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Introduction

Welcome to differential equations with linear algebra. One of our main objectives
in this course is to learn to make powerful predictions about the future. We’ll
learn how our physical understanding of rates of change and forces will help us
make predictions about the future. You’ve done this before when you studied
how an object falls in a parabolic path under a constant force from gravity.
In this class, we’ll learn much more powerful ways to predict the future, and
prepare you for your scientific career.

• If you can use a police scanner to determine someone’s current speed, and
then watch that speed change (measure acceleration), then you can predict
where the object will be. Putting several of these sensors in car could
allow you to build a self driven car (look up the Google Car for more info),
or make a missile that can dodge anti-missile technology, and much more.

• At Napoleon’s request, Fourier studied the flow of heat in cannons to
make his army’s cannons more durable. The cannons were warping due
to extreme heat, and when the soldiers tried to shoot a ball through a
warped cannon, the cannon would explode. Fourier unlocked the problem
of predicting heat flow. We can use his work to study the flow of much
more than heat. We can study immigration between countries, the spread
of viruses, the import/export connection among several countries, the
spread of a chemical pollutant (like an oil spill at sea), the weather, and
so much more.

• Francis Hooke discovered a simple linear relationship between how far
you stretch a spring, and the force exerted by a spring. Once you learn
how one spring works, you have the power to build shock absorbers for a
car. These principles apply directly to electrical systems. Once we can
predict the current in a small electrical network, we can study complex
electrical network (like a computer, or national power grid), and predict
exactly what the current will be like anywhere in the network. Satellite
communication relies on the ability to send electromagnetic waves, and
because we can predict how the message will be received, we know what
to send.

It all starts from some simple ideas. We’ll delve into the beginning details of
what makes these ideas work. I look forward to working with you this semester.

What is Inquiry Based Learning

This class may be unlike any math course you have taken in the past. We’ll be
learning through inquiry, rather than lecture. You’ll have the chance to jump in
and discover the big ideas. You are the artists in this course, and you’ll discover
what you decide to paint. My job as your teacher is to create the scaffolding

vi



INTRODUCTION vii

that will enable you to discover centuries of learning. I will craft the problems
you work on so that they start where you are at and get you to the knowledge
of the old masters.

Here’s what a typical day of class might look like:

• You have 8 problems to work on before coming to class. You crack 6 of
them, but try on the other 2 and fail (which is OK - it will happen).

• When you come to class, during the first 10-15 minutes we’ll work at the
boards together in small groups to tackle some problems. These will often
be related to the preparation you did for the current day, and to help
prepare you for the next day’s problems.

• While you’re at the boards, I’ll randomly select 8 of you to present your
prep solutions to the class. Come to class with your solutions already
written up (one solution per page). I’ll take your solutions and make them
available on the class projector.

• We’ll turn the time over to you to share your work. You’ll present, and
then defend your work. Your peers will ask you questions. Sometimes
you’ll be spot on right, and sometimes you’ll be wrong. As long as you
can justify why you did what you did, we’ll all learn and grow.

• We end class and have another 8 problem to tackle for the next day. You
set up a group meeting time, where you learn to work together as a team.

As you progress in this course, you’ll find that you enhance your ability to (1)
reason critically, (2) present and defend your results,(3) work with a team, and
(4) speak the language of mathematics. The entire structure of the course is
designed to build these abilities in you.

As your instructor for this courses, I’m your coach and cheerleader. My goal
is to build in you the knowledge of several centuries of work. If you’ll jump in
and start exploring, you’ll find that you can learn so much with inquiry based
learning, perhaps more than you’ve ever learned before.

Inquiry based learning has been around for hundreds of years, and has been
shown over and over again to be more effective than lecture based learning. You
can read more about it on the web at

• http://www.inquirybasedlearning.org/default.asp?page=Why Use IBL.

Adopting inquiry based learning requires that I turn our classroom over to you,
the students. I’ve learned that you, my students, are capable of far more than I
could ever have imagined.

Deep practice

To learn through inquiry, we have to be willing to explore ideas on our own. We
have to be willing to allow ourselves to fail. Sometimes we’ll tackle problems
where there may not be a right answer. We have to formulate ideas, try them,
and learn from the results (good or bad). We have to learn from our failures.

My first exposure to inquiry based learning occurred in the fourth grade.
Our teacher gave us pretend money throughout the week for good behavior and
then on Friday let us decide how to spend that money on goodies at our class
store. We had to use our newly acquired arithmetic skills to figure out how to
get the most bang for our buck. Some weeks I would purchase things, and then
see another student’s purchase and realize I had bought the wrong stuff. The

http://www.inquirybasedlearning.org/default.asp?page=Why_Use_IBL
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next week I changed my purchasing plan. This was a weekly problem that I was
allows to fail at, an then try again, with no punishment at all.

In the seventh grade, we learned an algorithm for solving absolute value
inequalities. For two weeks, we had to repeat the algorithm over an over again
on different problems. I wanted to find a faster way to do the problems, and
discovered a way that relied on distances. Every time we learned a new concept,
I tried to see if I could work the new concept into this faster approach. Some
concepts took a little more trial and error to master with the faster approach,
but eventually they all did. The time savings was amazing. I was super happy I
had discovered something. When the test came for this material, I wanted to
race my teacher to see if I could finish the exam before he finished passing out
the exams. I beat him.

The next day of class, Mr. Nelson said he wanted to have me share with the
class how I did the problems so quickly. He gave me the chalk and I got my
first chance to stand in front of people and teach. After 5 minutes (or less), Mr.
Nelson thanked me and told me to take a seat. No one in the room, not even
my teacher, had a clue what I was doing. I failed.

This failure changed me. It changed entirely how I studied. I started working
ahead of my class, because when they hit new material, I wanted to be able to
answer questions for them. Ever time I learned an idea, I asked myself how I
would share it with someone else. I was never again given a chance to teach an
entire class, not even for a few minutes, but I was always ready. I didn’t want
to fail again.

I will always be grateful for a teacher, Mr. Nelson, who trusted me enough
to allow me to try, and fail, at teaching his class. Failure is a key to success.

Why is Failure So Crucial?

I’m guessing that many of you have probably had all your math classes delivered
in lecture form. Does this describe your typical math class.

You show up to class, you take notes, you then go home and do every
other odd at the end of the chapter (or something similar), and then
come to class the next day to listen to a lecture again. This repeats
every day, and you get used to the monotony. Your teacher comes to
class and shows you the right way to do everything. You are asked
to reproduce the method you were shown. If you can’t do it right
within a day, you get docked on your homework.

I like to refer to this as, “Monkey see, Monkey do.”
Rarely did you have to struggle with the big ideas. They were handed to you

already in perfect form. A few of you may have taken the time to thoroughly
digest the proof in the book. More importantly, most of us don’t know what
doesn’t work. This is the key to understanding why the current approach
matters. Most valuable ideas have a plethora of important failures that helped
shape the success.

These failures are perhaps the most important parts of the puzzle. Why
should you do a problem the way the textbook says to? Is there a better way?
If you knew the underlying issues, and tried to solve the problem yourself, you’d
discover the reasons why the algorithms in your book as so awesome.

Most textbooks rarely focus on teaching you what doesn’t work. They focus When we have to explore on our
own, not only do we learn what
works, but we learn what doesn’t
work. Sometimes knowing what
not to do is the key.

on success only. Perhaps our entire culture puts too much emphasis on success,
and likes to forget the huge amount of knowledge that comes from our failures.
This is where inquiry based learning comes in so handy. To truly master and
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appreciate an idea, we have to struggle with it. We have to attack the idea,
struggle, fail, and then continue working. We have to learn to celebrate our
failures.

Discovery takes time. It takes effort. It can at times be frustrating. But
when you’ve struggled with an idea, failed some, and eventually crack it, there
is so much joy that can come from this endeavor. This is the joy of discovery,
and it fuels scientific research. My hope is that each of you will feel this joy
multiple times this semester.

Our course allows you to discover. You’ll be asked to try new things that
you’ve never been shown. You’ll be given a chance to try, fail, and eventually
succeed. You’ll come to class and present what you’ve done. Sometimes you’ll
be wrong, and we’ll celebrate anyway. Your errors will have helped everyone
in the class see why a certain approach does not work. Sometimes you’ll be
spot on right, and not even think you are before you share. The goal is to learn
through inquiry, and share with each other what you’ve learned.

Your Peers are A Valuable Asset

I’ve learned over the past year that your peers might be one of your most
valuable assets this semester. Every one of you comes to the course with a
different background. Some of you are algebra masters. Some of you know how
to do calculus really well, but don’t know the right words. When you meet with
peers, you’ll find that you help each other over hurdles that would otherwise
completely halt your progress. Your peers are perhaps your most valuable asset.

As you tackle problems this semester, you will get stuck at certain parts.
I’ll draw upon your knowledge from all your past classes, and almost every has
holes somewhere. Some of you will want to weather this road alone. This might
mean spending hours trying to relearn something you forgot. If you decide to
weather the road alone, and you put in the time to master each idea that we
explore, you’ll have gained way more than I could ever hope if I had lectured
and showed you the steps of how to do everything.

You don’t have to do it all alone. If you study with peers, you can help each
other over hurdles. I’ve seen time and time again where all you needed was a
peer, not a tutor, to help you continue on. We all forget things occasionally,
and our peers can be valuable assets. If you would like some suggestions about
how to improve a group meeting, please see the following page online.

http://bmw.byuimath.com/dokuwiki/doku.php?id=group study suggestions

http://bmw.byuimath.com/dokuwiki/doku.php?id=group_study_suggestions


Chapter 1

Review

After completing this chapter, you should be able to:

1. Find the differential of a function, express it as a linear combination of
partial derivatives, and then write this linear combination as the product
of a matrix (the derivative) and a vector of differentials.

2. Explain how to construct the plot of a vector field and draw trajectories
on that plot. You should also be able to locate graphically directions in
which a vector field either pushes object directly away (or pulls objects
directly towards) the origin along straight line paths.

3. Construct contour plots and gradient plots for functions of the form
z = f(x, y), and discuss the relationships between these two types of plots.

4. Use integration by substitution and/or integration by parts to find the
potential of a vector field or differential form.

5. Solve an ordinary differential equation of the form f(y)dy = g(x)dx by
computing potentials of both sides and equating them.

6. Explain how to compute the Laplace transform of a function.

There are four different threads running through this chapter. They are

• Expressing Differentials as Linear Combinations,

• Visualizing Vector Fields,

• Finding a Potential with Integration, and

• Laplace Transforms through Limits and Integration.

All four topics build towards the same end goal, understanding how to recognize
and solve differential equations. We will develop each idea in small increments
each day of class. If you get stuck on a certain type of problem, try jumping to
the next type.

We’ll use several technology links throughout the chapter. Here’s some links.

• Vector Field Plotter

• Level Curve Plotter

• Potential Calculator

• Parametric Curve Plotter

• First Order ODE Solver

1

http://bmw.byuimath.com/dokuwiki/doku.php?id=vector_field_plotter
http://bmw.byuimath.com/dokuwiki/doku.php?id=level_curve_plotter
http://bmw.byuimath.com/dokuwiki/doku.php?id=potential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=parametric_curve_plotter
http://bmw.byuimath.com/dokuwiki/doku.php?id=first_order_ode_solver


CHAPTER 1. REVIEW 2

Expressing Differentials as Linear Combinations

When Newton first invented calculus, he did not have the language of limits,
instead he used differentials. He thought of dx as a really small change in x,
and dy as a really small change in y. To compute the derivative of y = x2, he
would write

dy = (x+ dx)2 − x2 think f(x+ dx)− f(x)

= x2 + 2xdx+ (dx)2 − x2

= 2xdx+ (dx)2

Because he assumed the quantity dx is extremely small, it seems reasonable to
assume (dx)2 is so small that it can be neglected. This yields

dy = 2xdx or
dy

dx
= 2x.

We now write these two expressions symbolically to work with any function y =
f(x), by writing dy = y′dx or dy

dx = y′. The functions that the original masters

worked with were generally polynomials, so the power rule d
dx (xn) = nxn−1 was

the main rule they needed, which is quite simple to develop with differentials.
It’s not until almost 100 years after Newton’s time that the limit, as we see it
today, was invented.

One nice part about the approach of differentials is that the notion extends
to higher dimensions almost instantly. Multivariable calculus looks the same as
first semester calculus. Try the next problem.

Problem 1.1 Consider the equation z = x2 + xy+ y2 which we would write
today in function notation as f(x, y) = x2 + xy + y2.

1. Compute f(x + dx, y + dy) − f(x, y), and use your result to obtain a If you didn’t read the two
paragraphs before this problem,
please do so now. It provides
some background that will help
you complete this problem.
In general, you’ll want to read the
material in between problems, as
that’s where definitions, context,
and hints will lie.

formula for dz. If you encounter the product of two differentials, you
should assume that product is so small that it can be ignored.

2. Compute the partial derivatives
∂f

∂x
and

∂f

∂y
. Where do these partial

derivatives show up in your formula for dz?

3. If the function were instead f(x, y) = xy2 + sin(xy), use the idea from
part 2 to rapidly compute dz.

4. Organize your work above to give a general formula that would tell you
dz for any function f(x, y). It should be in terms of the partials fx, fy
and the differentials dx, dy.

The same rules apply when we study a change of coordinates.

Problem 1.2 Recall the equations for polar coordinates are x = r cos θ and
y = r sin θ. We can use these to figure out x and y if we know r and θ. Can we
compute dx and dy if we know dr and dθ? In other words, you measure a force
to have angle θ + dθ and to have magnitude r + dr, where the dθ and dr are
your possible errors. How much error will dr and dθ introduce when we then
compute the x and y components? To answer this, complete the following:

1. We know x = r cos θ. Use this to obtain dx =?dr+?dθ. Obtain a similar
expression for dy. Write your two expressions in the vector form(

dx
dy

)
=

(
?
?

)
dr +

(
?
?

)
dθ.

This is precisely the formula we are after.
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2. We can write the change of coordinates as the function

(x, y) = ~T (r, θ) = (r cos θ, r sin θ).

Compute the partials of ~T with respect to r and θ. How are these connected
to your previous result? What is d~T (you’ve already computed it)?

3. Let’s now consider a different function, such as (x, y, z) = (3u+ 4v, 2u−
5v, uv). Using function notation we’d write this as ~r(u, v) = (3u+ 4v, 2u−
5v, uv). Compute the partials of ~r with respect to u and v, and then use
them to state the differential d~r.

Have you noticed in all the problems above that we are taking partial
derivatives, multiplying them by scalars, and then summing the results. This
occurs so often in so many different settings that mathematicians have given it
a name. We could just keep saying, “Take the things you have, multiply each
by a scalar, and then sum the result,” or we could invent a word that says to do
all this. We’ll eventually start saying, “Form a linear combination.” Let’s make
a formal definition.

Definition 1.1: Linear Combination. Given n vectors ~v1, ~v2, · · · , ~vn and n Every time we introduce new
words in this problem set, they’ll
show up as a definition. Look for
the bold definitions. If you are not
sure what a word means, use the
search feature of your PDF viewer
to hunt down the definition.

scalars c1, c2, · · · , cn their linear combination is the sum

c1~v1 + c2~v2 + · · ·+ cn~vn.

Given n functions f1, f2, · · · , fn and n scalars c1, c2, · · · , cn their linear
combination is the sum

c1f1 + c2f2 + · · ·+ cnfn.

In general, if we have n objects o1, o2, · · · , on where it makes sense to multiply
each by a scalar ci and then add them, then their linear combination is precisely

c1o1 + c2o2 + · · ·+ cnon.

Visualizing Vector Fields

Now that we’ve got a new definition, we need to practice using it. Let’s practice
using the definition of linear combination as we review the concept of a vector
field. Remember that to draw a vector field, you should draw the vector ~F (x, y)
with its base at the point (x, y). Please use the technology link on the side Did you know that as a

BYU-Idaho student you can
download and install Mathematica
on your personal computer for
free? See I-Learn for details.

below to check your work with technology. Throughout the semester, I’ll give
you technology links where you’ll have access to live Sage code that you can run
directly in the web browser. I’ll also provide Mathematica code and sometimes
links to Mathematica notebooks.

Problem 1.3 Consider the vector field ~F (x, y) = (x+ 2y, 2x+ y).

1. Construct by hand a plot of this vector field by plotting the field at the
8 points around the origin given by (±1, 0), (0,±1), (±1,±1), (±1,∓1).

Remember, draw the vector ~F (x, y) with its base at (x, y), so at the point

(1, 0), you should draw the vector ~F (1, 0) = (1, 2). Then use software to Follow this link to a vector field
plotter.construct a plot of this field and print your plot to share with the class.

2. Are there any directions in which the vector field pushes things either
straight out or straight in? Which directions? Explain how you know this.

http://sagemath.org/
http://bmw.byuimath.com/dokuwiki/doku.php?id=vector_field_plotter
http://bmw.byuimath.com/dokuwiki/doku.php?id=vector_field_plotter
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3. Write the vector field as a linear combination of two vectors ~v1 and ~v2
with scalars x and y, by writing

~F (x, y) = ~v1x+ ~v2y =

( )
x+

( )
y.

If you’ve forgotten the dot product, then please complete the following review
problem. When you see a review problem in the problem set, the solution will
always appear as a footnote on the page. These problems are there to help you
quickly remember a concept that you may have forgotten.

Review Compute the dot product of the vectors (1, 2, 3) and (4, 5, 6). Then

compute the dot product of ~a = (a1, a2, . . . , an) and ~b = (b1, b2, . . . , bn). See 1

This next problem connects differentials to vector fields and the gradient.

Problem 1.4 Consider the function z = f(x, y) = x2 − y.

1. Compute the differential dz. Then write the differential as the dot product
dz = (M,N) · (dx, dy). Your job is to tell the class what the functions M
and N are. You will show that differential dz is a linear combination of
functions M and N using the scalar dx and dy.

2. The function ~F (x, y) = (M,N) is a vector field. You’ve called it the Link to vector field plotter

gradient ∇f and/or the derivative Df of f . Draw this vector field by
plotting several points by hand, and then use software to obtain a nice
plot of the field.

3. Draw several level curves of the function by drawing f(x, y) = −1, f(x, y) = Link to level curve plotter.

0, and f(x, y) = 4.

