) = 0, u(x, 0) = f(x),

∂u

∂t
(x, 0) = g(x).

We wish to solve this IVBP.

1. Use the method of separation of variables to obtain two second order
ODEs. Remember to use φ(x) as the name for the function dependent
only on x.

2. What are the boundary conditions on φ? In other words, explain how
the boundary conditions u(0, t) = 0 and u(L, t) = 0 are used to obtain
conditions on φ.
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3. Obtain the eigenvalues λn and eigenfunctions φn(x).

Problem 4.5 Continue from the previous problem.

1. For each λn, solve the time dependent ODE.

2. For each λn, provide a solution un to the wave equation that satisfies the
boundary conditions.

3. Give an infinite series solution to the wave equation. You should find that
in your series you have two sets of coefficients (the book calls them An
and Bn). Use the end cover of your book to determine the coefficients.

You have now solved the wave equation using Fourier series.

Problem 4.6 In part 3 of the previous problem, we summed up infinitely
many solutions to the wave equation to obtain a full solution. The principle
of superposition suggests that we should be able to do this, but superposition
technically only works when we sum finitely many solutions. Justify why we
can add together infinitely many terms. In other words, please justify why
term-by-term differentiation of

u(x, t) =

∞∑
n=1

An sin
nπx

L
cos

nπct

L
+Bn sin

nπx

L
sin

nπct

L

is justified. Show that this infinite sum satisfies the wave equation
∂2u

∂t2
=

c2
∂2u

∂x2
. This should be a review of chapter 3.

Problem 4.7 Consider the initial value boundary problem (IVBP) for 0 ≤
x ≤ L and t > 0 given by

∂2u

∂t2
= c2

∂2u

∂x2
, u(0, t) = 0,

∂u

∂x
(L, t) = 0, u(x, 0) = f(x),

∂u

∂t
(x, 0) = g(x).

Solve this IVBP. Reuse as much of the previous problem as you can. In other
words, what does the new boundary condition in this problem cause to change
from our previous problems.

Problem 4.8 (Exercise 4.4.1 on page 147 of the book.) Consider the vi-
brating string of uniform density ρ0 and tension T0.

(a) What are the natural frequencies of a vibrating string of length L fixed
at both ends.

(b) What are the natural frequencies of a vibrating string of length H, which
is fixed at x = 0 and “free” at the other end [i.e., ∂u/∂x(H, t) = 0]?
Sketch a few modes of vibration as in Fig. 4.4.1.

(c) Show that the modes of vibration for the odd harmonics (i.e. n =
1, 3, 5, . . .) of part (a) are identical to the modes of part (b) if H = L/2.
Verify that their natural frequencies are the same. Briefly explain using
symmetry arguments.
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Problem 4.9 (Exercise 4.4.2 on page 147 of the book.) In section 4.2 it was
shown that the displacement u of a nonuniform string satisfies

ρ0
∂2u

∂t2
= T0

∂2u

∂tx
+Q,

where Q represents the vertical component of the body force per unit length.
If Q = 0, the partial differential equation is homogeneous. A slightly different
homogeneous equation occurs if Q = αu.

(a) Show that if α < 0, the body force is restoring (toward u = 0). Show
that if α > 0, the body force tends to push the string further away from
its unperturbed position u = 0.

(b) Separate variables if ρ(x) and α(x) but T0 is constant for physical reasons.
Analyze the time-dependent ordinary differential equations.

(c) Specialize part (b) to the constant coefficient case. Solve the initial value
problem (if α < 0) given by the boundary and initial conditions

u(0, t) = u(L, t) = 0, u(x, 0) = 0,
∂u

∂t
(x, 0) = f(x).

What are the frequencies of vibration.

Problem 4.10 (Exercise 4.4.7 on page 148 of the book.) If a vibrating
string satisfying (4.4.1)-(4.4.3) is initially at rest, so g(x) = 0, show that

u(x, t) =
1

2
[F (x− ct) + F (x+ ct)],

where F (x) is the odd periodic extension of f(x).. Hints:

1. For all x, we have F (x) =
∑∞
n=1An sin

(
nπx
L

)
.