4. Now put your level curve plot and vector field plot on the same set of axes. You can check all your work with
the link to level curve plotter.What relationships exist between the level curves and the vector field?

Finding a Potential with Integration

We have been starting with a function that I gave you, and then from that
function computing differentials and vector fields. We’ve seen that if z = f(x, y),
then the differential is dz = fxdx + fydy and the corresponding vector field

(called the gradient and/or the derivative) is ~∇f = (fx, fy). In this course, one
of main goals will be to look at a vector field and then from the vector field
produce a function that would have given us this field. We can see and measure
vector fields in nature (as one example, think about weather).

As you work on the two problems below, you’ll need to review integration
by substitution and integration by parts. These two methods of integration are
so crucial to the development of further mathematical concepts, that it’s worth
our time to practice these ideas on example problems.

Problem 1.5 For each differential below, find a function f(x, y) whose Follow this link to a potential
calculator in Sage to help you
check your integration.

1 The dot product is

(1, 2, 3) · (4, 5, 6) = 1 · 4 + 2 · 5 + 3 · 6 = 4 + 10 + 18 = 32.

You can think of this as a linear combination of the elements in (1, 2, 3), where we use the
scalars in (4, 5, 6) to form the linear combination.

The dot product of ~a = (a1, a2, . . . , an) and ~b = (b1, b2, . . . , bn) is

~a = (a1, a2, . . . , an) ·~b = (b1, b2, . . . , bn) = a1b1 + a2b2 + · · ·+ anbn.

http://bmw.byuimath.com/dokuwiki/doku.php?id=vector_field_plotter
http://bmw.byuimath.com/dokuwiki/doku.php?id=level_curve_plotter
http://bmw.byuimath.com/dokuwiki/doku.php?id=level_curve_plotter
http://bmw.byuimath.com/dokuwiki/doku.php?id=potential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=potential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=potential_calculator
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differential is given. You know you are correct if, after computing the differential,
you get the the same result. We call this function f(x, y) a potential.

1. e2xdx+ y cos(y2)dy

2. (2x+ 3y)dx+ (3x+ sin(2y))dy

3.

(
x

1 + x2
+ arctan(y)

)
dx+

(
x

1 + y2
+

y√
1 + y2

)
dy

Hint: This is really a question that asks you to review integration by substitution.

Problem 1.6 For each differential below, find a function f(x, y) whose
differential or gradient is given. Remember that we call f a potential for the
differential, or a potential for the vector field.

1. (x sin(5x)) dx+ (1) dy

2.
(
x+ y, x+ y2 sin(5y)

)
Hint: This is really a question that asks you to review integration by parts. Check your work with the

potential calculator. Follow this
link.

Tabular integration by parts may help.

In this review unit, you’ll find that many of the problems ask you to practice
integration. You’ll need those integration skills as the semester progresses.
Learning to model the world around us and predict the future requires that
we find a potential from a vector field. We can see and measure vector fields
in the world around us. They appear as wind or magnetic forces that we can
physically see and measure. Finding a potential for these fields is one of the
keys to modeling the world around us.

Laplace Transforms through Limits and Integration

We now turn to a slightly different topic. By the end of the chapter, this
topic will connect with all the ideas above. This section will introduce the
Laplace transform. We first need to review some facts about limits and improper
integrals.

Review: L’Hopital’s rule Compute the following limits.

1. lim
x→∞

4x+ 7

e3x
(Use L’Hopital’s rule.)

2. lim
x→∞

4x2 + 3x+ 7

3x2 + x+ 15
(Try dividing both the numerator and denominator by

x2.)

See 2 for an answer.

2 L’Hopital’s rule states that if limx→∞
f(x)
g(x)

is of the indeterminate form 0/0 or ∞/∞,

then you can compute the limit (under reasonable conditions) by using the formula

lim
x→∞

f(x)

g(x)
= lim
x→∞

f ′(x)

g′(x)
.

In the first problem we have f(x) = 4x + 7 and g(x) = e3x, both of which approach ∞ as
x→∞. L’Hopital’s rule gives

lim
x→∞

4x+ 7

e3x
= lim
x→∞

4

3e3x
=

4

∞
= 0.

http://bmw.byuimath.com/dokuwiki/doku.php?id=potential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=potential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=potential_calculator
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Problem 1.7 Which function grows more rapidly, the polynomial function
xn or the exponential function eax? Is there a value of n for which the function
xn grows faster, in the long run, than the exponential function. To answer this,
please complete the following questions. In all your work below, you may assume
that a is a positive constant.

• Use L’Hopital’s rule to compute lim
x→∞

x

eax
, lim
x→∞

x2

eax
, and lim

x→∞

x3

eax
.

• What is the tenth derivative of x10 and eax? Use this, together with

L’Hopital’s rule, to compute lim
x→∞

x10

eax
.

• What is the nth derivative of xn and eax? Use this, together with

L’Hopital’s rule, to compute lim
x→∞

xn

eax
.

• Is there a power of n for which xn grows faster than eax? Use your answer

to quickly compute lim
x→∞

8x7 + 5x2 − 3x+ 12

e2x
.

Problem 1.8 On this problem, your job is to compute
∫∞
1

1
xn dx. Please do

the following:

1. Compute the integrals

∫ 10

1

1

x2
dx and

∫ 100

1

1

x2
dx. Then compute lim

b→∞

∫ b

1

1

x2
dx.

2. Compute the integrals

∫ 10

1

1

x
dx and

∫ 100

1

1

x
dx. Then compute

∫ ∞
1

1

x
dx,

which is just shorthand for lim
b→∞

∫ b

1

1

x
dx.

3. Compute

∫ b

0

e2xdx and

∫ b

0

e−2xdx. For each, state the limit as b→∞.

In the problem above, some of the integrals had a limit as the bounds
approached infinity, and some of them did not. Those which had finite limits,
we say converge. The others diverge.

Definition 1.2: Improper integrals Converge/Diverge. Suppose that the

integral
∫ b
a
f(x)dx exists for every b > a. The improper integral

∫∞
a
f(x)dx is

said to converge if the limit lim
b→∞

∫ b

a

f(x)dx is finite. If the limit does not exist,

or the limit is infinite, then we say the improper integral diverges.

We are now prepared to define the Laplace transform, and use the definition
to compute the Laplace transform for a few basic functions.

Definition 1.3: The Laplace Transform. Let f(t) be a function that is
defined for all t ≥ 0. Using the function f(t), we define the Laplace transform
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of f to be a new function F where for each s we obtain the value F (s) by
computing the integral Note that the Laplace transform

of a function with independent
variable t is another function with
a different independent variable s.
After integration, all t’s will be
removed from F (s). You can of
course use any other letters
besides t and s.

F (s) = L {f(t)} =

∫ ∞
0

e−stf(t)dt = lim
b→∞

∫ b

0

e−stf(t)dt.

The domain of F is the set of all s such that the improper integral above has a
finite limit. The function f(t) is called the inverse Laplace transform of F (s),
and we write f(t) = L −1(F (s)).

We will use the Laplace transform throughout the semester to help us solve
many problems related to mechanical systems, electrical networks, and more.
The mechanical and electrical engineers in this course will use Laplace transforms
in many future courses. Our goal in the problems that follow is to practice
integration-by-parts. As an extra bonus, we’ll learn the Laplace transforms of
some basic functions, and at the end of this chapter connect them to the other
ideas.

Problem 1.9 Compute the improper definite integral

∫ ∞
0

e−stdt and state

the values s for which the integral converges (results in a finite limit). Now
compute the the Laplace transform of f(t) = 1. (If the previous instruction
seems redundant, then horray.) What is the Laplace transform of f(t) = c, a
constant function? (Note, this is the same as asking, “What is the Laplace
transform of a linear combination of 1?”)

Problem 1.10 Compute the Laplace transform of f(t) = e2t, and state
the domain. Then compute the Laplace transform of f(t) = e3t and state the
domain. Generalize your work to state the Laplace transform of f(t) = eat for
any constant a, and state the domain. What is the Laplace transform of ceat

where a and c are constants? (Note, this is the same as asking, “What is the
Laplace transform of a linear combination of eat?”)

Problem 1.11 Suppose s > 0 and n is a positive integer. Explain why

lim
t→∞

tn

est
= 0.

Then use this fact to prove that the Laplace transform of t2 is

L {t2} =
2

s3
.

[Hint: You’ll need to do integration-by-parts twice. Try the tabular method.]

We’ll come back to Laplace transforms later.

We could also use L’Hopital’s rule on the second example. Taking derivatives of the top
and bottom still results in an ∞/∞ limit, so taking derivatives again yields 4/3. Alternately,
recall that xn → 0 if n < 0, which means we can write

lim
x→∞

4x2 + 3x+ 7

3x2 + x+ 15
= lim
x→∞

(4x2 + 3x+ 7)/x2

(3x2 + x+ 15)x2
= lim
x→∞

4 + 3/x+ 7/x2

3 + 1/x+ 15x2
=

4 + 0 + 0

3 + 0 + 0
.
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Expressing Differentials as Linear Combinations

It’s time to review some facts about the connection between level curves, gradi-
ents, and differentials.

Problem 1.12 Consider the parametric curve given by x = cos t, y = 2 sin t.

1. There are many ways to draw this curve. Please construct a graph of x
versus t, then a graph of y versus t, then a graph of y versus x, and then
a 3D graph in xyt space. You should have 4 different graphs.

2. Show that this curve is a level curve of the function f(x, y) = 4x2 + y2. Recall that a level curve of a
function z = f(x, y) is a curve
such that the output f(x, y) is the
same for every point (x, y) on the
curve.

[Hint: plug the equations for x and y into this curve, and see if you get a
constant.] What is f(x, y) at points along this curve?

3. Compute the differential dz of z = 4x2 +y2. Then compute the differential(
dx
dy

)
of the curve

(
x
y

)
=

(
cos t

2 sin t

)
.

4. If we require that we stay on the level curve x = cos t, y = 2 sin t, then
show that dz = 0 when we replace x, y, dx, dy with what they equal in
dz = fxdx+ fydy. Can you explain in general why dz = 0 when we are
on a level curve?

The trigonometric functions allow us to parameterize circles and ellipses. As
the semester progresses, we’ll need the functions

coshx =
ex + e−x

2
and sinhx =

ex − e−x

2
.

These functions are the hyperbolic trig functions, and we say the hyperbolic
sine of x when we write sinhx. These functions are very similar to sine and
cosine functions, and have very similarly properties.

Problem 1.13 Consider the curve given by x = cosh t and y = sinh t.

1. Compute x(0) = cosh(0) and y(0) = sinh(0). Their definitions are in the
text before this problem. Make sure you read the text between problems.

2. Construct, using technology, a graph of x versus t, a graph of y versus t,
and a graph of y versus x. Please use technology.

3. Show that cosh2 t − sinh2 t = 1, which shows that the curve lies on the Hint: Start by using the
definitions above to rewrite each
function in terms of exponentials.
Then square each, expand, and
subtract them. After a little
algebra, you should get the result.

hyperbola x2 − y2 = 1.

Problem 1.14 Again, consider the curve given by x = cosh t and y = sinh t.

1. Use the definition of cosh t and sinh t (in terms of exponentials) to show
that show that d

dt cosh t = sinh t and d
dt sinh t = cosh t. [Hint: Rewrite

cosh t and sinh t in terms of exponentials and then differentiate.]

2. Let f(x, y) = x2 − y2. Compute the gradient of f , namely compute
∇f(x, y) = (fx, fy) = (?, ?). Then evaluate the gradient at points along
the curve, by stating ∇f(x(t), y(t)) (so replace each x and y with what it
equals in terms of t).

3. Compute the dot product of ∇f(x, y) and (dx, dy), and then simplify.
Use your result to state the angle between the gradient ∇f(x, y) and the
tangent vector (dx, dy) at points along this level curve. (This question has
an answer regardless of the curve, and regardless of the function.)
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Visualizing Vector Fields

You’ve been using the derivative for at least a year to find the slope of a function.
Because the derivative tells us slope, it tells us how a function moves. This
means that we can use the derivative to produce a vector field.

Problem 1.15 Consider the derivative y′ = 2x.

1. Give 2 different functions y(x) so that y′ = 2x. There are infinitely many
right answers. Of those infinitely many, which one satisfies y(0) = −4?

2. Explain why writing

(
dx
dy

)
=

(
1

2x

)
dx is equivalent to writing y′ = 2x.

This gives us the vector field ~F (x, y) = (1, 2x). Construct a plot of this
vector field, and add to your plot the graph of several of your curves from
the first part.

3. Since y′ = 2x or alternately dy = 2xdx, we could also write

0 = 2xdx+ (−1)dy = (2x,−1) · (dx, dy).

This gives us another vector field ~G(x, y) = (2x,−1). Construct a plot of
this vector field, and add to your plot the graph of several of your curves
from the first part. Find a potential of this vector field.

In the previous problem, you solved your first differential equations. A
differential equation is an equation which involves derivatives (of any order)
of some function. For example, the equation y′′ + xy′ + sin(xy) = xy2 is a
differential equation, where the function y depends on the variable x. Here’s
some formal definitions that we’ll master as the semester progresses.

Definition 1.4: Differential Equation. A differential equation is an equation
which involves derivatives (of any order) of some function.

• An ordinary differential equation (ODE) is a differential equation
involving an unknown function y which depends on only one independent
variable (often x or t).

• A partial differential equation involves an unknown function y that depends
on more than one variable (such as y(x, t)).

• The order of an ODE is the order of the highest derivative in the ODE.

• A solution to an ODE on an interval (a, b) is a function y(x) which satisfies
the ODE on (a, b).

• Typically a solution to an ODE involves an arbitrary constant C. There is
often an entire family of curves which satisfy a differential equation, and
the constant C just tells us which curve to pick. A general solution of
an ODE is an infinite collection of solutions which gives all solutions of
the ODE. A particular solution is one of the infinitely many solutions
of an ODE.

• An implicit solution to an ODE is an equation that relates the solution
and the independent variable.

• Often an ODE comes with an initial condition y(x0) = y0 for some
values x0 and y0. We can use these initial conditions to find a particular
solution of the ODE. An ODE, together with an initial condition, is called
an initial value problem (IVP).
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Here’s a quick example of the proper use of the vocabulary above.

Example 1.5. The first order ODE y′(x) = 2x, or just y′ = 2x, has unknown
function y with independent variable x. A general solution on (−∞,∞) is the
collection of functions y = x2 + C for any constant C. An implicit solution to
this ODE is D = x2 − y for any constant D (we didn’t solve for y).

If y′ = 2x and y(2) = 1, then we have an initial value problem problem
(IVP). Using y = x2 + C, we know since y = 1 when x = 2 that 1 = 22 + C
which means C = −3. Hence the solution to our IVP is y = x2 − 3.

Problem 1.16 Consider the differential equation y2y′ = x3, which we can
rewrite in differential form as y2dy = x3dx.

1. Find a potential of both sides of y2dy = x3dx. Use your answer to give an
implicit solution to y2y′ = x3. How would you obtain all solutions? What
solution passes through (1, 1)?

2. We can rewrite y2dy = x3dx as 0 = −x3dx+ y2dy = Mdx+Ndy. This
gives us a vector field ~F (x, y) = (−x3, y2). Find a potential of this vector
field and use that potential to give an implicit solution to the ODE
y2y′ = x3. Compare this to the first part.

Finding a Potential with Integration

Finding the potential of a vector field is one of the key methods needed to solve
differential equations. Remember, you can check any answer with software by
using the potential calculator in Sage.

Problem 1.17 Consider the IVP y′ =
t2 − 1

y4 + 1
with y(0) = 1.

1. Rewrite the ODE in the differential form f(y)dy = g(t)dt. What are f(y) Get all the y’s on one side, and all
the t’s on the other. We’ll call this
“separation of variables.”

and g(t)?

2. Find a potential for both sides, and state an implicit general solution to

y′ =
t2 − 1

y4 + 1
.

3. Use the initial condition to solve the IVP. You may leave your answer in
implicit form.

Problem 1.18 Consider the IVP
dy

dt
= ry with y(0) = P where r and P

are constants. Feel free to use r = 5 and P = 7 throughout the problem, if you
would rather work with numbers.

1. If we write dy = rydt, why is there no potential for the right hand side?

2. Rewrite the ODE in the differential form f(y)dy = g(t)dt. What are f(y)
and g(t)?

3. Find a potential for both sides, and state a general solution to y′ = ry.

4. Use the initial condition to solve the IVP. Make sure you solve for y.
Where have you seen this solution before?

http://bmw.byuimath.com/dokuwiki/doku.php?id=potential_calculator
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Laplace Transforms through Limits and Integration

Let’s now return to Laplace transforms. We have already shown that

L {1} =
1

s
for s > 0

L {eat} =
1

s− a
for s > a, and

L {t2} =
2

s3
for s > 0.

Let’s now add a few more facts to our list of Laplace transforms.

Problem 1.19 Show that the Laplace transform of t is L {t1} =
1

s2
. Then

compute the Laplace transforms of t3, t4, and so on until you see a pattern.
Use this pattern to state the Laplace transform of t10 and tn, provided n is a
positive integer. [Hint: Try the tabular method of integration-by-parts. After
evaluating at 0 and ∞, all terms but one should be zero.]

Theorem 1.6 (The Laplace transform of a linear combination). Since integra-
tion can be done term-by-term, and constants can be pulled out of the integral,
we have the crucial fact that

L {af(t) + bg(t)} = aL {f(t)}+ bL {g(t)}

for functions f, g and constants a, b.

Problem The theorem above can be written in terms of linear combinations.
We could have instead said that the Laplace transform of a linear combination
of functions is the linear combination of the Laplace transform of each function.

You’ve seen this idea before in many settings, but perhaps never with these
words. The operation is a familiar one that you have used many times in your
past. If you perform an operation on a linear combination of objects, when is it
the same as the linear combination of performing the operation on each object
individually.

Can you think other instances when an operation applied to a linear combi-
nation of things is the same as the linear combination of the operation applied
to each thing? What is the operation. What are the things. Please volunteer to
share your answers in class.

Problem 1.20 Without integrating, rather using Theorem 1.6 above, com-
pute the Laplace transform L {3 + 5t2 − 6e8t}. State the values of s for which
this is valid (i.e. the domain of the transformed function).

For the functions t3, 2t, and 1
2e

5t with constants c1, c2, and c3, state the
Laplace transform of the linear combination c1t

3 + c22t+ c3
1
2e

5t.

Problem 1.21 Recall that cosh t =
et + e−t

2
and sinh t =

et − e−t

2
. Use

this to prove that

L {cosh at} =
s

s2 − a2
and L {sinh at} =

a

s2 − a2
.

You can do this problem by using facts about the transform of eat, and the fact
that cosh at and sinh at are linear combinations of exponential functions.
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Expressing Differentials as Linear Combinations

We saw in the previous section that the Laplace transform of a linear combination
of functions can be done if we know the Laplace transform of each function (see
Theorem 1.6 and problems 1.20 and 1.21). We’ve also seen that the differential
of a function is a linear combination of the partials derivatives (see problem
1.2). We’ve also written a few vector fields as a linear combination of constant
vectors (see problem 1.3).

When we want to solve an ODE, we can write the ODE in the differential form
Mdx+Ndy = 0, which we write using the dot product as (M,N) · (dx, dy) = 0.
The scalars dx and dy are the numbers needed to create a linear combination
of M and N that equals zero. If M and N are vectors, we can still write
( ~M, ~N) · (dx, dy) = Mdx + Ndy, which is a linear combination of the vectors.
This gives us matrix multiplication.

Definition 1.7: The Product A~x of a Matrix A and a vector ~x. Suppose
that A =

[
~v1 ~v2 · · · ~vn

]
is an ordered collection of n vectors of the same

size (which we’ll call a matrix). Let ~x = (x1, x2, . . . , xn) be a vector of scalars.
We define the product of a matrix A and a vector ~x to be the linear combination

A~x =
[
~v1 ~v2 · · · ~vn

]

x1
x2
...
xn

 = x1~v1 + x2~v2 + · · ·+ xn~vn =

n∑
i=1

xi~vi.

With the definition of matrix multiplication above, we can now write dif-
ferentials in terms of matrix multiplication. Let’s practice this in the next
problem.

Problem 1.22 Consider the vectors

~v1 =


1
2
3
0

 , ~v2 =


2
3
−1
1

 , ~v3 =


0
0
2
−2

 , ~x =

−2
1
4

 .

1. Compute the linear combination of the vectors ~v1, ~v2, and ~v3 using the
scalars in ~x.

2. Consider the matrix A =
[
~v1 ~v2 ~v3

]
and compute the matrix product

A~x =


1
2
3
0

2
3
−1
1

0
0
2
−2


−2

1
4

 .
3. Rewrite the vector quantity

~v =

−2x+ 3y + 4z
x− y

2y + 3z


as the linear combination ~v = x~v1 + y~v2 + z~v3. What are ~v1, ~v2, and ~v3.

4. Then express ~v as the product ~v = A

xy
z

 . What is the matrix A? You know you are correct if after
multiplying your expression out
you obtain ~v.
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Problem 1.23 Consider the function

xy
z

 =

3s+ 2t
s− 4t
st

.

1. Compute the differentials dx, dy, and dz. Write your answer as a vectordxdy
dz

 =

?
?
?

 .

2. Write the the previous vector as the linear combinationdxdy
dz

 =

?
?
?

 ds+

?
?
?

 dt.

3. Rewrite the previous part as a matrix A times

(
ds
dt

)
. You should have a

matrix A so that dxdy
dz

 = A

(
ds
dt

)
.

In particular, how many rows and how many columns are in A?

Let’s now examine how we can use matrices to rewrite some of the differential
problems we encountered earlier in the chapter.

Example 1.8. For the function z = x2 + xy + y2, we computed the differential
to be

dz = (2x+ y)dx+ (x+ 2y)dy

=
[
2x+ y x+ 2y

] [dx
dy

]
.

Do you see how the last step went from a linear combination to a matrix product?
For the polar coordinate transformation ~T (r, θ) = (r cos θ, r sin θ), we com-

puted the differential to be

d~T =

(
cos θ
sin θ

)
dr +

(
−r sin θ
r cos θ

)
dθ

=

[
cos θ
sin θ

−r sin θ
r cos θ

] [
dr
dθ

]
.

Again, the last step was a conversion from a linear combination to a matrix
product.

The key above is the conversion from a linear combination to the product
of a matrix and a vector of differentials. This matrix has as its columns the
partial derivatives of the function. We call this matrix the derivative or the
total derivative.

The derivative is one of the most immediate applications of matrices. Just
think of a matrix as bunch of partial derivatives placed side by side in columns.
Each column of the matrix is a partial derivative, so if there are 3 different input
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Function Derivative

f(x) = x2 Df(x) = [2x]

~r(t) = (3 cos(t), 2 sin(t)) D~r(t) =

[
−3 sin t
2 cos t

]

~r(t) = (cos(t), sin(t), t) D~r(t) =

− sin t
cos t

1


f(x, y) = 9− x2 − y2 Df(x, y) = ~∇f(x, y) = [−2x −2y]

f(x, y, z) = x2 + y + xz2 Df(x, y, z) = ~∇f(x, y, z) =
[
2x+ z2 1 2xz

]
~F (x, y) = (−y, x) D~F (x, y) =

[
0 −1
1 0

]

~F (r, θ, z) = (r cos θ, r sin θ, z) D~F (r, θ, z) =

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1


~r(u, v) = (u, v, 9− u2 − v2) D~r(u, v) =

 1 0
0 1
−2u −2v



Table 1.1: The table above shows the (matrix) derivative of various functions.
Each column of the matrix corresponds a partial derivative of the function.
When the output of a function is a vector, partial derivatives are vectors which
are placed in columns of the matrix. The order of the columns matches the
order in which you list the variables.

variables, there will be three columns. If the output is vectors of size 2, then
matrix will have 2 rows.

Some examples of functions and their derivatives Df appear in Table 1.1.
When the output dimension is one, the matrix has only one row and we often
just call Df the gradient of f and write ~∇f instead of Df . Both are acceptable.

In multivariate calculus, we focused our time on learning to graph, differen-
tiate, and analyze each of the types of functions in the table above. We’ve been
reviewing most of this throughout this chapter. Let’s now practice one more
problem where we get the total derivative from the differential.

Problem 1.24 In each problem below, find the differential of the function See Example 1.8 if you have not
already.(writing it as a linear combination of the partial derivatives). Then write the

differential as the product of a matrix (the total derivative) and a vector of
differentials.

1. f(x, y, z) = xy2 + z3

2. ~r(t) = (3 cos t, 2 sin t, t)

3. ~r(u, v) = (u+ 3v, 2u− v, uv)

4. ~F (x, y, z) = (x+ 3y, 2x− z, y + 4z)

Have you noticed that sometimes I write the function with a vector above
it, and sometimes I do not? Feel free to ask why in class. Curiosity is a great
thing. Please ask questions. There’s always a reason why.
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Visualizing Vector Fields

Problem 1.25 Let A be the matrix A =

[
1 −1
−2 0

]
. We’ll be analyzing the

vector field given by the matrix product ~F (x, y) = A

[
x
y

]
.

1. Compute the matrix product A

[
x
y

]
by considering linear combinations.

Show how you used linear combinations of the columns of A. Then expand
and simplify your work till you obtain ~F (x, y) = (M,N) where M = x− y
and N = −2x.

2. Use the vector field plotter in Sage (follow the link) to obtain and print a
plot of this field. There is a line through the origin along which the field
pushes objects directly outwards away from the origin. On your printed
plot, draw this line.

3. There is another line through the origin along which the field pulls objects
directly inward toward the origin. On your printed plot, draw this line.

4. If you were to drop an object in this field at the point (2, 0), and allowed
the object to move with the field, draw an approximation of the object’s
path on your print out. Then draw additional paths if you had instead
dropped the object at the points (−2, 0), (0,±2), and a few more points
of your choosing.

The curves you just drew are called trajectories and/or flow lines (even
though they are not straight lines). We’ll learn how to find the equations of
these trajectories as part of our course. We can often visualize vector fields in
nature by studying movement and forces. We’ll eventually know how to predict
exactly the path of an object that moves through a vector field. This gives us
the power to predict the future.

Finding a Potential with Integration

Problem 1.26 For each matrix below, find a function that has this matrix
as its derivative. Remember, the derivative of a function is a matrix whose
columns are the partial derivatives.

1.
[
2x+ 3yz 3xz 3xy + sin(z)ecos z+3

]
2.

 2 3
2uv u2

sec2 u
cos v

1 + sin v


When we want to solve a differential equation such as y′ = 3y, we’ve started

by writing it in the differential form dy = 3ydx. The left hand side of this
function has a potential, but the right hand side does not. If we divide both
sides by y, then we have the expression 1

ydy = 3dx. Now both sides have a
potential, and we can quickly find a potential of both sides to get an implicit
general solution of ln |y| = 3x+ C.

http://bmw.byuimath.com/dokuwiki/doku.php?id=vector_field_plotter
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Alternately, we could have subtracted 3dx from both sides. This gives us
−3xdx+ 1

ydy = 0. When we write the differential equation in this form, we can
use matrices to understand the problem. We can write

0 = −3xdx+
1

y
dy =

[
−3x 1

y

] [dx
dy

]
To solve the ODE, we just have to find the potential of the vector field

[
−3x 1

y

]
.

Because the dot product of the field and (dx, dy) is zero, we know the solution
(x, y) must be a level curve of the potential. So we find the potential and make
it equal a constant.

To solve first order ODEs, the key is to find a potential. Not every vector
field has a potential. The next problem has you review when a vector field does.

Problem 1.27: Test for a potential Suppose we have a differential equa-

tion that we write in the form M(x, y)dx + N(x.y)dy = 0 (as done in the

paragraph above). Our goal is to determine if the vector field ~F (x, y) =
( M(x, y), N(x, y) ) has a potential.

1. The derivative of a function f(x, y) is the matrix Df(x, y) =
[
fx fy

]
.

The second derivative of this function, and the derivative of ~F are

D2f(x, y) =

[
fxx fxy
fyx fyy

]
D~F (x, y) =

[
Mx My

Nx Ny

]
.

What relationship must exist among the partial derivatives of M and N if
~F has a potential? (Two of them must be equal? Which two, and why?)

2. Suppose now that ~F (x, y, z) = ( M(x, y, z), N(x, y, z), P (x, y, z) ) is a

vector field in space, and that ~F has a potential f . Compute the second
derivative of f and the derivative of ~F , and use your result to explain
which pairs of partial derivatives of M , N , and P must be equal.

3. (Optional) If you remember learning about the curl of a vector field, then
what is the curl of a vector field that has a potential?

Problem 1.28 Which vector fields, or differential forms, below have a po-
tential? First use the test for a potential to determine this. If it has a potential,
find it.

1. ~F (x, y, z) = (2x+ 3y + 4z, 3x+ 5z, 5y + z2)

2. (2t+ 3x+ 4y)dt+ (3t+ 5y)dx+ (4t+ 5x+ y2)dy

3. ~F (x, y) =

(
1

x(lnx)2
, arctan y

)
The first two parts are just a quick check of understanding. The last one asks
you to practice integration by substitution and integration by parts.

We’ve been solving differential equations by finding potentials. However,
not every vector field has a potential. Sometimes a carefully chosen linear
combination of the field may have a potential. For example, when we solved
y′ = 5y, we were able to write the ODE in the form dy = 5ydx or −5ydx+dy = 0.
While this differential form does not have a potential (check this), after we
multiply both sides by 1

y , we obtained the equation −5dx+ 1
ydy = 0. The linear

combination 1
y (−5ydx+ dy) has a potential, namely −5x+ ln |y|. An implicit

solution to the ODE is −5x+ ln |y| = C.
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Problem 1.29 Solve each ODE by finding a potential.

1. Consider the ODE y′ = 4xy. Write this in the form Mdx+Ndy = 0. If If you didn’t read the paragraph
before this problem, you might
want to. It shows you an example
quite similar to this one.

you multiply both sides by 1
y , you should be able to find a potential. Use

the potential to state a general solution to the ODE y′ = 4xy. Make sure
you solve for y.

2. Consider the ODE y′ = f(x)g(y) (so any ODE where you can separate After you finish this, see page 21
in Schaums.things as the product of a function involving x and a function involving

y). After writing the ODE in the form Mdx+Ndy = 0, what should you
multiply by so that you can find a potential. Use the test for a potential
to show that a potential exists.

The process you developed in the previous problem is called “Separation of
Variables.” The goal is to write the ODE in the form M(x)dx + N(y)dy, as
then you can find a potential to solve the ODE.

Problem 1.30 Solve each ODE below by first writing the ODE in the form You’ll find lots of practice of this
idea in Chapter 4 of Schaum’s.M(x)dx + N(y)dy = 0. Give an implicit general solution. If there are initial

conditions given, us them to find a particular solution to the ODE.

1. Solve the ODE y′ =
xex

2y
.

2. Solve the ODE y′ = 2 + 3y, y(0) = 5.

3. Solve the ODE (tanx)y′ = cos2 y, y(−π/6) = 0.

Hint: After you separate variables, you’ll either need integration by substitution,
or by parts, to complete each piece. You can use the First Order ODE Solver in
Sage to check your work.

Laplace Transforms through Limits and Integration

Let’s now show the real reason why we care about Laplace transforms. The next In the next chapter, you’ll see
where the formula for Laplace
transforms comes from. It shows
up when we use potentials to solve
an ODE. The power behind the
Laplace transform is that it can
greatly simplify the work needed
to solve a differential equation.

theorem allows us to take the Laplace transform of a derivative, which turns a
differential equation into an algebraic equations.

Theorem 1.9 (The Laplace Transform of a Derivative). Suppose that y(t) is

a differentiable function defined on [0,∞) such that lim
t→∞

y(t)

est
= 0 for some s.

We say that y(t) does not grow faster than some exponential, as the function est

grows faster that y(t) (otherwise the limit would not be zero). If this is the case,
then the Laplace transform of y′ is

L {y′(t)} = sL {y(t)} − y(0) = sY − y(0),

where Y is the Laplace transform of y.

Problem 1.31 Prove the previous theorem. In other words, show that
L {y′(t)} = sL {y(t)} − y(0) = sY − y(0). [Hint, use integration by parts once,
and don’t forget to use the bounds. The result should fall out immediately.]

Let’s now use Theorem 1.9 to solve an ODEs. This first example shows the
power behind this method.

http://bmw.byuimath.com/dokuwiki/doku.php?id=first_order_ode_solver
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Problem 1.32 Consider the IVP y′ = 7y, y(0) = 5.

1. Apply the Laplace transform to both sides of y′ = 7y. You should have an
equation involving Y . Remember that Y is the Laplace transform of y(t),
so you should obtain L (7y) = 7L (y) = 7Y when computing the Laplace
transform of the right hand side.

2. Solve for Y and show that Y =
5

s− 7
.

3. Find the inverse Laplace transform of both sides. In other words, find
a function whose Laplace transform is Y and a function whose Laplace

transform is
5

s− 7
? When you are done you should have the solution y to

the ODE.

4. We know how to solve this ODE using separation of variables. Solve the
ODE using separation of variables and show that you get the same answer.

Did you see the process above? Rather than integrate, we just (1) computed
the Laplace transform of both sides, (2) solved an algebraic equation for Y , and
then (3) obtained the inverse Laplace transform to get Y . Here’s a parable to
compare to using Laplace transforms.

Imagine you are inside a house that has a single door leading to the
downstairs. You are on the main floor, and need to open the door
to the downstairs (you need to solve an ODE). However the door is
locked and you don’t have the key (you can’t figure out how to solve
the ODE). You (1) decide to walk out the front door (you apply the
Laplace transform). Then you (2) walk around the house and find a
back door entrance to the basement (you solve for Y ). Then (3) you
walk up to the locked door and unlock it from the other side (you
find the inverse transform).

The Laplace transform replaces the problem of integrating with an algebraic
problem where we have to solve for Y . Solving this equation with algebra is
often easier. We’ll be using the Laplace transform throughout the semester to
help us see patterns and unlock difficult problems.

Wrap Up

In the context of a single, simpler example, let’s illustrate all the pieces from
this chapter.

Problem 1.33 Consider the ODE xy′ = 1− y.

1. We can rewrite the ODE in the differential form (y − 1)dx+ (x)dy = 0.
Find a potential and state a general solution.

2. Use software to plot your vector field (y − 1, x) and several level curves of See the level curve plotter. If you
just type in the potential, then it
will graph the vector field.

your potential. Make sure the vector field and the level curves are on the
same plot.

3. We can separate variables by multiplying both sides by
1

x(y − 1)
to get

1

x
dx+

1

y − 1
dy = 0. Find a potential and state a general solution. Then

again use software to plot your vector field ( 1
x ,

1
y−1 ) and several level curves

of your potential. To type ln |x| you’ll need to write “log(abs(x))” in Sage.

http://bmw.byuimath.com/dokuwiki/doku.php?id=level_curve_plotter
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4. Compare and contrast your vector fields in part 2 and 3. You should have
the exact same level curves, which are hyperbolas that have been shifted
away from the origin.

To present this problem, you should have two plots, one for part 2, and one for
part 3. You can copy the images from Sage into a Word document, and then
put them on the same page. Then you can show how you got your potentials on
this page.

Here’s a summary of what we’ve done in this chapter.

• To solve an ODE, we rewrite the ODE as the linear combination Mdx+
Ndy = 0 using differentials.

• Then we use integration to find a potential f of the vector field (M,N).

• The level curves of the potential are the solutions to our ODE. To solve
the ODE, we find the potential f and make it equal a constant.

• We know the level curves of f are the solution because the tangent
vectors (dx, dy) to our solution are orthogonal to the gradient of the

potential. We know (dx, dy) and ~∇f are orthogonal because the dot

product (M,N) · (dx, dy) equals zero, and because ~∇f = (M,N). (Make
sure you can answer why?)

• If the field doesn’t have a potential, we can sometimes multiply the vector
field by a scalar (create a linear combination) so the rescaled field has a
potential. If we can separate variables so that M depends only on x, and
N depends only on y, then a potential exists.