2. Use the trig identity sin a cos b = 1
2 [sin(a+ b) + sin(a− b)].

Problem 4.11 Consider the initial value boundary problem (IVBP) for 0 ≤
x ≤ L and t > 0 given by

∂2u

∂t2
= c2

∂2u

∂x2
, u(0, t) = 0, u(L, t) = 0, u(x, 0) = 0,

∂u

∂t
(x, 0) = 0.

1. Give a physical explanation as to why the only solution to this equation
is the trivial solution u(x, t) = 0. What do all the initial values and
boundary conditions imply?

2. Prove that the solution of the IVBP

∂2u

∂t2
= c2

∂2u

∂x2
, u(0, t) = 0, u(L, t) = 0, u(x, 0) = f(x),

∂u

∂t
(x, 0) = g(x)

is unique.

In other words, we found a solution in problems 4.4 and 4.5. If someone
finds a solution in another way (using some other crazy method), then
you are going to show that this crazy solution must be the same as ours.
[As a hint, let u1 and u2 be two solutions, possibly arrived at in different
ways. What can you say about the difference u2 − u1? What boundary
and initial conditions does the difference u2 − u1 satisfy.]



CHAPTER 4. THE WAVE EQUATION 32

4.3 The Method of Characteristics

In the previous section, we solved the wave equation using Fourier series. We’ll
find that another, more powerful, technique exists to solve the heat equation.
This new method will allow us to solve every problem that the Fourier series
method gave, together with additional problems. The idea relates back to level
curves, and is called the method of characteristics. The material in this section
is found in chapter 12 of your textbook. You may want to review problem 1.23
before proceeding.

Problem 4.12: Level Curve Theory Review Recall that a level curve

of a function z = f(x, y) is a curve in the xy-plane obtained by letting the
output z be constant. So a curve C is a level curve if and only if the output z
does not change at all along the curve C.

• Suppose ~r(t) = (x(t), y(t)) is a parametrization of a level curve. Explain

why
df

dt
= 0. Then use the chain rule to find the angle between the vectors

d~r

dt
(t) =

(
dx

dt
,
dy

dt

) ∣∣∣∣
t=t

and ~∇f(~r(t)) =

(
∂f

∂x
,
∂f

∂y

) ∣∣∣∣
(x,y)=~r(t)

.

• Suppose that ~r(t) = (x(t), y(t)) is the parametrization of a curve. Suppose
also that for all t, we know that zero equals the dot product

0 = ~∇f(~r(t)) · d~r
dt

(t).

Explain why this means ~r is a parametrization of a level curve, and that
df

dt
= 0.

Problem 4.13 Show that we can write the one dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2
in the two factored forms(

∂

∂t
+ c

∂

∂x

)(
∂u

∂t
− c∂u

∂x

)
= 0 and

(
∂

∂t
− c ∂

∂x

)(
∂u

∂t
+ c

∂u

∂x

)
= 0.

If we let w =
∂u

∂t
− c∂u

∂x
and v =

∂u

∂t
+ c

∂u

∂x
, rewrite the above equations as two

first order partial differential equations

∂w

∂t
+ c

∂w

∂x
= 0 and

∂v

∂t
− c ∂v

∂x
= 0.

Problem 4.14 Consider the PDE
∂w

∂t
+c

∂w

∂x
= 0. Suppose ~r(t) = (x(t), t) is

a parametrization of a curve in the xt plane. We are interested in the composite
function w(~r(t)) = w(x(t), t). You can think of the parametrization as a person
moving along the x-axis at time t and watching what happens to w as they
move. We currently have two function, namely w(x, t) and r(t) = (x(t), t).
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1. Explain why
dw

dt
=
∂w

∂t
+
dx

dt

∂w

∂x
.

What rule are you using to perform your computation. Be prepared to

explain the difference between between
∂w

∂t
and

dw

dt
?

2. If dx/dt = c (so the observer is moving right at speed c), show that
dw/dt = 0.

3. Explain why ~r(t) = (x(t), t) is a level curve of w.

Problem 4.15 Continue from the previous problem. For this problem as-
sume dx/dt = c, which means we know that dw/dt = 0.

1. Solve the ODE dx/dt = c for x(t). Your solution is a collection of parallel

lines, which we call a family of characteristic of the PDE
∂w

∂t
+ c

∂w

∂x
= 0.

2. If we have the initial condition w(x, 0) = P (x), and we move along the
path x = x(t) given above, explain why

w(x, t) = P (x− ct).