Our approach above has one glaring error. What do we do if we can’t find a
potential, and we can’t separate the variables? In the next chapter you’ll learn
how to overcome this obstacle in many instances, as well as learn how to set up
differential equations that model the world around us.

This concludes the chapter. Look at the objectives at the beginning of the
chapter. Can you now do all the things you were promised?
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Extra Practice

At the end of each chapter, I’ll include some extra practice problems. These problems might come in the
form of a reference to problems in Schaum’s Outlines Differential Equations by Richard Bronson. Sometimes
I’ll point you to a freely available open source text. Generally, the problems will come with solutions where
you can check your work. You can also use either Sage or Mathematica to check most solutions.

This chapter consists mostly of a review of concepts from calculus and multivariate calculus. As such,
probably the best place to look for review problems is in your old calculus textbook. At some point, I’ll
either find, or create, a good collection of practice problems to help you. As of now, the best I can do is point
you to problems in Thomas’s Calculus 12 Edition, and Schaum’s Outlines.

Concept Source Relevant Problems

Differentials Thomas’s Section 14.6

Vector Fields Thomas’s Section 16.2

Potentials Thomas’s Section 16.3

Separable ODEs Schaum’s Chapter 4: 1-8, 23-45

Exact ODEs (find a potential) Schaum’s Chapter 5: 1-13, 24-40, 56-65

Laplace Transforms Schaum’s Chapter 21: 4-7, 10-12, 27-35 (wait)



Chapter 2

First Order ODEs

After completing this chapter, you should be able to:

1. Identify and solve separable and exact ODEs by finding a potential.

2. Show how to obtain and use an integrating factor to solve an ODE.

3. Explain how to use a change of variables to solve an ODE.

4. Apply the modeling process and proportionality to analyze exponential
growth and decay, Newton’s law of cooling, mixing tank problems, Tor-
ricelli’s law, the logistics model, and systems of first order differential
equations.

5. Use Laplace transforms to solve first order ODEs, employing a partial
fraction decomposition when needed.

When you’ve completed this chapter, you’ll be able to make powerful predictions
about the future. We’ll do this by looking for linear relationships between the
growth of a quantity and the quantity itself. We’ll express this relationship as a
differential equation, expand our ability to solve ODEs, and then use our results
to obtain knowledge about the world around us. This chapter is a prototype for
mathematics gets use in the sciences through modeling.

As you work on problems throughout this chapter, you can always check
your work using technology. With Sage, the command “desolve” will provide
you with answers to most problems. In Mathematica, the command is “DSolve.”
These technology links contain examples you can modify to solve most of the
problems in this chapter. Please take the time to check your answers with
technology.

• First Order ODEs

• Laplace Transforms

• Partial Fractions

For our convenience, the Laplace transforms we’ll use most often are in Table
2.1. Feel free to use this table as you find Laplace transforms and their inverses.
With practice, you will memorize this table.

21

http://bmw.byuimath.com/dokuwiki/doku.php?id=first_order_ode_solver
http://bmw.byuimath.com/dokuwiki/doku.php?id=laplace_transforms
http://bmw.byuimath.com/dokuwiki/doku.php?id=partial_fraction_decomposition_calculator
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f(t) F (s) provided

1
1

s
s > 0

t
1

s2
s > 0

t2
2

s3
s > 0

tn
n!

sn+1
s > 0

eat
1

s− a
s > a

f(t) F (s) provided

cos(ωt)
s

s2 + ω2
s > 0

sin(ωt)
ω

s2 + ω2
s > 0

cosh(ωt)
s

s2 − ω2
s > |ω|

sinh(ωt)
ω

s2 − ω2
s > |ω|

y L {y} = Y

y′
sL {y} − y(0)

= sY − y(0)

Table 2.1: Table of Laplace Transforms

Building a Mathematical Model

One of the key uses of differential equations is their ability to model the world
around us. If we know how something is changing, then we can often use
y′ to represent that change. If we know a force is acting on an object, then
F = ma = my′′ allows us to build a second order differential equation whose
solution is the position y of the object. As the semester progresses, we’ll be
making these connections in each chapter, and showing how to use differential
equations to model our world. Many of the models we build will depend
on observing that a change is proportional to something, or that a force is
proportional to something. If you’ve forgotten what proportional means, here’s
a definition.

Definition 2.1: Proportional. We say that y is proportional to x if y = kx My favorite way to determine if y
is proportional to x is to ask, “If I
double x, does y double? If I triple
x, will y triple? If these are both
yes, then I look to see if y = kx.

for some constant k. We call the constant k the proportionality constant. When
two quantities are proportional, then doubling one will double the other, tripling
one will triple the other, and so on. A percentage change to one y results in the
same percentage change to x.

Here’s a quick review of how to solve an ODE using separation of variables.

Review Give a general solution to the ODE y′ = 3y. If y(0) = 7, state the
particular solution to the IVP. See 1

We’re ready to build our first mathematical model. Suppose you go to the
doctor’s office to get a strep test done. They swab the back of your throat and
then put a sample of tissue from your body in a petri dish. If you have strep,
then the bacteria will grow inside the petri dish, and they’ll be able to see the
rapid growth of the strep bacteria in a fairly short amount of time.

Problem 2.1: Exponential Growth Suppose that you place some bacte-

ria in a petri dish. Initially, there are P mg of the bacteria in the dish. The

1 We rewrite the ODE in the differential form dy = 3ydx. We separate variables by dividing
both sides by y to obtain 1

y
dy = 3dx. We compute a potential of both sides which gives

ln |y| = 3x + C for any constant C. Exponentiating both sides gives |y| = e3x+C = e3xC,
where we replaced eC with the positive constant C. Removing the absolute values gives us
y = ±Ce3x, or replacing ±C with C gives us the general solution y = Ce3x. The initial
condition y(0) = 7 means that 7 = Ce3(0) = C. So the particular solution is y = 7e3x.
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bacteria begin to reproduce. Let y(t) represent the mg of bacteria in the dish
after t minutes. Then y′ represents the growth rate of bacteria in the dish. The
rate at which y grows depends on how much bacteria y there is. If you were
to double the amount of bacteria y, then the growth rate y′ should double as
well (as long as there is space to grow, which initially there is). Similarly, if you
tripled y, then the growth rate y′ would triple as well. It seems reasonable to
assume that y′ is proportional to y.

1. Express the statement “y′ is proportional to y” as a differential equation.
What’s the initial value y(0)?

2. Solve the differential equation above, obtaining a general solution to the Remember to check your answer
with the First Order ODE Solver.ODE, and then a particular solution to the IVP.

3. Interpret your solution in the context of the original problem. What does
a typical graph of your solution look like (it’s got some constants in it, but
you can show the general shape). What will happen to y as t gets large?

4. Suppose initially that you measure 5 mg of the bacteria. Ten minutes
later you measure 8 mg of the bacteria. Use this information to determine
the constant of proportionality.

Let’s change the setting from growth of a bacterial culture, to financial
investments.

Problem 2.2 Suppose you invest P = $10, 000 dollars in an account, and
the account accumulates interest at a constant rate. Let A(t) represent the
accumulated worth of your investment after the investment has had t years to
grow.

1. Express the connection between A and its growth as an initial value
problem (state the ODE and initial value). Why can we assume that A′

and A are proportional? What are the units of A′, k and A?

2. Suppose that we decide to add an extra $1000 per year to the account
(with daily investments spread throughout the year). With this addi-
tional investment, explain with a sentence or two why we can express the
connection between A′ and A as the differential equation A′ = kA+ 1000.

3. Solve the IVP given by A′ = kA+ 1000, A(0) = 10, 000. Hint: Divide both sides by
kA+ 1000. Don’t forget that you
can check your work with the
First Order ODE Solver.

4. Let’s interpret the results. Suppose after 5 years that the value of the
investment has reached about $21,000. Approximately how long will it
take for this investment to reach $100,000? [Note: If you are having
trouble solving for k, that’s normal. It’s actually a really hard problem.
The key here is “Approximately.” Trial and error is a valid way to solve a
problem. Try some interest rates (5%, 6%, 7%, 8%, etc.)]

You’ve now seen two examples of how we can use differential equations to
model our world. In your future courses, you’ll be taking real world phenomenon
and expressing the relationships you see as differential equations. Solving those
differential equations gives us mathematical models we can use to interpret the
world around us. There are three parts to this modeling process.

1. Express real world phenomenon in terms of a differential equation.

2. Solve the differential equation.

http://bmw.byuimath.com/dokuwiki/doku.php?id=first_order_ode_solver
http://bmw.byuimath.com/dokuwiki/doku.php?id=first_order_ode_solver
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3. Interpret the solution in the context of the problem, which often involves
using the results to predict behavior.

In our class we’ll practice all three parts of this process. We’ll focus more on the
details in the “Solve” portion of the process than you will in future courses. You
may find in some future courses that they focus on the “Express” and “Interpret”
portions, and then refer you to some standard reference for the “Solve” part, or
just ask you to use software. One goal of our course is to help you understand
some of the key solution techniques. We’ll add many problems that we can
“Express” and “Interpret” without needing background specific to your majors.

Every time we’ve solved an ODE, we always did so by finding a potential
of the differential form Mdx+Ndy. When a differential form has a potential,
we’ll start saying that it is exact.

Definition 2.2: Exact Differential Forms. Assume that f,M,N are all
functions of two variables x, y.

• A differential form is an expression Mdx+Ndy.

• The differential of a function f is the expression df = fxdx+ fydy

• If the differential form Mdx+Ndy is the differential of a function f , then
we say the differential form is exact. In this setting, we call the function f
a potential for the differential form.

You’ve already spent plenty of time finding potentials to solve ODEs. Let’s
practice this again, using the new word “exact.”

Problem 2.3 Complete both parts. Remember to check your answer
with the First Order ODE Solver.

1. Show that (x+ 2y)dx+ (2x+ 4y)dy is an exact differential form. Then

give an implicit general solution to the ODE y′ = − x+ 2y

2x+ 4y
.

2. Show that the differential form associated with the ODE 3xy′ + 3y = −2x
is exact. Then state the solution if y(2) = 1.

Using Laplace Transforms to Solve ODEs

Recall that the Laplace transform of a function y(t) defined for t ≥ 0 is

Y (s) = L {y(t)} =

∫ ∞
0

e−sty(t)dt.

• We call the function y(t) the inverse Laplace transform of Y (s), and we
write y(t) = L −1{Y (s)}.

• As a notational convenience, we describe the original function y(t) using
a lower case y and we use the input variable t or x. We describe the
transformed function Y (s) using the same letter, but capitalized, and we
use the input variable s.

We can use Table 2.1 to quickly compute both forward transforms and inverse
transforms.

Problem 2.4 Use the table of Laplace transforms (Table 2.1) to do the
following:

http://bmw.byuimath.com/dokuwiki/doku.php?id=first_order_ode_solver
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1. Compute the Laplace transform of both sides of y(t) = 6 + 2t+ 4t2−5e7t+ Remember you can check your
answers with the Laplace
transform Sage sheet.

11 cosh(3t).

2. Compute the inverse Laplace transform of both sides of

Y (s) =
5

s
+

4

s3
+

3s

s2 + 16
− 2

s2 − 9
.

Once you have a guess for the inverse Laplace transform, verify that your
guess is correct by computing the Laplace transform.

We now solve an ODE using Laplace transforms. Remember that the Laplace
transform of a derivative y′ is sY − y(0). See Table 2.1.

Problem 2.5 Consider the IVP given by y′ = 4y where y(0) = 3. Remember you can check your
answers with the Laplace
transform Sage sheet.1. Apply the Laplace transform to both sides of the ODE. You should have

an equation involving Y (s).

2. Solve this equation for Y to show that Y =
3

s− 4
.

3. Find the inverse transform of both sides of this equation to obtain the
solution y(t) to the IVP.

4. Generalize your work to give a solution to y′ = ky where y(0) = P .
Compare this with problem 2.1.

The first three steps above are the key steps to solving an ODE with Laplace
transforms. Eventually we’ll just say, “Solve the ODE with Laplace transforms,”
and you’ll know that you need to use those 3 steps. As we develop different
models, we’ll revisit many of them and use Laplace transforms to obtain a
solution.

First Order Systems of ODEs

Sometimes we need more than one differential equation to create a model. When
an object moves in the plane, its position is given by x(t) and y(t). An equation
for the velocity ~v = (x′, y′) is precisely a system of two differential equations.

Problem 2.6 A plane flies in a circle above a city (the center of the city
is at (0, 0)). The plane’s path is given by (x, y) = (3 cos t, 3 sin t). The pilot
places the plane on autopilot to continue this circular path. After the plane has
been placed on autopilot, the wind starts blowing. The pilot does not adjust for
the wind, which means the plane will start to veer off course. Your job on this
problem is to figure out the path of the plane.

1. The velocity of the plane without the wind is (x′, y′) = (−3 sin t, 3 cos t).
The wind blows somewhat northeast and results in a new velocity vector
for the plane of (x′, y′) = (−3 sin t, 3 cos t) + (1/3, 1/5). Find equations
for x(t) and y(t) that would give the position of the plane. Then graph
the plane’s position for t between 0 and 4π. You can use this parametric
curve plotter to check your work. Follow the link.

2. Generalize your work to give the position (x, y) if

(x′, y′) = (−a sin(bt), a cos(bt)) + (c, d).

The radius of the circle is a, the angular velocity is b, and the wind
contributes the extra (c, d).

http://bmw.byuimath.com/dokuwiki/doku.php?id=laplace_transforms
http://bmw.byuimath.com/dokuwiki/doku.php?id=laplace_transforms
http://bmw.byuimath.com/dokuwiki/doku.php?id=laplace_transforms
http://bmw.byuimath.com/dokuwiki/doku.php?id=laplace_transforms
http://bmw.byuimath.com/dokuwiki/doku.php?id=parametric_curve_plotter
http://bmw.byuimath.com/dokuwiki/doku.php?id=parametric_curve_plotter
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Building a Mathematical Model

Let’s look at another application before we introduce a new solution technique.
Here’s the scenario.

You decide to cook a turkey for Thanksgiving. You turn the oven
on to 350◦F, and the package says that you need to get the turkey
heated up to an internal temperature of 165◦F. You followed the
instructions and thawed the turkey so that currently it’s about 40◦F.
How long will it take for the turkey to heat up?

If instead of heating a turkey, you wanted to heat a chicken patty, would the
time vary? If you just wanted to heat a metal pan, how would the time vary?
The next problem introduces a simplistic model, called Newton’s law of cooling,
to examine this question.

Newton’s law of cooling works best when you assume that an increase in heat
is evenly distributed throughout an object, such as heating an aluminum pan.
When you heat a turkey, the heat is not evenly distributed. This uneven heat
distribution complicates the model, and we’d need partial differential equations
(PDEs) to obtain a better model for heat flow.

Problem 2.7: Newton’s Law of Cooling Suppose that you place an ob-

ject in an oven. The oven temperature is set to A (you can use Fahrenheit, Celsius,
or Kelvin). The letter A is the temperature of the surrounding atmosphere.
The object’s initial temperature is T0. Let T (t) represent the temperature of the
object t minutes after we place the object in the oven. If T (t) is really close to
A, then the rate at which T increases should be pretty small, as the temperature
of the object is almost the same as the temperature of the atmosphere. If T is
really far from A, then the rate of temperature change should be a lot larger. It
appears that T ′ depends on the difference A− T . Newton conjectured that the
rate at which the temperature changes is proportional to the difference A− T .

1. Express the statement “the rate at which the temperature changes is
proportional to the difference A− T” as a differential equation. What’s
the initial value?

2. Solve the IVP, obtaining a particular solution. Remember to check your answer
with the First Order ODE Solver.

3. Interpret your solution in the context of the original problem. What does
a typical graph of your solution look like (it’s got some constants in it,
but you can show the general shape). If your solution is correct, what will
happen as t gets large? Does this seem reasonable.

Problem 2.8 You should have obtained the solution to Newton’s law of
Cooling as

T (t) = A+ (T0 −A)e−kt,

where k is the proportionality constant. Suppose that T0 = 45◦F and A = 350◦F.

1. After 5 minutes, you check the temperature and observe T (5) = 80◦F.
What is k, and how long will it take for the object to reach 165◦F.

2. After 5 minutes, you check the temperature and observe T (5) = 120◦F.
What is k, and how long will it take for the object to reach 165◦F.

3. The number k depends on the material you are trying to heat. If k is large,
what does that mean about the material? If you were to heat an aluminum
pan versus a cast iron pan, what could you say about the constant k in
each case?

http://bmw.byuimath.com/dokuwiki/doku.php?id=first_order_ode_solver
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Solving ODEs with an integrating factor

When we can’t find a potential for an ODE, what do we do? Let’s first examine
a problem we’ve already solved and solve it in two different ways. From our
example, we’ll find an answer to this question.

Problem 2.9 Consider the ODE y′ = −3y + 7 which we can write in dif-
ferential form as (3y − 7)dx + 1dy = 0. To have a potential, we would need
My = Nx. Since we have My = 3 and Nx = 0, this differential form is not exact. See Problem 1.27 for a reminder

of the test for a potential.

1. Multiply both sides of (3y − 7)dx + 1dy = 0 by
1

3y − 7
. Show that the

resulting differential form is exact (using the test for a potential, i.e. show
My = Nx). Then find a potential and state a solution to the ODE.

2. Now multiply both sides of (3y − 7)dx+ 1dy = 0 by e3x. Show that the
resulting differential form is exact (using the test for a potential). Then
find a potential and state a solution to the ODE.

When we write an ODE in the form Mdx+Ndy = 0, the zero on right hand
side gives us power. We can multiply both sides of the differential equation by
some function F , called an integrating factor, so that the resulting differential
FMdx+FNdy is exact. A general solution to the ODE is then simply the level
curves of the potential. Time for a formal definition.

Definition 2.3: Integrating Factor. An integrating factor for a differential
form M(x, y)dx+N(x, y)dy is a function F (x, y) so that the product FMdx+
FNdy is exact.

In Problem 2.9, I gave you two different integrating factors. Where did they
come from? The first one came from observing that the ODE was separable.
The second one came from the formula in the next problem.

Problem 2.10 Let M(x, y)dx+N(x, y)dy be a differential form. For sim-
plicity, we just write Mdx+Ndy. Suppose that F (x, y) is an integrating factor
for this differential form.

1. For (FM)dx+ (FN)dy to be exact, explain why we must have What does the product rule have
to do with this part?

∂F

∂y
M + F

∂M

∂y
=
∂F

∂x
N + F

∂N

∂x
.

2. Assume that F only depends on x, so that F (x, y) = F (x). Show that an Hint: Show that

1

F
dF =

My −Nx
N

dx.

Then integrate (find a potential
for) both sides.

integrating factor is

F (x) = e
∫ My−Nx

N dx = exp

(∫
My −Nx

N
dx

)
.

3. (Optional) If we instead assume that F only depends on y, show that

F (y) = e
∫ Nx−My

M dy = exp

(∫
Nx −My

M
dy

)
.

The problem above gives us a way to find integrating factors for many
differential equations. We won’t be able to find an integrating factor for every
differential equation, but this method will give us integrating factors for almost
every problem you’ll see in undergraduate textbooks. Let’s now use this technique
on a problem we’ve already solved.
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Problem 2.11 Consider the ODE y′ = ky + 1000 from Problem 2.2.

1. Rewrite the ODE in the differential form Mdx+Ndy = 0.

2. Find the integrating factor F (x) = e
∫ My−Nx

N dx = exp

(∫
My −Nx

N
dx

)
.

3. Multiply both sides of Mdx+Ndy = 0 by this integrating factor. Show Remember you can check your
answer with the First Order ODE
Solver.

that FMdx+FNdy is exact and then solve the ODE by finding a potential.

4. Generalize your work to state a solution to the ODE y′ = ay + b. (You
shouldn’t need to do any additional work.)

Problem 2.12 Solve each ODE by finding an appropriate integrating factor. Remember to check your answer
with the First Order ODE Solver.

1. y′ + 4xy = 3x Note: You will need to simplify an
expression like e2 ln x. Remember
that a ln b = ln ba, which means
ea ln b = ba. This shows up quite a
bit in all our work.

2. 2ydx+ (8x+ 4y)dy = 0. Explain why F (x) does not work. Use F (y).

Using a change of coordinates

Sometimes you won’t be able to obtain an integrating factor with either formula
we have for F (x) or F (y). Often, we can overcome this difficulty by using a change
of coordinates. Just like we used polar coordinates, cylindrical coordinates, and
spherical coordinates in multivariable calculus to simplify otherwise impossible
problems, we’ll now employ different coordinate systems to solve an ODE.

Problem 2.13 Consider the ODE y′ = (x+ y)2.

1. Show that our formula for F (x) results in a function that depends on both
x and y. Show the same thing happens with F (y). This means we can’t
use our integrating factor formulas.

2. Consider the change of coordinates x = x and u = x + y. Show that
we can rewrite the original ODE y′ = (x + y)2 in the differential form
du = (1 + u2)dx. [Hint: You need to compute the differential of u. Since
u = x+ y we can compute du =?dx+?dy.]

3. Solve the ODE du = (1 + u2)dx. Then replace u with x+ y and solve for Remember to check your answer
with the First Order ODE Solver.y to get a general solution to this ODE. [Hint: The ODE is separable.]

Let’s try another problem where a simple substitution results in greatly
simplifying the ODE.

Problem 2.14 Consider the ODE xyy′ = 4x2 + 2y2. In this situation, if Notice that the coefficients xy,
4x2, and 2y2, all are second order
monomial terms. When the
coefficients of an ODE are
monomials with the same degree,
the substitution u = y/x will
always convert the ODE into a
separable ODE. You have enough
tools to prove this fact. If you do,
I’ll have you share it with the
class.

we let u = y/x (so y = xu), show that we can rewrite the ODE as

u

4 + u2
du =

1

x
dx.

This is a separable ODE, which we can solve. Solve the ODE. Give an implicit
general solution in terms of y and x.

[Hint: Since you have y = xu, you’ll probably want to write dy =?dx+?du.
This will allow you to replace dy in the original ODE.]

http://bmw.byuimath.com/dokuwiki/doku.php?id=first_order_ode_solver
http://bmw.byuimath.com/dokuwiki/doku.php?id=first_order_ode_solver
http://bmw.byuimath.com/dokuwiki/doku.php?id=first_order_ode_solver
http://bmw.byuimath.com/dokuwiki/doku.php?id=first_order_ode_solver
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Using Laplace Transforms to Solve ODEs

Let’s now use Laplace transforms to tackle a problem similar to the one we used
to introduce integrating factors.

Problem 2.15 Consider the IVP given by y′ = 3y + 7 where y(0) = 11.

1. After computing the Laplace transform of both sides, show that

Y =
11s+ 7

(s)(s− 3)
.

2. The right hand side above is not in our Table of Laplace transforms. This process is called a partial
fraction decomposition.Try this
problem without looking for help
from any outside source. If you
are stuck, then try googling
“partial fraction decomposition.”

You can check your work with this
partial fraction calculator.

However, if we could rewrite the right hand side as

11s+ 7

(s)(s− 3)
=
A

s
+

B

s− 3

for some constants A and B, then we could use an inverse transform.

Find constants A and B so that the equation above is valid (as a suggestion,
first multiply both sides by (s)(s− 3)).

3. Solve the IVP by finding the inverse Laplace transform of Remember you can check your
answers with the Laplace
transform Sage sheet.

Y =
A

s
+

B

s− 3
.

First Order Systems of ODEs

Let’s now return to examining a system of first order differential equations.
When we only have one differential equation, we have been writing it in the
form Mdx+Ndy = 0, which we could also write in the matrix form[

M N
] [dx
dy

]
= 0.

How does this generalize to systems of first order differential equations?

Problem 2.16 Complete the following:

1. Consider the first order system of ODEs given by

2t
dx

dt
= 3− 2x and (4t+ 5y)

dx

dt
+ (5x+ t)

dy

dt
= −4x− y.

Rewrite this system in differential form, and then obtain a 2 by 3 matrix
A so that

A

dtdx
dy

 =

[ ]dtdx
dy

 =

[
0
0

]
.

2. Find a function f(t, x, y) so that df = A

dtdx
dy

.

3. What do you think is a general solution to this system of ODEs? Why?
It’s OK if you are wrong. The goal here is to have you make a conjecture
and be prepared to explain why you made your conjecture.

http://bmw.byuimath.com/dokuwiki/doku.php?id=partial_fraction_decomposition_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=partial_fraction_decomposition_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=laplace_transforms
http://bmw.byuimath.com/dokuwiki/doku.php?id=laplace_transforms
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Building a Mathematical Model

Let’s now analyze another type of model. In this case, we’ll create the differential In multivariable calculus, we
studied the flux of a vector field
across a curve or surface. This is
precisely the study of flow in and
flow out.

equation by studying flow in and flow out instead of looking for a proportionality.
If we know how much y increases (flow in), and we know how much y decreases
(flow out), then we know the rate of change of y which means we know

y′ = (flow in)− (flow out).

Problem 2.17: Tank Mixing Intro Suppose a 20 gallon tank contains an

evenly mixed solution of water and salt. Initially, there are 4 lbs of salt mixed
into the water. We start pumping in 3 gallons of water each minute, where the
incoming water has 1/2 lb of salt per gallon. We’ll assume that the salt remains
evenly spread throughout the entire tank by constant stirring. At the same time,
we allow 3 gallons per minute of the evenly stirred mixture to flow out through
an outflow valve.

Let y(t) represent the lbs of salt in the tank after t minutes. Our goal is to
predict the amount of salt y(t) in the tank after t minutes. We currently know
y(0) = 4 lbs.

1. (Express) How many lbs of salt flow into the tank each minute? How Hint: To get inflow and outflow of
lbs of salt per min, you need to
multiply some quantities together.
Pay attention to units. For
outflow, remember there are y(t)
lbs of salt in the 20 gallon tank, so
we have y lbs

20 gal
. What can you

multiply this by to get lbs/min?

many lbs of salt flow out of the tank each minute? State a differential
equation that models the lbs of salt in the tank at any time t.

2. (Solve) Use software to give a general solution to the ODE and the
particular solution to the IVP. See the First Order ODE Solver.

3. (Interpret) If we allowed t to run for a really long time, what would y(t)
approach? Does this seem reasonable?

4. What would you use for your ODE if the volume of the tank is V gal,
the inflow/outflow rate is r gal/min, and the concentration of salt in the
incoming water is c lbs/gal?

In our first model of this chapter, we analyzed the growth of a bacteria
population in a petri dish. We could have applied this to any other population
to predict things such as the number of deer in a forest, how many people will
be on the Earth, the spread of cancer through the bloodstream, the number
of cell phones users in Brazil, the speed of computer processors, etc. In our
model, we assumed that the growth of the bacteria is proportional to the amount
of bacteria currently present. This an assumption about the flow in. With
this proportionality assumption, we obtained the ODE y′ = ky and solution
y = Cekt. There is a glaring error with this model, namely that as t gets larger
the population continues to grow without bound. The petri dish can not support
this kind of growth. Our model needs to be improved. Let’s now fix this, but
let’s change the setting to the spread of a virus.

Problem 2.18: Logistic Model Intro Suppose that a virus (like the bird

flu) starts to spread in a city. Let y(t) represent the number of people who have
had the virus after t days. Initially, it seems reasonable to assume that y′ is
proportional to y, as if we double the number of people who have the virus,
then the virus will spread twice as fast. However, the model y′ = ky needs to
be altered because exponential growth cannot occur forever. There’s only so
many people. There are two ways to proceed.

http://bmw.byuimath.com/dokuwiki/doku.php?id=first_order_ode_solver


CHAPTER 2. FIRST ORDER ODES 31

1. As the virus affects more people, we know the growth rate should decrease.
Let’s assume there are M people in the town. If y(t) ever equals M (so
everyone is infected), then we’d have y′ = 0. As y gets closer to M , the
growth rate k should be small. Vice versa, if y is far from M , then the
growth rate k should be large. Let’s assume that y′ = ky, but that k is
proportional to the difference M − y between the maximum population
and the current population. Why does y′ = c(M − y)y?

2. Let’s analyze this problem in a different way. Viruses spread when sick
people interact with non sick people. If y is the number of sick people,
then M − y is the number healthy people. The product (M − y)y is the
number of possible interactions between healthy and sick people. What
assumption should we make to obtain y′ = c(M − y)y.

3. Remember that if we know the slope y′, then the vector field ~F (t, y) = See the Vector Field Plotter

(1, y′) gives a field of tangent vectors to possible solution curves. Use
software to construct a vector field plot of the the field

~F (t, y) = (1,
1

3
(4− y)y)

where 0 ≤ t ≤ 10 and −2 ≤ y ≤ 6. On your plot, draw several solution
curves. This would model a scenario in which M = 4 million residents
and k = 1/3 (about 1/3 of the time, an interaction between a sick and
healthy person results in the healthy person getting sick).

Solving ODEs with an integrating factor

Problem 2.19 Suppose a 50 gallon tank contains a solution of fertilizer
which initially contains 10 lbs of fertilizer. We start pumping in 4 gallons per
minute of a solution where the concentration of fertilizer is 1/3 lb per gallon.
Assume that the mixture remains evenly spread throughout the entire tank by
constant stirring. At the same time, 4 gallons per minute of the evenly stirred
mixture flow through the outflow valve. Let y(t) represent the lbs of fertilizer in
the tank after t minutes.

1. Explain why y′ =
4

3
− 4

50
y with y(0) = 10.

2. After rewriting the ODE in the differential form Mdx+Ndy = 0, find an
integrating factor and use it to solve this IVP.

3. Plot your solution. Your plot should show the initial condition y(0) = 10,
and you should be able to see what y(t) approaches as t gets large.

Using Laplace Transforms to Solve ODEs

Problem 2.20 Suppose a 5 gallon tank contains a solution of fertilizer which
initially contains 2 lbs of fertilizer. We start pumping in 3 gallons per minute
of a solution where the concentration of fertilizer is 1/4 lb per gallon. Assume
that the mixture remains evenly spread throughout the entire tank by constant
stirring. At the same time, 3 gallons per minute of the evenly stirred mixture
flow through the outflow valve. Let y(t) represent the lbs of fertilizer in the
tank after t minutes.

http://bmw.byuimath.com/dokuwiki/doku.php?id=vector_field_plotter
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1. State an IVP (both the ODE and IV) that models this situation.

2. Use Laplace transforms to solve the ODE. After computing the Laplace
transform of each side and solving for Y , you should obtain

Y =
2s+ (3/4)

(s)(s+ 3/5)
.

You’ll need to perform the partial fraction decomposition You can check your work with this
partial fraction calculator.

2s+ (3/4)

(s)(s+ 3/5)
=
A

s
+

B

s+ 3/5
.

Once you’ve found A and B, inverse Laplace transforms will get you the
solution instantly.

Using a change of coordinates

The logistics model y′ = a(M−y)y can be rewritten in the form y′ = aMy−ay2,
or perhaps more simply as y′ = Ay +By2. This ODE is separable, however if It’s not easy to discover the right

substitution that will convert an
ODE into something we can solve.
We call them Bernoulli ODEs
because his discovery was quite
clever.

we allow A and B to depend on x, then we have the ODE y′ = A(x)y +B(x)y2

which is not separable. Bernoulli discovered a way to solve any ODE of the form
y′ = A(x)y + B(x)yn, by using the substitution u = y1−n. The next problem
has you solve the logistics model by using this substitution.

Problem 2.21 Consider the ODE y′ = 3y + 5y2.

1. Use the substitution u = y1−2 = y−1 to rewrite the ODE in the form Since u = y−1, we know
du = −y−2dy. Our ODE is
dy = (3y + 5y2)dx. If you
combine these, you get
du = −y−2(3y + 5y2)dx. Multiply
the y−2 through and remember
that u = y−1.

Mdx+Ndu = 0. Show that M = 3u+ 5 when N = 1.

2. Then obtain an integrating factor to solve this ODE. After finding a
solution, replace u with 1/y and give an explicit solution by solving for y.

3. Generalize your work to state a general solution to y′ = Ay +By2. You
have now solved every logistics model problem. In particular, what’s the
solution if y′ = aMy − ay2?

Using Laplace Transforms to Solve ODEs

We’ve been looking at two main ways to solve ODEs. One approach involves
rewriting the ODE in the form Mdx+Ndy = 0 and then finding a potential.
Sometimes we have to use an integrating factor. Sometimes we have to change
coordinates first.

The second approach is to use Laplace transforms. This replaces the in-
tegration problem with an algebra problem, often involving a partial fraction
decomposition. Let’s practice this process again.

Problem 2.22 Solve each IVP with Laplace transforms. Check your work with this partial
fraction calculator. The Laplace
transform calculator will let you
know if you have the correct
answer.

1. y′ + 3y = 2t where y(0) = 5

2. y′ + 3y = e2t where y(0) = 5

Is there a connection between our two methods of solving ODEs? To answer
this, let’s solve a general problem with the integrating factor/potential approach.

http://bmw.byuimath.com/dokuwiki/doku.php?id=partial_fraction_decomposition_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=partial_fraction_decomposition_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=partial_fraction_decomposition_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=partial_fraction_decomposition_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=laplace_transforms
http://bmw.byuimath.com/dokuwiki/doku.php?id=laplace_transforms
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Problem 2.23 Consider the ODE y′ = ay + f(t), where a is a constant and
f(t) represents any function of t.

1. Rewrite the ODE in differential form, and then use an appropriate in-
tegrating factor to solve the ODE. Because you do not know what f(t)
equals, your solution will involve an integral. However, you should be able
to complete all integrals that do not involve f(t), and then solve for y.

2. Compare and contrast the definition of the Laplace transform with your
solution above.

3. Now consider the ODE y′ = a(t)y + f(t) where a is now a function of t.
Show that

y(t) = e
∫
a(t)dtC + e

∫
a(t)dt

∫ (
e−

∫
a(t)dtf(t)

)
dt

where C is an arbitrary constant.

The find a potential approach to solving ODEs came first. The Laplace
transform approach came much later. It wasn’t until the 1900’s that the Laplace
transform approach gained a lot of momentum. Feel free to ask me in class
about the history behind the Laplace transform.

In our table of Laplace transforms (Table 2.1) it states that

L {cos(ωt)} =
s

s2 + ω2
and L {sin(ωt)} =

ω

s2 + ω2
.

Problem 2.24 Pick one of the functions cosωt or sinωt. Then use the
definition of the Laplace transform to compute the Laplace transform and verify
the above formula is correct. Only do one, as the other is similar.

[Hint: You’ll want to use integration by parts twice. ] See the online text for a complete
solution. It’s in chapter 4 there.

Building a Mathematical Model

Systems of differential equations can model some pretty cool things. The next
model uses our proportionality assumptions to create a model for describing
the rise and fall of populations in a predator/prey relationship. If there are too
many predators, or too much prey, can we model what will happen?

Problem 2.25: Predator-Prey In this problem, we’ll build a mathemati-

cal model that describes the interaction between a predator and a prey, namely
coyotes and deer. Let x(t) and y(t) represent the numbers of coyote and deer t We could similarly model whales

versus plankton, or any other
predator/prey relationship.

years from now in a certain forest. To create a model, we have to make some
assumptions. Suppose that in the absence of the deer, the coyote population
cannot find enough other sources of food and will die off at a rate that is propor-
tional to its current size (so x′ = −k1x). In the absence of the coyote population,
the deer population will grow at a rate that is proportional to its current size (so
y′ =?). If there are a lot of deer, then the coyotes have plenty of food and their
numbers will increase. Let’s assume that this increase is proportional to the
possible number of interactions (xy) between the coyote and deer population.
Similarly, the deer population decreases at a rate that is proportional to this
possible number of interactions.

1. Using sentences (actually write them out) explain why we have the differ-
ential equations x′ = −k1x+ k2xy and y′ = k3y − k4xy. Explain why the
negative signs appear in this model.

https://content.byui.edu/items/664390b8-e9cc-43a4-9f3c-70362f8b9735/1/
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2. Let’s visualize what this model looks like. To do so, we need to choose some
values for the constants (which we could discover through measurements
if we worked for wildlife management). Let’s use the numbers k1 = .3,
k2 = .002, k3 = .4 and k4 = .005. Plot the field (x′, y′) = (−k1x +
k2xy, k3y − k4xy), using the bounds 0 ≤ x ≤ 150 and 0 ≤ y ≤ 300.