Problem 4.16 Consider the PDE
∂w

∂t
+ 3

∂w

∂x
= 0, subject to the initial

condition

w(x, 0) =


0 x < 0

2x 0 ≤ x ≤ 1

0 x > 1

.

1. In this problem, what is c?

2. Recall that if ~r(t) = (x(t), t) is level curve of w, then we know

dw

dt
=
∂w

∂t
+
dx

dt

∂w

∂x
= 0.

Find a family of characteristics of the PDE, by solving
dx

dt
= c.

3. Recall that the general solution to the PDE
∂w

∂t
+ c

∂w

∂x
= 0, given the

initial condition w(x, 0) = P (x), is

w(x, t) = P (x− ct).

State the general solution to the PDE given in this problem. [Hint: replace
x with x− ct in P (x).]

4. Provide a sketch in the wx plane of w(x, 0), w(x, 1), and w(x, 2). We’ll
add a 3D surface plot in class of w(x, t), though you’re welcome to create
it on your own and present it in class.
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Problem 4.17 Complete problems 12.2.2 and 12.2.3, which ask you to solve
the following two PDEs.

1. Solve
∂w

∂t
− 3

∂w

∂x
= 0 with w(x, 0) = cos(x).

2. Solve
∂w

∂t
+ 4

∂w

∂x
= 0 with w(0, t) = sin(3t).

Problem 4.18 We’ve reduced solving
∂w

∂t
+ c

∂w

∂x
= 0 to solving

dx

dt
= c and

dw

dt
= 0.

Now solve
∂w

∂t
+ 3t2

∂w

∂x
= 2tw by solving

dx

dt
= 3t2 and

dw

dt
= 2tw.

Assume that w(x, 0) = P (x).

Problem 4.19 Solve both
∂w

∂t
+ x

∂w

∂x
= 1 and

∂w

∂t
+ t

∂w

∂x
= 1 where

w(x, 0) = f(x). (This is problems 12.2.5 (b) and (c).)

4.4 Solving the Wave Equation with the Method
of Characteristics

Problem 4.20 Let P (x) and Q(x) be two arbitrary functions (where we
assume as much differentiability as needed). Verify (by taking derivatives) that

w(x, t) = P (x− ct) is a solution to
∂w

∂t
+ c

∂w

∂x
= 0, and that v(x, t) = Q(x+ ct)

is a solution to
∂v

∂t
− c ∂v

∂x
= 0.

Combining problems 4.13 and the previous problem, we’ve shown that

w =
∂u

∂t
− c∂u

∂x
= P (x− ct) and v =

∂u

∂t
+ c

∂u

∂x
= Q(x+ ct).

The solution for w and v are just standing waves moving right (for w) and left
(for v) at speed c.

Problem 4.21 We now solve the wave equation.

1. Explain why

2
∂u

∂t
= P (x− ct) +Q(x+ ct) and 2c

∂u

∂x
= Q(x+ ct)− P (x− ct).

2. Pick either equation above and anti-differentiate to obtain u(x, t). Then
anti-differentiate the other. In both cases, what is u(x, t)?
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3. Explain why we can write the solution to
∂2u

∂t2
= c2

∂2u

∂x2
in the form

u(x, t) = F (x− ct) +G(x+ ct),

where F and G are arbitrary functions. What relationship exists between
the functions F and G and the functions P and Q.

We’ve now shown that the solution to the wave equation is precisely the sum
of two standing waves, F and G, where one wave moves right and the other
moves left at a constant speed c (whose units are precisely the units of speed).

4.5 Applying Initial and Boundary Conditions

We now need turn our attention to find the function F and G when we are
provided with the initial displacement and initial velocity given by

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x).

We’ll start by assuming no boundary conditions, which means we know f(x)
and g(x) for all x ∈ (−∞,∞). Once we’ve obtained the solution to an infinitely
long wave, we’ll be able to quickly obtain solutions for a semi-infinite wave, and
finally a wave in the interval [0, L]. Since the solution to the wave equation is
unique (which you showed in problem 4.11), the solution we obtain here must
be identical to the solution we obtained using Fourier series.

4.5.1 Infinite Wave

Problem 4.22: Infinite Wave We know the general solution to the wave
equation is u(x, t) = F (x− ct) +G(x+ ct). Assume the initial conditions

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x) for −∞ < x <∞.

1. Apply the initial conditions to obtain a system of ordinary differential
equations involving the unknown functions F and G. The functions f
and g are assumed to be known.

2. Show that
dG

dx
=

1

2

(
df

dx
+
g(x)

c

)
.

Obtain a similar equation for
dF

dx
.

3. Integrate the equations above to show that

F (x) =
1

2
f(x)− 1

2c

∫ x

0

g(y)dy + k and

G(x) =
1

2
f(x) +

1

2c

∫ x

0

g(y)dy − k.

The constant k can be ignored, because the solution to the wave equation
requires that you add F (x− ct) and G(x+ ct) together.
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Problem 4.23 Consider the wave equation
∂2u

∂t2
= c2

∂2u

∂x2
for −∞ < x <∞,

with c = 2 and initial values

u(x, 0) = f(x) =

{
1 0 ≤ x ≤ 5

0 otherwise
and

∂u

∂t
(x, 0) = g(x) = 0.

Graph the solution u(x, t) in the xu-plane for t = 1, 2, 3, 4. Combine your
solutions into a 3D plot using xtu coordinates (see page 547). At what time do
the waves separate?

Problem 4.24 Consider the wave equation
∂2u

∂t2
= c2

∂2u

∂x2
for −∞ < x <∞,

with c = 2 and initial values

u(x, 0) = f(x) = 0 and
∂u

∂t
(x, 0) = g(x) =

{
1 0 ≤ x ≤ 5

0 otherwise
.

Graph the solution u(x, t) for t = 1, 2, 3, 4 in the xu-plane. Combine your
solutions into a 3D plot using xtu coordinates (see page 547).

Problem 4.25 Complete 12.3.1. Provide a sketch of the solution for times
ct = 1, ct = 2, ct = 3, and ct = 4. Combine your results into a 3D surface plot,
as in the previous two problems. I’ll provide an animated graph of the entire
solution in class (or if you want the challenge, try creating such an animation
yourself).

Problem 4.26 Complete problem 12.3.5. Your solution should look some-
thing like the diagram on page 548.

Problem 4.27: D’alembert’s Solution Prove that the solution to the in-
finite wave equation with initial displacement f(x) and velocity g(x) is

u(x, t) =
f(x− ct) + f(x+ ct)

2
+

1

2c

∫ x+ct

x−ct
g(x̄)dx̄.

4.5.2 Semi-Infinite Wave

We now turn our attention to a semi-infinite wave. Assume the initial conditions

for the wave equation
∂2u

∂t2
= c2

∂2u

∂x2
, x > 0, are

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x) for x > 0.

We now make one additional assumption. We fix the left end of the string at

u(0, t) = 0.

From our previous work, we know that u(x, t) = F (x− ct) +G(x+ ct) where

F (x) =
1

2
f(x)− 1

2c

∫ x

0

g(y)dy for x > 0 and

G(x) =
1

2
f(x) +

1

2c

∫ x

0

g(y)dy for x > 0,

provided the arguments of F and G are both positive.
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Problem 4.28: Semi-infinite Wave with fixed end Use the set up from
the previous paragraph. Namely, we want to solve the IBVP

∂2u

∂t2
= c2

∂2u

∂x2
, u(x, 0) = f(x),

∂u

∂t
(x, 0) = g(x), u(0, t) = 0, for x > 0.

1. Explain why G(x+ ct) is well-defined for all x and t in this problem. For
which x and t is F (x− ct) not defined?

2. If x > ct, explain why the solution is simply u(x, t) = F (x−ct)+G(x+ct).

3. Let x = 0 in the equation u(x, t) = F (x − ct) + G(x + ct). Use this to
develop a formula for F (x) if x is negative.

4. Show that if x < ct, then the solution to the wave equation for a semi-
infinite string is u(x, t) = G(x+ ct)−G(ct− x).

Problem 4.29 Consider a semi-infinite string x > 0 with a fixed end u(0, t) =

0 which is initially at rest (so ∂u
∂t (x, 0) = 0). The initial shape of the wave is

f(x) = 2 if x ∈ [3, 4] and f(x) = 0 otherwise. The constant c is 1/5. Determine
formulas for F (x) and G(x) if x > 0. Find a formula for u(x, t), and then
construct a 3D graph of your solution for 0 < t < 40.