3. If the current population numbers are 120 coyotes and 200 deer, what
should happen to both populations in the next year? What if there are
only 60 coyotes and 200 deer?

Using a change of coordinates

Let’s practice another change of coordinates (substitution) problem. Remember
that you need to get an equation that connects the differentials du and dy
whenever you use a change of coordinates.

Problem 2.26 Let’s solve the ODE y′ = (x − y)2 by using the change of
coordinates x = x and u = x − y. Remember to compute the differential du,
and then separate variables to show that

1

u2 − 1
du = −dx.

Use a partial fraction decomposition to write
1

u2 − 1
as the sum of two sim- You can check your work with this

partial fraction calculator.
pler fractions (factor the denominator). After finishing the partial fraction
decomposition, integrate and give an implicit general solution to the ODE.

Using Laplace Transforms to Solve ODEs

Problem 2.27 Use Laplace transforms to solve the ODE y′ + 3y = cos(2t)
where y(0) = 1. Consider the following hints:

• You’ll need to use the partial fraction decomposition You can check your work with this
partial fraction calculator.

s

(s+ 3)(s2 + 4)
=

A

s+ 3
+
Bs+ C

s2 + 4

as part of your work. Remember that for a partial fraction decomposition,
when the denominator is linear, you need a constant above, i.e. A/(s+ 3).
When the denominator is quadratic, you need a linear expression above it,
i.e. (Bs+ C)/(s2 + 1).

• When you compute the inverse Laplace transform of (Bs+ C)/(s2 + 4),
remember that you can break this up as two fractions.

• If you end up with 13’s in your denominators, you’re on the right track.

The next problem applies Newton’s law of cooling to examine what happens if
the temperature of the surrounding environment changes. Recall that Newton’s
law of cooling suggests that the rate of change of temperature of an object
is proportional to the difference between the current temperature and the
surrounding atmosphere. If we let y(t) be the temperature of the house at any
time t, then we can write Newton’s law of cooling as

y′ = k(A− y), y(0) = y0.

http://bmw.byuimath.com/dokuwiki/doku.php?id=partial_fraction_decomposition_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=partial_fraction_decomposition_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=partial_fraction_decomposition_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=partial_fraction_decomposition_calculator
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Problem 2.28 Suppose that during a summer day, the temperature outdoors
fluctuates between 70◦F and 110◦F. We can approximate this with a sine wave.
If we let t = 0 be noon, then we could obtain the temperature A outdoors
after t hours using the formula A(t) = 20 sin( 2π

24 t) + 90. Suppose that the air
conditioner breaks at noon (the house is at 70◦F at noon), and then by 6 pm in
the evening, the temperature rises to 90◦F.

1. Use Newton’s law of cooling to set up an IVP that would give the temper-
ature of the house (see the paragraph before this problem).

2. Solving this ODE is quite involved, so let’s simplify the computations. In class, we’ll solve this with
technology for any k, as well as
graph and interpret the solution.

If we let t = 2π correspond to 1 full day, then the temperature of the
surrounding atmosphere is A(t) = 20 sin(t) + 90. If we let k = 1 and
measure temperature by 10 degree increments, we could write our IVP as

y′(t) = 2 sin(t) + 9− y, y(0) = 7.

Solve this IVP with Laplace transforms.

[Hint: There are two partial fraction decompositions that we need to You can check your work with this
partial fraction calculator.

perform. One of them is
?

s(s+ 1)
= A

s + B
s+1 . The other is ?

(s+1)(s2+1) =

C
s+1 + Ds+E

s2+1 . Don’t forget that the numerator is linear when the denomi-
nator is quadratic.]

First Order Systems of ODEs

Let’s now apply our knowledge about tank mixing problems to set up an IVP
where there are two tanks. This gets interesting when we realize we can replace
the tanks with countries and the salt with goods that we import/export (or
deer immigrating between sections of a forest, or studying traffic flow between
nearby cities, etc.)

Problem 2.29: Mixing Model System Imagine that we have two tanks.

The first tank contains 6 lbs of salt in 10 gallons of water. The second tank
contains no salt in 20 gallons of water. Each tank has an inlet valve, and
an outlet value. We attach hoses to the tanks, and have a pump transfer 2
gallon/minute of solution from tank 1 to tank 2, and vice versa from tank 2 to
tank 1. So as time elapses, there are always 10 gallons in tank 1 and 20 gallons
in tank 2. Our goal is to find the amount of salt in each tank at any time t.

1. We know there are initially 6 lbs of salt in tank 1, and no salt in tank 2. If
we allow the pumps to transfer salt for enough time, explain why the salt
content in tank 1 will drop to 2 lb, and the salt content in tank 2 should
increase to 4 lbs.

2. Let y1(t) and y2(t) be the lbs of salt in tanks 1 and 2. Explain why

y′1 = − 2

10
y1 +

2

20
y2.

Obtain a similar equation for y′2.

3. Write your ODEs in the matrix form(
y′1
y′2

)
=

[
−2/10 2/20

? ?

](
y1
y2

)

http://bmw.byuimath.com/dokuwiki/doku.php?id=partial_fraction_decomposition_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=partial_fraction_decomposition_calculator


CHAPTER 2. FIRST ORDER ODES 36

4. Draw the vector field represented by your matrix (use bounds that include Remember you can use the vector
field plotter to graph any vector
field.

both (6, 0) and (2, 4)). Then sketch the solution (y1(t), y2(t)) to your IVP
by starting at the point (6, 0) and following the field until the vectors no
longer tell you to move. Does your answer agree with your reasoning in
the first part of this problem?

Problem 2.30 On October 14, 2012, Felix Baumgartner jumped from a
helium balloon at about 39,000 m above sea level (the highest ever parachute
jump made by man). Let y(t) represent Felix’s height t seconds after jumping. Felix had to wear a pressurized

space suit because the altitude
was so high.

Let v(t) represent his velocity. We know that y′(t) = v(t) and that v′(t) = a(t).
The acceleration involves 2 parts. We know that the total force acting on an
object, by Newton’s second law of motion, is FT = ma. We’ll assume that the
force from gravity FG = mg is constant (probably not the best assumption with
such a large fall), and that the force due to air resistance FR is proportional to
Felix’s velocity (so doubling his speed would provide twice as much resistance).
Our goal is to find Felix’s top speed, his terminal velocity.

1. The total force FT = ma is the sum of the force from gravity FG = −mg
and the force due to air resistance FR, which we assumed was proportional
to the velocity. Use this information to obtain the ODE v′ = −g − k

mv.

2. Solve the IVP v′ = −g − k
mv where v(0) = 0. Solve for v and then state My favorite approach on this one

is an integrating factor.his maximum speed (what happens as t → ∞). Your answer will be in
terms of k, g, and m.

3. Integrate your solution for v(t) to give Felix’s height y(t). Assume that
y(0) = h.

Building a Mathematical Model

One of the main goals of this chapter is to help you see the huge range of
applications where we can apply differential equations. The next application,
Torricelli’s law, allows us to understand how rapidly water will flow out of can
that has a punctured hole in the bottom. This law connects the ideas that flow
in and flow out must be the same, as well as providing another great application
of proportionalities.

Problem 2.31: Torricelli’s Law Suppose that we puncture a hole in the
bottom of a cylindrical tank whose radius is r m. As the height of the water
will slowly drop, let h(t) represent the water level in the tank after t seconds.
Assume that the hole we created has an area of a square meters.

1. The tank of water has a certain potential energy (measured from the
bottom of the tank). As water leave the tank, this potential energy drops.
For energy to be conserved, the kinetic energy of the water leaving must
match the drop in potential energy of the water in the tank. The kinetic
energy of a small mass m is K = 1

2mv
2. The potential energy of a small

mass located h units up is P = mgh. Use this information to explain why
v =
√

2gh.

2. Let V (t) be the volume of water in the tank at time t. If the water leaves
at speed v(t) through a hole whose area is a, explain why dV

dt = −av.

http://bmw.byuimath.com/dokuwiki/doku.php?id=vector_field_plotter
http://bmw.byuimath.com/dokuwiki/doku.php?id=vector_field_plotter
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3. Because the can is cylindrical, we know that V (t) = πr2h(t). Use the
three equations v =

√
2gh, dVdt = −av, and V (t) = πr2h(t) to explain why

h′ is proportional to
√
h. What is the proportionality constant?

4. Solve the IVP h′ = −a
√

2g

πr2

√
h where h(0) = h0. You can use your solution to

determine how long it takes for
tank to completely empty.You can read more about Torricelli’s law in this excellent online reference.

Problem 2.32 Let’s analyze a deer population in a forested region. Data
collection has shown that the forest can support about M = 2000 deer, and that
the number of deer y(t) after t years follows the logistics model y′ = k(M − y)y
where k = 1/5000. Fish and game has decided to open the region up for hunting.
They administer deer tags so that they can control how many deer die each year
through hunting. Let’s assume that the current number of deer is y(0) = P , and
that fish and game issues tags to allow for about h deer to die each year from
hunting.

1. Explain why an appropriate model for the deer population with hunting
allowed is y′ = k(M − y)y − h. What are the units of y, y′, h, and k?

2. This ODE is rather complicated to solve. However, we can visualize the
solution by looking at an appropriate vector field plot. Explain why the
vector field ~F (t, y) = (1, y′) gives the tangent vectors to the solution.

3. Remember that k = 1/5000 and M = 2000. Let h = 100, and then
use the Sage vector field plotter to construct a plot of the vector field
F (t, y) = (1, k(2000−y)y−100). Discuss what you see and how it applies to
the deer population (write a few sentences). In particular, what happens
to the population of deer in the long run if the current population is
P = 1900, versus P = 1000, versus P = 400.

4. Is there some level h at which hunting can cause the deer population to go
extinct? Consider drawing the vector field with h = 150, and then with
h = 250. What recommendation would you give to fish and game if you
wanted to keep the deer population alive?

Using a change of coordinates

Let’s return to practicing a few problems where we have to make a substitution.
Remember that if we let y = xu, then we need the differential dy = udx+ xdu
to get rid of dy in our ODE. If we make the substitution u = y−3, then we need
the differential du = −3y−4dy to get rid of dy in our ODE. The first step after
making any substitution is to find appropriate differentials.

Remember that we say an ODE is a Bernoulli ODE if it can be written
in the form y′ = a(x)y + b(x)yn. To solve this ODE, we use the substitution
u = y1−n. Bernoulli showed that with this substitution, you will always succeed
in converting the ODE into an ODE that has an integrating factor.

Problem 2.33 Solve the ODE y′ = 3y + 7y12 by using a Bernoulli substitu-
tion (see the previous paragraph). Make sure you give an explicit solution (solve
for y). Then generalize your work to give an explicit solution to y′ = ay + byn

where a, b, and n are constants.
[Hint: The first step after letting u = y1−n is to compute the differential du.

Then get everything in terms of x and u. Find an integrating factor.]

http://books.google.com/books?id=s1-mZMg5fLgC&pg=PA176&lpg=PA176&dq=torricelli's+law+differential+equation+examples&source=bl&ots=03odLvcYgt&sig=3_fAXBnd0zeqd2ynFVBgw2JOI9Y&hl=en&sa=X&ei=zg6FUeWROc7migKjgoGQDQ&sqi=2&ved=0CEUQ6AEwAw#v=onepage&q=torricelli's%20law%20differential%20equation%20examples&f=false
http://bmw.byuimath.com/dokuwiki/doku.php?id=vector_field_plotter
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Problem 2.34 Consider the ODE (Ax+By)dx+ (Cx+Dy)dy = 0 where
A, B, C, and D are constants.

1. Why is this ODE not currently separable? Also, show that neither of our
integrating factor formulas F (x) or F (y) are usable.

2. Use the substitution u = y/x, so y = xu, to rewrite the ODE as

C +Du

A+ (B + C)u+Du2
du = − 1

x
dx.

3. If A = 4, B = 3, C = 2, and D = 1, then use a partial fraction decomposi-
tion to simplify the left side above, and finally solve the ODE. You may
give an implicit solution.

Using Laplace Transforms to Solve ODEs

Let’s practice one more problem with Laplace transforms before we end this
chapter. Remember that when you perform a partial fraction decomposition,
you need a constant above a linear denominator, and a linear expression above
a quadratic denominator.

Problem 2.35 Use Laplace transform to solve the IVP y′ + 2y = 5 cos(3t)
where y(0) = 1.

If you wanted to use an integrating factor F (x) on this problem, what integral
would you have to perform? What does this have to do with Laplace transforms?

First Order Systems of ODEs

Let’s now look at another position/velocity/acceleration model, but this time
related to springs.

Problem 2.36 Suppose we attach an object with mass m to a spring. We
place the spring horizontally, and put the mass on a frictionless track. We
let go of the object, it starts to oscillate. We’ll use the function x(t) to keep
track of the position of the spring at any time t, with x = 0 corresponding to
equilibrium (the mass is at rest). Robert Hooke (1635 – 1703) showed that the
force F needed to displace an object attached to a spring is proportional to the
displacement x.

1. Suppose the object has been displaced x units. Explain why the force
of the spring on the object is FS = −kx. Since newton’s second law of
motion says that the total force acting on an object is FT = ma, explain
why v′ = − k

mx.

2. We now have the system of ODEs x′ = v and v′ = − k
mx. Rewrite this

system in the matrix form(
x′

v′

)
=

[ ](
x
v

)
.

If we let k = 3 and m = 2, draw the vector field associated with the matrix.
What relationship do you see between x and v? Use the vector field plotter to plot

~F (x, v) = (v,− 3
2
x).

http://bmw.byuimath.com/dokuwiki/doku.php?id=vector_field_plotter
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3. Let k = 3 and m = 2. Also, let x(0) = 5 and v(0) = 7. Then compute the
Laplace transform of both x′ = v and v′ = − k

mx (use X and V for the
Laplace transforms of x and v). Solve for X in terms of s and then invert
Laplace transform both sides. You can now predict the exact position x(t)
of the spring at any time t.

[Hint: You should not need any partial fraction decompositions, though
you’ll have to take a square root of 3/2.]

Problem 2.37 Consider the system of first order differential equations given
by x′ = 4y and y′ = x.

1. Write the system as a matrix product (state A)[
x′

y′

]
= A

[
x
y

]
=

[ ] [
x
y

]
.

2. Create a vector field plot of ~F (x, y) = A

[
x
y

]
(use software). Use your plot

to guess a relationship between x and y. Draw several curves representing
this relationship.

3. Compute the Laplace transform of both x′ = 4y and y′ = x, where
we’ll use x(0) = x0 and y(0) = y0. Solve for X and Y to show that

X(s) =
x0s+ y0
s2 − 4

. What is Y (s)?

4. Use inverse Laplace transforms to state the solution x(t) and y(t) to this
system. You can do this without needing a partial fraction decomposition
if you use hyperbolic trig functions.

Wrap up

In this chapter, we’ve explored various different techniques to solve first order
ODEs and systems. Here’s a list.

• Separation of variables: The easiest, if you can separate.

• Exact: The ODE has a potential.

• Integrating Factors: Make the ODE exact.

• Substitution: Change variables so you can make the ODE exact.

• Laplace Transforms: Dodge integration. Replace it with algebra.

Problem 2.38 Which method would you use to solve each ODE below? If
you opt for separation of variables, then show us how to separate. If the ODE is
exact, show us how you know. If you decide to find an integrating factor, show
us the integrating factor. If you will use a substitution, what substitution will
you use? If you decide to use Laplace transforms, take the Laplace transform of
both sides. In all cases, don’t solve the ODE, rather just show us the first step
in the solution process.

1. x2y′ = 4xy2, y(2) = 1.
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2. xy′ = 3y + x, y(2) = 1.

3. 3xy′ = 3y + x, y(2) = 1.

4. y′ + 8y = ex, y(0) = 1.

5. y′ + 8y = y4, y(0) = 1.

Question 2.4. Why can’t we (yet) use a Laplace transform to solve y′ =
−a(y −M)y?

This concludes the chapter. Look at the objectives at the beginning of the
chapter. Can you now do all the things you were promised?
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Extra Practice

Please use the problem list below to find extra practice problems to help you learn. All of these problems
come from Schaum’s Outlines Differential Equations by Richard Bronson.

Concept Source Suggested Relevant

Separable Review Schaum’s Ch 4 42 1-8,23-45

Exact Schaum’s Ch 5 5,11,26,29,34 1-13,24-40,56-65

Integrating Factors Schaum’s Ch 5 21,22,41,47 21,22,41-42,47-49,51,55

Linear Schaum’s Ch 6 4,13,20,32,51 1-6,9-15,20-36,43-49,50-57

Homogeneous Schaum’s Ch 4, 11,12,48 11-17,46-54

Bernoulli Schaum’s Ch 6 16,53 16,17,37-42,53

Applications Schaum’s Ch 7 4[27],6[33],1[38] 1-6 [26-44]
10[48],17[67],7[88] 8-10 [45-50],16-18[65-70], 7[87-88]

Laplace Review Schaum’s Ch 21 19,32,33[use table] 4-7,10-12,27-35

Inverse Transforms Schaum’s Ch 22 1,2,3,6,13,15 1-3,6,15,17,20-28,42,42,45-47

Solving ODEs Schaum’s Ch 24 1,14,19(parfrac) 1,2,11,14,15,19-19,22,24,25,38-42

Remember that you can check almost all of your work with technology. Use the following technology links
to help you check your understanding.

• First Order ODE Solver

• Laplace Transforms

http://bmw.byuimath.com/dokuwiki/doku.php?id=first_order_ode_solver
http://bmw.byuimath.com/dokuwiki/doku.php?id=laplace_transforms


Chapter 3

Linear Algebra Arithmetic

After completing this chapter, you should be able to:

1. Explain the difference between linearly independent and linearly dependent.
When vectors are linearly dependent, write one of the vectors as a linear
combination of the others.

2. Solve systems of equations by obtain the reduced row echelon form (rref)
of a matrix (Gauss-Jordan elimination).

3. Explain how to compute the inverse of a matrix. Then use the inverse
to solve various problems such as finding ~x in A~x = ~b or finding A in
AQ = QD.

4. Show how to compute the determinant of a square matrix of any size. Be
able to articulate the connection among determinants, linear dependence,
and invertibility.