Problem 4.30 Consider the same set up as in problem 4.28. Show that if
we had extended f and g as odd functions, then we could have just written
our solution as u(x, t) = F (x − ct) + G(x + ct). In other words, show that
F (x) = −G(−x) precisely when f and g are extended as odd functions. [Hint:
Write the definitions of F (x) and G(−x), and use the definitions of even and
odd.]

The previous problem shows that if we use the boundary condition u(0, t) =
0, then we can obtain a solution to the semi-infinite wave equation by just
extending the initial conditions as odd functions to the entire real line, and then
using the solution to the infinite wave equation. We’ll see this type of symmetry
occurring again and again, though the boundary conditions will determine if
we should extend our function as an even or an odd function.

Problem 4.31: Semi-infinite Wave with free end Complete problem 12.4.4.

This asks you to change the boundary condition from u(0, t) = 0 to ∂u
∂x (0, t) = 0

and then solve. I’ll have one person present each part of this problem in class.
Part (a) asks you to solve in general. Part (b) asks you to show that the solu-
tion is the same as extending f and g as even functions. Part (c) asks you to
give a graphical solution for a specific set of initial conditions. The previous 3
problems serve as a model for what you should do here.

Problem 4.32 Solve 12.4.1. This problem starts with a semi-infinite string
at rest. The left end is no longer fixed, rather has position function u(0, t) =
h(t). You’ll show how moving the left endpoint changes the shape of the wave.
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4.5.3 Vibrating String of Fixed Length

We showed in the previous section that we can represent the fixed boundary
condition u(x, 0) = 0 by just extending the initial conditions f(x) and g(x)
as odd functions. Similarly, the free boundary condition ∂u

∂t (x, 0) = 0 requires
that we extend f(x) and g(x) as even functions. We will now use these facts
to solve the wave equation for vibrating strings with a fix length 0 ≤ x ≤ L.
Whenever you encounter a fixed boundary, make sure you extend the waves
across that boundary by using an odd extension. Whenever you encounter a
free boundary, make sure you extend the waves across that boundary by using
an even extension.

Problem 4.33 Complete 12.5.3 (a) and (c). Here you have a fixed end at
x = 0 and a free end at x = L.

Problem 4.34 Complete 12.5.4. Here you have a free end at x = 0 and a
fixed end at x = L.



Chapter 5

Sturm-Liouville Eigenvalue
Problems

5.1 Definition and Theorem

Definition 5.1. A regular Sturm-Liouville eigenvalue problem consists of a
Sturm-Liouville differential equation,

d

dx

(
p(x)

dφ

dx

)
+ q(x)φ+ λσ(x)φ = 0 a < x < b,

subject to boundary conditions of the form

β1φ(a) + β2
dφ

dx
(a) = 0 and β3φ(b) + β4

dφ

dx
(b) = 0,

where βi are real constants. The coefficients p, q, and σ must be real and
continuous everywhere, including the end points, with p(x) > 0 and σ(x) > 0
for all x ∈ [a, b].

Problem 5.1 Start by showing that the differential equation φ′′ = −λφ is a
Sturm-Liouville differential equation (state the coefficients p, q, and σ). Then,
for each collection of boundary values below, determine if these boundary values
provide us with a regular Sturm-Liouville eigenvalue problem. If so, state the
constants βi. If not, explain why.

1. φ(0) = 0 and φ(L) = 0.

2. dφ
dx (0) = 0 and dφ

dx (L) = 0.

3. φ(−L) = φ(L) and dφ
dx (−L) = dφ

dx (L).

Problem 5.2 Consider the PDE cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+ Q. We discussed

this PDE in chapter 1, and showed that it modeled the flow of heat in a rod with
constant cross-sectional area. Assume that the heat sources are proportional
to the temperature, so Q = αu for some function α(x). Also assume that c, ρ,
and K0 could depend on x.

1. Use separation of variables with u(x, t) = φ(x)h(t) to obtain differential
equations for φ(x) and h(t).

39
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2. Show that the ODE for φ is a Sturm-Liouville differential equation.

Problem 5.3 Consider the PDE
∂u

∂t
= k

1

r

∂

∂r

(
r
∂u

∂r

)
. This PDE from

chapter models the flow of heat on a disc, where the temperature is assumed to
be circularly symmetric (only dependent on time and distance r to the origin),
where all the thermal properties are constant.

1. Use separation of variables with u(r, t) = φ(r)h(t) to obtain differential
equations for φ(r) and h(t).

2. Show that the ODE for φ is a Sturm-Liouville differential equation.

Problem 5.4 Consider the operator L(u) =
d

dx

(
p(x)

du

dx

)
+ q(x)u.

1. Prove that L is a linear operator.

2. Rewrite the Sturm-Liouville differential equation in terms of the operator
L (you should then see why we call this an eigenvalue problem). We’ll
use this notation in later problems.

3. Show that uL(v)− vL(u) =
d

dx

[
p

(
u
dv

dx
− v du

dx

)]
. [Expand both sides.]

The following theorem (which we will use without proof), provides a lot
of information about any function φ which satisfies a regular Sturm-Liouville
eigenvalue problem.

Theorem 5.2. Suppose that φ satisfies a regular Sturm-Liouville eigenvalue
problem, meaning φ satisfies the ODE

d

dx

(
p(x)

dφ

dx

)
+ q(x)φ+ λσ(x)φ = 0 a < x < b,

and has appropriate boundary conditions. Then the following statements all
hold.

1. All the eigenvalues are real.

2. There exists an infinite number of eigenvalues with

λ1 < λ2 < · · · < λn < · · · .

(a) There is a smallest eigenvalue which we’ll call λ1.

(b) There is no largest eigenvalue, as λn →∞ as n→∞.

3. For each n, corresponding to λn there is an eigenfunction φn(x). This
eigenfunction is unique up to multiplying by a constant. In addition, the
eigenfunction φn(x) has exactly n− 1 zeros for a < x < b.

4. The eigenfunctions form a complete set in the vector space of piecewise
smooth functions. This means that we can represent any piecewise smooth
function f(x) with a generalized Fourier series

f(x) ∼
∞∑
n=1

anφn(x).

Furthermore, the infinite series converges to f(x+)+f(x−)
2 for a < x < b.



CHAPTER 5. STURM-LIOUVILLE EIGENVALUE PROBLEMS 41

5. The eigenfunctions belonging to different eigenvalues are orthogonal rela-
tive to the weight function σ(x), which means∫ b

a

φn(x)φm(x)σ(x)dx = 0 if n 6= m.

6. Any eigenvalue can be related to its eigenfunction by the Rayleigh quotient

λ =
(−pφdφdx )|ba +

∫ b
a

[p(dφ/dx)2 − qφ2] dx∫ b
a
φ2σ dx

.

The boundary conditions may greatly simplify the Rayleigh quotient.

The following problem justifies why we never needed to consider the case
λ < 0 in our work with the heat equation and wave equation.

Problem 5.5 Suppose φ satisfies a regular Sturm-Liouville eigenvalue prob-
lem, with q ≤ 0. [Hint: use the Rayleigh quotient.]

1. Explain why there cannot be negative eigenvalues if the boundary con-
ditions are φ(a) = 0 and φ(b) = 0. Furthermore, show that λ 6= 0 with
these boundary conditions.

2. Explain why there cannot be negative eigenvalues if the boundary condi-
tions are dφ

dx (a) = 0 and dφ
dx (b) = 0.

3. Explain why λ > 0 if q ≤ 0 and (−pφdφdx )|ba ≥ 0.

Problem 5.6 Suppose φ satisfies a regular Sturm-Liouville eigenvalue prob-
lem. Suppose that the eigenvalues λn and eigenfunctions φn have already been
determined. Suppose that f(x) has a generalized Fourier series given by

f(x) ∼
∞∑
n=1

anφn(x).

Explain why we can compute the coefficients as

am =

∫ b
a
f(x)φm(x)σ(x)dx∫ b
a
φ2m(x)σ(x)dx

.

[Hint: what did we learn about orthogonality earlier in the semester?]

Problem 5.7 Solve problem 5.3.5.

Problem 5.8: Optional Solve problem 5.3.9. [Hint: on part 3, you’ll want

to guess the solution is of the form xr for some r and then find what the constant
r must equal.]
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Problem 5.9 Suppose φ satisfies the Sturm-Liouville differential equation

d

dx

(
p(x)

dφ

dx

)
+ q(x)φ+ λσ(x)φ = 0 a < x < b,

where the coefficients p, q, and σ must be real and continuous everywhere,
including the end points, with p(x) > 0 and σ(x) > 0 for all x ∈ [a, b]. Obtain
the Rayleigh quotient. In other words, show that

λ =
(−pφdφdx )|ba +

∫ b
a

[p(dφ/dx)2 − qφ2] dx∫ b
a
φ2σ dx

.