5. Explain how to see eigenvectors and the sign of eigenvalues in a vector
field. Then use this knowledge to show how to obtain eigenvalues and
eigenvectors from determinant and row reduction computations. I’ve created video tutorials for

many of the ideas in this chapter.
You can view them by following
this link to YouTube.Linear Independence and Dependence

The heart of linear algebra has to deal with understanding relationships between
vectors. Vectors give us directions of motion. They tell us how forces act on
objects. We’ve seen already that vectors provide us with visual solutions to
differential equations. One of our goals in this chapter is to become comfortable
with working with linear combinations of vectors. Remember that given n You may want to review the

formal definition of a linear
combination. See Definition 1.1 on
page 3.

vectors ~v1, ~v2, · · · , ~vn and n scalars c1, c2, · · · , cn we say their linear combination
is the sum

c1~v1 + c2~v2 + · · ·+ cn~vn.

Problem 3.1 Sally is trying to find a treasure that’s located in a corn field
(she’s geocaching). Her position is currently at (0, 0), and she knows that the
treasure is located at (6, 8) (units are hundreds of yards). She can’t walk in a
straight line to the treasure, because that would damage the rows of corn. The
corn is planted in rows that run parallel to the vector (2, 1). She’s currently
on a road that moves parallel to the vector (−1, 1). The farmer will only allow
her to walk parallel to the rows of corn (if she crosses between rows, she might
damage the crop). So she has to follow the road for some distance by following
the vector (−1, 1) along the road, and then enter the rows of corn and follow
the vector (2, 1).

42

http://www.youtube.com/watch?v=Di1Gr1jVMMk&list=PL7A2089C33C8EFC84
http://www.youtube.com/watch?v=Di1Gr1jVMMk&list=PL7A2089C33C8EFC84
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1. What does the vector equation(
−1
1

)
x+

(
2
1

)
y =

(
6
8

)
have to do with Sally’s problem.

2. How would you rephrase the above equation using the language of linear
combinations. Which vector is a linear combination of which vectors?

3. Find values for x and y that make this equation valid.

The geocaching problem above requires that Sally find out how to obtain the
vector (6, 8) as a linear combination of the vectors (−1, 1) and (2, 1). These two
vectors (the road and corn rows) gave us two directions that are independent of
each other. Each direction provides us with a new way to travel that we could
not do before. There is only one way to get to the treasure at (6, 8) if these are
Sally’s only two ways to move. Let’s examine what happens if we add a third
direction, via some irrigation pipes.

Problem 3.2 Assume the same conditions as the previous problem. However,
now let’s assume that in the corn field there are irrigation pipes following the
vector (1, 1). Sally now has the option to follow the road (−1, 1), the rows of
corn (2, 1), or the irrigation pipes (1, 1). She still wants to get to the treasure at
(6, 8), but now had 3 options for ways to travel.

1. To get to the treasure, Sally needs to write (6, 8) as a linear combination
of the vectors (−1, 1), (2, 1), and (1, 1), i.e. she needs to solve(

−1
1

)
x+

(
2
1

)
y +

(
1
1

)
z =

(
6
8

)
.

One such option is x = 3, y = 4, and z = 1. Find 3 different ways for Sally
to get from the origin (0, 0) to the treasure at (6, 8).

2. Can you find a way to express every possible option that Sally has?

Solving Systems of Equations

Every time we want to solve a problem involving linear combinations, we can
convert that problem into a system of equations. For example, if we want to

write

 −4
−15

9

 as a linear combination of
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2
−1

,

 3
4
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x2+
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 or

 1
2
−1

3
4
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−2
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x1x2
x3

 =

 −4
−15

9

 ,
which as a system of equations becomes

x1 + 3x2 − 2x3 = −4

2x1 + 4x2 − 10x3 = −15

−1x1 − 2x2 + 6x3 = 9

You’ve solved systems of this form in the past. In this chapter we’ll learn an
efficient algorithm for solving these systems.
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Problem 3.3: Organized Substitution Our goal on this problem is to

solve the system of equations

x+ 3y − 2z = −4

2x+ 4y − 10z = −15

−1x− 2y + 6z = 9.

To solve this system, we’ll use organized substitution.

1. The first equation is easy to solve for x. Solve for x and circle your result.
Then replace x with this in both of the other equations. After substituting,
you should be able to rewrite each equation in the form 0x+?y+?z =?.

2. One of these two simplified equations is easy to solve for y. Solve this
equation for y (you shouldn’t need fractions), and write your answer in
the form y =?z+?. Circle this result. Use this to replace y in the other
equation and simplify so you have 0x+ 0y+?z =?.

3. At this point you should be able to solve for z. Circle your result. Then
use this result to find y in your circled equation for y. Then use both
values for z and y to obtain x in your circled equation for x. If you ended
up with z = 3/2, then you’re on the right track.

Problem 3.4: Gaussian Elimination We’ll now use elimination to solve
the system of equations

x+ 3y − 2z = −4

2x+ 4y − 10z = −15

−1x− 2y + 6z = 9.

1. The first equation has a 1 as the coefficient in front of x. Add a multiple Start by making sure that the
coefficient in front of x on the top
row is not zero. Swap rows if
needed, and then multiply both
sides of the top equation by a
constant so that you have a 1 in
this spot. Then add a multiple of
this equation to every other
equation to eliminate x from the
other equations.

of the first equation to every other equation so that you eliminate the x
variable from the other equations. Write your system in the form

x+ 3y − 2z = −4

0x+?y+?z =?

0x+?y+?z =?.

2. One of these two simplified equations is easy to solve for y. If you need to
swap equations 2 and 3, or multiply both sides of an equation by some
constant, do so now so that you can rewrite the system in the form If you ignore the top row and the

variable x, then at this point we
just repeat the above process with
y. Make sure the coefficient in
front of y is 1, and then add
multiples of the second equation
to each lower equation to
eliminate y.

x+ 3y − 2z = −4

0x+ 1y+?z =?

0x+?y+?z =?.

Then add a multiple of the second equation to the third equation so that
you eliminate the y. Rewrite your system in the form

x+ 3y − 2z = −4

0x+ y+?z =?

0x+ 0y+?z =?.
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3. Multiply the third equation by some nonzero constant so that the coefficient We now ignore the top 2 rows and
variables x and y, and then repeat
the elimination process again. We
make sure to get the coefficient in
front of z to be a 1. Since there
are no more rows beneath this
third, we are done. If there had
been more rows, we would just
keep going.

in front of z is a 1. Rewrite the system one final time as

x+ 3y − 2z = −4

0x+ y+?z =?

0x+ 0y + z =?.

You now have z. Use your value for z to quickly obtain y from the second
equation, and then x from the first equation.

Observation 3.1. When solving the above system with substitution, we

1. picked an equation for which it was easy to solve for a variable,

2. solved for that variable, and then

3. replaced that variable in the other equations and simplified each equation.

We then leave the picked equation alone, and repeat this process on the remaining
simplified equations.

When solving the above system with elimination, we

1. picked an equation that we could use to eliminate a variable from the
other equations, interchanging this equation with one higher up if needed,

2. multiplied the chosen equation by a nonzero constant to make the leading
coefficient 1, and then

3. added a multiple of the chosen equation to the other equations to eliminate
the variable from the other equations.

We then left the picked equation alone, and repeated this process on the remaining
simplified equations below it.

These two processes (organized substitution and Gaussian elimination) are
fundamentally the same process. You should have noticed that your intermediate
steps were the same. We now develop a way to replicate both of these processes
with matrices.

Problem 3.5: Gaussian Elimination with Matrices Let’s solve the same
system

x+ 3y − 2z = −4

2x+ 4y − 10z = −15

−1x− 2y + 6z = 9.

but now we will only write the coefficients of our system in a matrix. The matrix
helps us organize our work, and we have less to write.

1. Start by writing the coefficients of system in the matrix (fill in the blanks) This matrix is called the
augmented matrix of the system.
The vertical bar you see is
optional, and is often used to help
people remember that there is an
equal sign there.

1 3 −2 −4
2 ? ? −15
? ? 6 ?

 .
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2. Since the upper left entry is a 1, we are ready to reduce. Add a multiple I often write the row operation
next to the row I am about to
replace.

of row 1 to both row 2 and row 3 (replacing the old row 2 and 3) so that
you obtain a zero in both entries below the leading 1 in the top row. Write
your work as1 3 −2 −4

2 ? ? −15
? ? 6 ?

R2 − 2R1

R3+?R1

⇒

1 3 −2 −4
0 ? −6 ?
0 1 ? ?

.
3. Swap R2 and R3. This should get you a 1 as the first nonzero entry in

row 2. Then you can add a multiple of row 2 to row 3 to obtain a zero
below this 1. Write your work in the form1 3 −2 −4

0 ? −6 ?
0 1 ? ?


R2 ↔ R3

⇒

1 3 −2 −4
0 1 ? ?
0 ? −6 ?


R3+?R2

⇒

1 3 −2 −4
0 1 ? ?
0 0 ? 3

.
4. Multiply row 3 by some nonzero constant so that the first nonzero entry

in row 3 is a 1. Write your work as1 3 −2 −4
0 1 ? ?
0 0 ? ?


?R3

⇒

1 3 −2 −4
0 1 ? ?
0 0 1 ?


5. Now rewrite your matrix as a system of equations. The last line row of

your matrix, after rewriting it as a system, should be z = 3/2. Use this to
find y and x.

In our work above, our process was precisely the same as when we used
elimination without matrices. When working with equations, we can always
(1) interchange the order of equations without changing the solution set to the
system. We can also (2) multiply both sides of an equation by a nonzero number
without affecting the solutions. Finally, (3) adding a multiple of one equation
to another will not affect the solution set. When working with matrices, these
three operations on equations become operations on rows of a matrix.

Definition 3.2: Row Operations. We define allowed row operations.

1. Interchange two rows.

2. Multiply a row of a matrix by a nonzero constant.

3. Add a nonzero multiple of a row to another row.

The row operations above are precisely what we used to row reduce our
matrix. The elimination process begins with the first column. We obtain a 1
in the top of that column by (1) swapping rows and/or (2) multiplying a row
by a nonzero scalar. We then (3) add multiples of the first row to the other
rows to obtain zeros below this leading 1. We then ignore the row and column
containing this leading 1, and repeat the reduction on the remaining part of the
matrix. We can summarize the reduction algorithm with the diagram below.∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⇒
1 ∗ ∗ ∗

0 ∗ ∗ ∗
0 ∗ ∗ ∗

⇒
1 ∗ ∗ ∗

0 1 ∗ ∗
0 0 ∗ ∗

⇒
1 ∗ ∗ ∗

0 1 ∗ ∗
0 0 1 ∗

 .
The matrix at the far right provides us with enough information to quickly
obtain a solution. After reducing the matrix to this form, we say the matrix is
in row echelon form.
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Definition 3.3: Row Echelon Form, Leading 1, Pivot Column. We say
a matrix is in row echelon form (ref) if it satisfies each of the following conditions:

• each nonzero row begins with a 1 (called a leading 1),

• the leading 1 in each row occurs further right than the leading 1 in the
row above, and

• any rows of all zeros appear at the bottom.

The position in the matrix where the leading 1 occurs is called a pivot. The
column containing a pivot is called a pivot column.

Problem 3.6: Gaussian Elimination with Back Substitution Consider
the three planes 2x+ 3y + 4z = 4, x+ 2y = 6, and −x+ y + 2z = 0. Let’s find
the point of intersection by applying row operations to the augmented matrix

A =

 2 3 4 4
1 2 0 6
−1 1 2 0

 .
We’ll first obtain row echelon form, and then continue reducing the matrix until
we obtain what is called reduced row echelon form.

1. Apply Gaussian elimination to obtain a row echelon form for A. You
should start by interchanging the first and second rows, so that you have
a 1 in the upper left. Remember the pattern We say a matrix is in row echelon

form when (1) each nonzero row
begins with a leading 1, (2) a
leading 1 appears to the right of
any leading one above it, and (3)
any rows of all zeros appear at the
bottom.

 2 3 4 4
1 2 0 6
−1 1 2 0

⇒
1 ∗ ∗ ∗

0 ∗ ∗ ∗
0 ∗ ∗ ∗

⇒
1 ∗ ∗ ∗

0 1 ∗ ∗
0 0 ∗ ∗

⇒
1 ∗ ∗ ∗

0 1 ∗ ∗
0 0 1 ∗


2. Let’s now use row operations (instead of back substitution) to find the

solution. Starting on the right, and working left, use the 1’s in each pivot
column to eliminate the nonzero numbers above each leading 1. Use the
pattern We say a matrix is in reduced row

echelon form when the matrix is
in row echelon form, and there are
zeros above each pivot.

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗

⇒
1 ∗ 0 ∗

0 1 0 ∗
0 0 1 ∗

⇒
1 0 0 ∗

0 1 0 ∗
0 0 1 ∗


to complete your reduction. State the point of intersection of the planes. Check your answer with the

technology link Visualizing
Systems of Equations.

The process above is called Gaussian elimination with back substitution.
The forward phase of reduction results in a matrix in row echelon form. We
then work backwards starting with the right most pivot column, and use the
leading 1 to eliminate the zeros above it.

Definition 3.4: Reduced Row Echelon Form (rref). We say that a matrix
is in reduced row echelon form (rref) if

• the matrix is in row echelon form, and

• each pivot column contains all zeros except for the leading 1 in the pivot.

The row reduction process we’ve described above may not always result in a
unique solution.

http://bmw.byuimath.com/dokuwiki/doku.php?id=visualizing_systems_of_equations
http://bmw.byuimath.com/dokuwiki/doku.php?id=visualizing_systems_of_equations
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Problem 3.7 On this problem, you’ll be using software to obtain the rref of
a matrix. The Sage command is “A.rref()” and the Mathematica command is
“RowReduce[A].” You can use the Sage RREF

Calculator to check your result.
Follow the link.1. Consider the three planes x+2y−z = 3, 2x−y+4z = 0, and −x+2z = 4.

Use software to obtain the reduced row echelon form (rref) for the matrix 1 2 −1 3
2 −1 4 0
−1 0 2 4

 .
What does the reduced matrix tell you about how the planes intersect?

When you present in class, you should always write the original matrix,
draw an arrow to the rref of the matrix, and write rref above your arrow.
This way the class can see what matrix you reduced, and what the rref is.

2. If I wanted to write the vector (3, 0, 4) as a linear combination of the
vectors (1, 2,−1), (2,−1, 0), and (−1, 4, 2), then what should I let c1, c2,
and c3 equal so that

c1(1, 2,−1) + c2(2,−1, 0) + c3(−1, 4, 2) = (3, 0, 4),

which we could rewrite in the easier to use column form

c1

 1
2
−1

+ c2

 2
−1
0

+ c3

−1
4
2

 =

3
0
4

 .

[Hint: What does this have to do with the first part?]

3. Now consider the three planes x + 2y − z = 3, 2x − y + 4z = 0, and
−5y + 6z = −6. Set up an appropriate augmented matrix (make sure
you show us the matrix), and use software to verify that the reduced row
echelon form is 1 0 7

5
3
5

0 1 − 6
5

6
5

0 0 0 0

 .
Write the three equations represented by this rref (the third equation may
seem silly).

4. Note that the third column does not have a pivot in it. If we added the
equation z = z to our work above, then we could solve for x, y, and z in
terms of the variable z. Write your work in the form Because we can choose the third

variable to be anything we want,
we call it a free variable.x

y
z

=
=
=

?
?
z

and

xy
z

 =

?
?
1

 z +

?
?
0

 .

Definition 3.5: Free Variable. The variables in a system of equations each
correspond to column of the augmented matrix. Some of the columns are pivot
columns, and some are not. The variables corresponding to the nonpivot columns
we call free variables. We can choose these variables to be any value we want,
and we can write the solution to a system of equations in terms of these free
variables. The variables that correspond to pivot columns we call basic variables.

Problem 3.8 Each of the following augmented matrices requires one row Here’s an applicable YouTube
video.operation to be in reduced row echelon form. Perform the single required row

operation, and then write the solution to the corresponding system of equations
in terms of the free variables.

http://bmw.byuimath.com/dokuwiki/doku.php?id=rref_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=rref_calculator
http://www.youtube.com/watch?v=89QO4t1S-cA&feature=share&list=PL7A2089C33C8EFC84
http://www.youtube.com/watch?v=89QO4t1S-cA&feature=share&list=PL7A2089C33C8EFC84
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1.

1 0 0 3
0 0 1 1
0 1 0 −2

 [Remember,

you only get one row operation.]

2.

 1 2 0 −4
0 0 1 3
−3 −6 0 12

 [The second

column won’t have a pivot, so in-
clude the equation x2 = x2.]

3.

1 0 2 4
0 1 −3 0
0 0 0 1



4.


0 1 0 7 0 3
0 0 1 5 −3 −10
0 0 0 0 1 2
0 0 0 0 0 0


[There are two free variables in
this problem. One of the free
variables is x1.]

Throughout the remainder of this chapter, you’ll be asked to obtain the
rref of many matrices. Always start by using software to obtain the result. You can use the Sage rref

calculator to row reduce a matrix.
You can use this on any device
that can access a web browser.

Even if the problem asks you to compute the rref by hand, please start by using
software. This will save you hours of potentially wasted time. If you know what
the final answer is, you will be able to recognize that you have made a mistake
early in the reduction process.

Linear Independence and Dependence

Think back on the opening problems of this chapter. Sally starts at the origin
(0, 0). Because Sally can follow the road (−1, 1), she has the ability to move
away from (0, 0). Using the road, she can use linear combinations of (−1, 1) to
reach any location on the line y = −x.

The rows of corn (2, 1) allow Sally to leave the road. She can use a linear
combination of (−1, 1) and (2, 1) to arrive at any final destination in the plane
that she wants. We say these two vectors (−1, 1) and (2, 1) are linearly indepen-
dent because they each expand the places Sally can reach. Neither depends on
the other. The vectors provide independent directions.

Introducing the third direction of travel (1, 1) along the irrigation pipes does
not change where Sally can travel to, rather this third vector just increases her
options for how to get there. Because of this, we say that (1, 1) linearly depends
on (−1, 1) and (2, 1). The three vectors (−1, 1), (2, 1), and (1, 1) are dependent.