[Hint: Multiply both sides of the ODE by φ, and then integrate both side from
a to b. You’ll need to use integration-by-parts along the way. This is basically
the idea used to develop the finite element method.]

Theorem 5.3. The smallest eigenvalue in a Sturm-Liouville eigenvalue prob- A partial proof of this fact is on
page 193. It’s a partial proof
because they apply linearity to an
infinite sum, which is not justified
until a much later time in the
text. We’ll skip the proof.

lem is the minimum value of the Rayleigh quotient for all continuous functions
satisfying the boundary conditions (not necessarily the differential equation).
We can write this as

λ1 = min
u∈C[a,b]

(−pududx )|ba +
∫ b
a

[p(du/dx)2 − qu2] dx∫ b
a
u2σ dx

.

We will not prove this fact, but let’s use it to show how you can estimate
the smallest eigenvalue.

Problem 5.10 Consider the eigenvalue problem

d2φ

dx2
+ λφ = 0, φ(0) = 0, φ(2) = 0.

Show this is a regular Sturm-Liouville eigenvalue problem, and state the values
of p, q, σ, βi, a, b.) We already know the solution to this problem, so start by
stating λ1. Then, for each function u below, compute the quotient

(−pududx )|ba +
∫ b
a

[p(du/dx)2 − qu2] dx∫ b
a
u2σ dx

,

and show that λ1 is smaller than this quotient.

1. u =

{
x x ∈ [0, 1]

2− x x ∈ [1, 2]

2. u = x(x− 2)

3. u = sin(πx/2)

Problem 5.11 Let L(u) be the Sturm-Liouville operator introduced in prob-
lem 5.4. Explain why∫ b

a

uL(v)− vL(u)dx = p

(
u
dv

dx
− v du

dx

) ∣∣∣∣b
a

.

Then, if u and v both satisfy the homogeneous boundary conditions

β1φ(a) + β2
dφ

dx
(a) = 0 and β3φ(b) + β4

dφ

dx
(b) = 0,

show that
∫ b
a
uL(v)− vL(u)dx = 0. You may assume that β1 6= 0 and β4 6= 0.
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Problem 5.12 Show that if λn and λm are different eigenvalues, with cor-
responding eigenfunctions φn(x) and φm(x), of a regular Sturm-Liouville eigen-
value problem, then the eigenfunctions are orthogonal with the weight function

σ(x). In other words, prove that
∫ b
a
φnφmσ dx = 0. [Hint: In problem 5.4, we

wrote the Sturm-Liouville differential equation in the form L(u) = −λσu. Use
the integral equation from the previous problem. You’ll need to use the fact
that eigenvalues are different at some point.]

Problem 5.13: Optional Show that if φ1 and φ2 are two eigenfunctions

corresponding to the same eigenvalue λ, then φ2 is a multiple of φ1. [Hint:
Problem 5.4 is the key. You’ll also have to notice a quotient rule along the
way.]

Problem 5.14: Optional Suppose that we know the function f solves a

Sturm-Liouville differential equation with orthogonal eigenfunctions φn, and
that we know

f(x) ∼
∞∑
n=1

anφn(x).

If we had decided instead to approximate f with a finite sum of the form

f(x) ∼
M∑
n=1

αnφn(x),

we may discover that using coefficients αn different than an could produce a
better approximation. In this problem, your job is to prove that the mean-
square deviation, given by

E =

∫ b

a

(
f(x)−

M∑
n=1

αnφn(x)

)2

σ dx,

is minimized precisely when

αn = an =

∫ b
a
fφnσ dx∫ b
a
φ2nσ dx

.

In other words, not only do the Fourier coefficients an provide the appropriate
coefficients needed for the infinite series to converge to f , they also provide the
best approximation using any finite sum.

5.2 Non homogeneous Problems

The key idea in this section is to show that if the boundary conditions are not
homogeneous, then we can always modify the PDE in some way to force the
boundary conditions to be homogeneous. We can’t guarantee that the PDE
will be be homogeneous, but we can ALWAYS force the boundary conditions
to be homogeneous.

Problem 5.15 Consider the initial value boundary problem (IVBP)

∂u

∂t
= k

∂2u

∂x2
, u(0, t) = A, u(L, t) = B, u(x, 0) = f(x).

The boundary conditions are not homogeneous.
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1. Find a steady-state solution, which we’ll call uE(x).

2. If u is a solution to the IV BP , show that v(x, t) = u(x, t)−uE(x) satisfies
the same PDE, but now has homogeneous boundary conditions v(0, t) = 0
and v(L, t) = 0. What is the initial temperature distribution v(x, 0)?

3. Since v(x, t) satisfies the heat equation with homogeneous boundary con-
ditions, state the solution using Fourier series (just look up the solution
from chapter 2). Make sure you state what the Fourier coefficients are, as
they depend on the modified initial temperature distribution you obtained
in part 2.

4. Now give the solution u(x, t) to the non homogeneous IVBP. [See part 2
for the connection between u and v.]

In the problem above, we showed how to solve a homogeneous PDE with
non homogeneous constant boundary conditions. We started by changing the
problem so that the boundary conditions were homogeneous. We would like to
be able to solve non homogeneous PDEs with non-constant boundary condi-
tions. The following problem shows that we can always make a modification to
force the boundary conditions to be homogeneous.

Problem 5.16 Consider the initial value boundary problem (IVBP)

∂u

∂t
= k

∂2u

∂x2
+Q(x, t), u(0, t) = A(t), u(L, t) = B(t), u(x, 0) = f(x).

The PDE has a non homogeneous term Q(x, t) and the boundary conditions
are not homogeneous (and not constant). Separation of variables will not work
on this problem.

1. Find a function r(x, t) that has the same boundary conditions as a solution
u(x, t) to the PDE. Any function will do, as long as r(0, t) = A(t) and
r(L, t) = B(t). [Hint: for each t, give an equation of a line between the
two end points.]

2. Let v(x, t) = u(x, t) − r(x, t). What are the boundary conditions for
v(x, t)?

3. We know that u(x, t) = v(x, t) + r(x, t) satisfies the PDE above. What
PDE does v(x, t) satisfy? Show that v(x, t) satisfies the IVBP

∂v

∂t
= k

∂2v

∂x2
+ Q̄(x, t), v(0, t) = 0, u(L, t) = 0, u(x, 0) = g(x),

where the functions Q̄ and g can be written in terms of the functions Q,
r and f .

We now examine how to solve the IVBP given by

∂v

∂t
= k

∂2v

∂x2
+ Q̄(x, t), v(0, t) = 0, u(L, t) = 0, u(x, 0) = g(x).

We’ll use a method called eigenfunction expansion. This method assumes that
we can write

v(x, t) =

∞∑
n=1

an(t)φn(x),
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where the coefficients an are functions of t and the eigenfunctions φn come
from the eigenfunctions of the corresponding homogeneous PDE (which in this

problem are φn(x) = sin
(
nπ
L

)2
). We would like to simply state that

an(t) =

∫ L
0
v(x, t)φn(x)dx∫ L
0
φ2n(x)dx

(not O.K.),

however this is not appropriate because we do not know v(x, t). To solve the
IVBP for v(x, t), we need to determine the coefficients an(t). The next few
problems will help you learn how this is accomplished.

Problem 5.17 Find the general solution to the differential equation dy
dt (t)+

ky(t) = q(t), where k is constant, but q is a function of t. [Hint: if you find an
appropriate integrating factor, this ODE can be written as an exact ODE. This
is a review problem from differential equations. As a side note, you can actually
use this solution, in matrix form, to solve almost every ODE from a traditional
differential equations class. Come see me if you’re interested in knowing how.]

Problem 5.18 Consider the IVBP given by

∂v

∂t
= k

∂2v

∂x2
+ Q̄(x, t), v(0, t) = 0, u(L, t) = 0, u(x, 0) = g(x).

Assume that we can write

v(x, t) =

∞∑
n=1

an(t)φn(x),

where the coefficients an are functions of t and the eigenfunctions φn come
from the eigenfunctions of the corresponding PDE with homogeneous boundary
conditions.

Problem 5.19 Solve problem 8.2.2(b).

Problem 5.20 Solve problem 8.3.1(c). You’ll want to use your solution to
the previous problem.

5.3 To be continued...
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