Problem 3.9 Read the three paragraphs before this problem. Then answer
the following.

1. If Sally only uses the road and rows of corn, how many linear combinations
of (−1, 1) and (2, 1) are there that will allow Sally to reach the origin? In
other words, solve the linear combination equation(

−1
1

)
x+

(
2
1

)
y =

(
0
0

)
by reducing an appropriate matrix. Make sure you show your reduction
steps by hand.

2. If Sally is also allowed to use the irrigation pipes, how many linear com-
binations of (−1, 1), (2, 1), and (1, 1) are there that will allow Sally to
reach the origin? Obtain the reduced row echelon form of the matrix[
−1 2 1 0
1 1 1 0

]
to give your answer.

3. Write the vector (1, 1) as a linear combination of the vectors (−1, 1) and Because this problem has an
answer, we say that (1, 1) linearly
depends on (−1, 1) and (2, 1).

http://bmw.byuimath.com/dokuwiki/doku.php?id=rref_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=rref_calculator
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(2, 1), i.e. solve the equation(
−1
1

)
x+

(
2
1

)
y =

(
1
1

)
.

4. Can you think of a different third vector so that using this vector would
expand Sally’s final destination points beyond where she can already get
to with the road (−1, 1) and rows of corn (2, 1)? Explain.

Definition 3.6: Linear Independence. We say that a set of vectors {~v1, ~v2, . . . , ~vn}
is linearly independent if the only solution to the homogeneous system

c1~v1 + c2~v2 + . . .+ cn~vn = ~0

is the trivial solution c1 = c2 = · · · = cn = 0. If the vectors are not independent,
then we say that the vectors are linearly dependent.

When a collection of vectors is linearly dependent, it is always possible to
write one of the vectors as a linear combination of the others. We say the vectors
are linearly dependent because one of the vectors depends on (can be obtained
as a linear combination of) the other vectors.

Problem 3.10 Are the vectors ~v1 = (1, 3, 5), ~v2 = (−1, 0, 1), and ~v3 =

(0, 3, 1) linearly independent? Solve the system c1~v1 + c2~v2 + c3~v3 = ~0 to answer
this question. If they are dependent, then write one of the vectors as a linear
combination of the others.

Are the vectors ~v1 = (1, 2, 0), ~v2 = (2, 0, 3), and ~v3 = (3,−2, 6) linearly
independent? Solve the system c1~v1 + c2~v2 + c3~v3 = ~0 to answer this question.
If they are dependent, then write one of the vectors as a linear combination of
the others.

[Hint: Rewrite each of these problems as a system of 3 equations. From
that system of equations, write down the corresponding augmented matrix (it
will have a column of all zeros at the right). Then use software to answer each
problem. You do not need to show your reduction steps, rather show the matrix
you reduced, and the rref.]

Problem 3.11 Imagine you are in a rocket traveling through space. The Imagine that each booster
provides a thrust through the
center of mass, so no rotation
occurs.

rocket has 4 boosters on it. The boosters provide thrust in a specific direction
(vector), with the ability to adjust how strong the push should be in each
direction (possibly even moving backwards in that direction - a two sided
booster). The 4 boosters allow movement in the directions (1, 1, 2), (0, 1, 3),
(2, 1, 1), and (−2, 1, 0).

1. Start by row reducing the matrix

1 0 2 −2
1 1 1 1
2 3 1 0

 to determine which Use the Sage RREF Calculator.

columns are pivot columns. Use technology to get an answer. Then show
your row reduction steps by hand.

The rest of this problem deals with interpreting your rref. Please give
answers with sentences.

2. If the 4th booster breaks, could some linear combination of the first three
rocket thrusts allow you to move in the direction of the 4th rocket? In
other words, is it possible to write (−2, 1, 0) as a linear combination of
(1, 1, 2), (0, 1, 3), and (2, 1, 1)? Explain.

http://bmw.byuimath.com/dokuwiki/doku.php?id=rref_calculator
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3. If the 3rd booster breaks, show that some linear combination of the other
three rocket thrusts allows you to move in the direction of the 3rd rocket.
What matrix should you row reduce to answer this. Show the class the
matrix you started with, and its rref. You do not need to show by hand
any reduction steps. Then write (2, 1, 1) as a linear combination of the
other three vectors.

4. You have been asked to give advice on a new rocket design. The designers
figure that as long as they pick 3 directions in which to provide thrust,
they should be able to fly in any direction they want. They attach boosters
which allow movement in the directions (1, 3, 2), (−3, 1, 4), (0, 1, 1). Set up
an appropriate matrix and use software to row reduce the matrix. What
advice would you give the designers?

5. What does any of the above have to do with linear independence and
linear dependence?

Problem 3.12 Start by finding the reduced row echelon form of the matrix Use the Sage RREF Calculator.

B =

[
2
1

6
3
−1
1

2
5

0
1

1
0

3
3

]
.

Show the steps you used to row reduce this matrix. The point to this problem
is to help you see how this single row reduction can answer all of the questions
below.

1. Write (2, 5) as a linear combination of (2, 1) and (−1, 1). Remember, that
when writing c1(2, 1) + c2(−1, 1) = (2, 5), you must solve for the unknown
constants.

2. Write (0, 1) as a linear combination of (2, 1) and (−1, 1). Remember, that
when writing c1(2, 1) + c2(−1, 1) = (0, 1), you must solve for the unknown
constants.

3. Continue to write each of

(
1
0

)
,

(
3
3

)
, and

(
6
3

)
as a linear combination

of

(
2
1

)
and

(
−1
1

)
. [Hint: At some point, rather than row reducing[

2
1
−1
1

a
b

]
, ask how you could use the larger matrix to answer this.]

4. The following matrix row reduces to give1 0 2 4 5 8
0 2 −6 2 −1 3
0 −2 6 0 2 1

 rref−−→

1 0 2 0 3 0

0 1 −3 0 −1 − 1
2

0 0 0 1 1
2 2

 .
Write (5,−1, 2) as a linear combination of the pivot columns.

Question 3.7. What connection is there between the rref of a matrix and the
columns of the matrix?

Definition 3.8: Coordinates of a vector relative to independent vec-
tors. Suppose that ~p1, ~p2, . . . , ~pk are a set of linearly independent vectors. Sup-
pose that

~v = c1~p1 + c2~p2 + · · ·+ ck~pk.

Then we call the coefficients c1, c2, . . ., ck, the coordinates of ~v relative to the
vectors ~p1, ~p2, . . . , ~pk.

http://bmw.byuimath.com/dokuwiki/doku.php?id=rref_calculator


CHAPTER 3. LINEAR ALGEBRA ARITHMETIC 52

Theorem 3.9 (Coordinates of a vector relative to the pivot columns). Suppose
that we row reduce an augmented matrix A to obtain the reduced row echelon
form R. Suppose that the pivot columns of A are ~p1, ~p2, . . . , ~pk. Then these
vectors are linearly independent. Furthermore, if ~v is any column in the matrix
A, then we can write

~v = c1~p1 + c2~p2 + · · ·+ ck~pk,

where the numbers c1, c2, . . ., ck, we call the coordinates of ~v relative to the
pivot columns of A. These coordinates are precisely the entries in the column of
the reduced row echelon form R that corresponds to the original column ~v.

In summary, to obtain the coordinates of jth column of A relative to the pivot
columns of A, we just obtain the rref R and then the coordinates are precisely
the first k entries in the jth column of R.

Seeing Eigenvectors in Vector Fields

Problem 3.13 The following parts ask you to look for points in a vector
field where the vector field pushes either straight outwards from the origin, or
pulls straight towards the origin.

1. Consider the vector field ~F (x, y) =

[
3 2
0 2

] [
x
y

]
=

[
3x+ 2y

2y

]
which we

could also write in the form ~F (x, y) = (3x+ 2y, 2y). Compute ~F (x, y) for
each of (x, y) equal to (2, 2), (2, 1), (2, 0), (2,−1), and (2,−2). Then circle
the two vectors (x, y) where the output F (x, y) is a linear combination
of the input (x, y). For example, if (x, y) = (−4, 2), then we compute
~F (−4, 2) = (−8, 4) and we see that (−8, 4) = 2(−4, 2). We have ~F (x, y) =
2(x, y).

2. Suppose you knew that there was a direction in which the vector field

~F (x, y) =

[
2 5
4 1

] [
x
y

]
=

[
2x+ 5y
4x+ y

]
causes a radial push outwards of 6

units. This would mean there exists (x, y) 6= (0, 0) such that[
2 5
4 1

] [
x
y

]
= 6

[
x
y

]
.

Find a nonzero vector (x, y) that satisfies this equation.

[Hint: Multiply out the left hand side, and then subtract 6

[
x
y

]
from

both sides. Combine terms to get a new matrix to row reduce, and then
row reduce the matrix. You should find there are infinitely many correct
answers. You just need to give one answer.]

Problem 3.14 Consider the matrix A =

[
1 −1
3 5

]
.

1. Explain why solving the problem A~x = c~x can be done by row reducing

the matrix

[
1− c −1 0

3 5− c 0

]
.

2. Let c = 3. Solve A~x = 3~x by row reducing an appropriate matrix. How
many solutions are there?
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3. Let c = 2. Solve A~x = 2~x by row reducing an appropriate matrix. How
many solutions are there?

4. When you row reduce a matrix, what must occur for there to be infinitely
many solutions? Can you find another value of c where there are infinitely
many solutions to this problem?

Problem 3.15 Consider the matrix A =

[
3 4
2 1

]
. This matrix gives us the

vector field ~F (x, y) = A

[
x
y

]
. We would like to find the directions in which the

vector field either pulls a point (x, y) directly towards the origin, or pushes the
point (x, y) directly away from the origin.

1. Explain why we seek a solution to

A

[
x
y

]
= c

[
x
y

]
where c is some constant. Is (x, y) = (0, 0) a solution to this equation. We
call this the trivial solution.

2. Subtract c

[
x
y

]
from both sides above. Show that to find a nonzero solution

(x, y), we need to row reduce the matrix

[
3− c 4 0

2 1− c 0

]
. Then use row

operations to eliminate the 2 in the lower left of the matrix. [Hint: Take
row 2 and multiply it by (3− c). Then add −2 times row 1 to row 2.]

3. We already know that (x, y) = (0, 0) is a solution. We want a nonzero
solution (x, y). Explain why the bottom row must reduce to be all zeros?

4. By forcing the bottom row to consist of all zeros, you should have a
quadratic equation involving c. Solve this equation for c. These are the
scalars for which you can find a vector that either pushes directly out or
pulls directly in.

The numbers c that you computed above are called eigenvalues. Note that
to find the eigenvalues, we wanted to row reduce a matrix and obtain infinitely
many solutions. We’ll return to this idea throughout the chapter.

Matrix Multiplication and Inverses

When we solve equations of the form ax = b with numbers, we simply multiply
both sides by 1

a to obtain x = 1
ab. This is because for any nonzero number a,

we have an inverse a−1 such that a−1a = 1 = aa−1. We’d like to do something
similar for the matrix equation A~x = ~b, but to do so we first must define matrix
multiplication.

Definition 3.10: Matrix Multiplication. Suppose that we have two matrices

A and B =
[
~b1 ~b2 · · ·~bn

]
, where bi is the ith column of B. Provided the

product A~bi makes sense, we define the product of these to matrices to be

AB =
[
A~b1 ~Ab2 · · · A~bn

]
.

In other words, to form the product AB we just multiply each column of B on
the left by the matrix A.
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Problem 3.16 Let

A =


a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

 and B =

b11 b12
b21 b22
b31 b32

 .
1. Use the definition of matrix multiplication above to compute the matrix

product AB.

2. If A is an m by n matrix (so m rows and n columns), and B is an n by p
matrix, then give a formula for the ith row and jth column of the product

AB. You could write your answer in the form

?∑
k=?

a??b??.

Problem 3.17 Consider the matrices

A =

1 2 3
0 1 4
5 6 0

 , B =

−24 18 5
20 −15 −4
−5 4 1

 , C =

a b
c d
e f

 , I =

1 0 0
0 1 0
0 0 1

 .
Compute the products AB, AI, and IC. If D is another matrix so that DI
makes sense, make a guess as to what the product DI is.

Definition 3.11: In and A−1. The identity matrix I is a square matrix so
that if A is a square matrix, then IA = AI = A. The identity matrix acts like
the number 1 when performing matrix multiplication. We can write

I2 =

[
1 0
0 1

]
, I3 =

1 0 0
0 1 0
0 0 1

 , I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , etc.

If A is a square matrix, then the inverse of A is a matrix A−1 where we have
AA−1 = A−1A = I, provided such a matrix exists.

Problem 3.18 LetA =

[
1
3

2
4

]
.We now develop an algorithm for computing

the inverse A−1. If an inverse matrix exists, then we know it’s the same size as
A, so we could let A−1 =

[
~v1 ~v2

]
be the inverse matrix, where ~v1 and ~v2 are

the columns of A−1. We know that AA−1 =

[
1
0

0
1

]
which from the definition

of matrix multiplication means A~v1 =

(
1
0

)
and A~v2 =

(
0
1

)
.

1. Solve the matrix equations A~v1 =

(
1
0

)
and A~v2 =

(
0
1

)
. Try row reducing both

[
1
3

2
4

1
0

]
and

[
1
3

2
4

0
1

]
.

2. What is the reduced row echelon form of

[
1
3

2
4

1
0

0
1

]
? How is this

related to your previous work?

3. State the inverse of A.



CHAPTER 3. LINEAR ALGEBRA ARITHMETIC 55

In the previous problem we showed how to obtain a matrix B so that AB = I.
We now have an algorithm for finding the inverse matrix A−1. We augment A
by the identity matrix, and then row reduce [A|I] to the matrix [I|A−1]. The
inverse shows up instantly after row reduction.

Problem 3.19 Use the algorithm described immediately before this problem
to compute the inverse of

A =

3 1 −11
0 −1 1
1 0 −4

 .
Use technology to show you the rref of [A|I], or just use A.inverse() in Sage, or
Inverse[A] in Mathematica. Then show your row reduction steps by hand.

Once you have obtained the inverse, can you use your work to write (1, 0, 0)
as a linear combination of the columns of A. In other words, what are the
coordinates of (1, 0, 0) relative to the columns of A?

Linear Independence and Dependence

Problem 3.20 For each collection of vectors, use software to determine if
the collection of vectors is linearly independent or linearly dependent. If the
vectors are linearly dependent, write one of the vectors as a linear combination
of the others. Do not row reduce the matrices by hand, rather on each problem
first show the matrix you would row reduce, and then give the reduced row
echelon form by using technology.

1. (1, 0, 0), (0, 1, 1), (2, 3, 2), and (0, 1,−1) [Remember, the vectors are linearly
independent if the only solution to1

0
0

 c1 +

0
1
1

 c2 +

2
3
2

 c3 +

 0
1
−1

 c4 =

0
0
0


is the trivial solution c1 = c2 = c3 = c4 = 0.]

2. (1, 0, 2, 0), (0, 1, 3, 1), and (0, 1, 2,−1)

3. (1, 1, 2,−1), (−3, 1, 4, 1), and (−1, 1, 3, 0)

4. Suppose you have 5 vectors that are each 7 tall. Row reducing the 7 by 5
matrix obtained by placing these vectors in columns results in a matrix
that has 3 rows of zeros at the bottom. Why are the vectors linearly
dependent?

5. If you have a matrix with n rows and m columns, what must happen for
the column vectors to be linearly independent? How many rows of zeros
would be at the bottom if the vectors are linearly independent.

[Hint: For all parts, think about the number of pivot columns. You are looking
to see if there are any nonpivot columns.]
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Problem 3.21: Rocket Booster Design Three teams have been asked If you are worried about rotation
that might occur from firing these
boosters, then please imagine that
each booster applies a force
through the center of mass of the
object, so that no rotation occurs.

to design a space suit that allows for travel in space. As part of the project
requirements, the teams are required to use 4 two-way boosters for propulsion.
The 4th booster is there to allow for redundancy in case any of the the other
boosters break.

• Team 1 decides to add boosters to their suit that allows for travel in the
directions [1,−1, 1], [1, 2,−1], [3,−1, 2], [1, 1, 0].

• Team 2 decides to add boosters to their suit that allows for travel in the
directions [1,−3, 2], [0, 1, 1], [−1, 3, 2], [1,−1, 3].

• Team 3 decides to add boosters to their suit that allows for travel in the
directions [1, 1,−2], [3,−1, 4], [2, 0, 1], [1,−3, 8].

For each team, use software to row reduce the appropriate 3 by 4 matrix
(remember to put vectors in columns, not rows) that would tell the dependence
relationships among the vectors. If you were in charge of picking a winning
design, which team would you pick, and why?

Matrix Multiplication and Inverses

Problem 3.22 Start by writing the system of equations

−2x1 + 5x3 = −2

−x1 + 3x3 = 1

4x1 + x2 − x3 = 3

as a matrix product A~x = ~b. (What are A, ~x and ~b?)

1. Use software to find the inverse of the matrix A (state the matrix you row You should use technology to
rapidly compute the inverse and
also row reduce the augmented
system. Show by hand any matrix
computations you do on part 3.

reduced, and the rref of the matrix).

2. Use software to row reduce the augmented matrix
[
A ~b

]
. State the rref.

3. To solve the problem ax = b where a, x, and b are numbers, we multiply
both sides by 1

a to obtain 1
aax = 1

ab, or because 1
aa = 1, we simplify

to get x = 1
ab. How can you use this idea to solve the matrix problem

A~x = ~b? Show how to obtain the solution to this system by using the
matrix inverse.

4. Does it matter if you compute ~bA−1 or A−1~b?

Problem 3.23 Let A =

[
a b
c d

]
. Obtain the rref of [A|I] to show that the [Hint: Because the matrix has

variables in it, you may want to
try a different scheme for row
reducing. Multiply the top row by
c and the bottom row by a. Then
subtract the top row from the
bottom. This gets you a zero
below the pivot in the first
column. Then multiply the top
row by ad− bc and the bottom
row by something else.]

inverse of A is

A−1 =
1

ad− bc

[
d −b
−c a

]
.

Are there any conditions under which a matrix would not have an inverse?
What are they, and why? Is there a number you could check to determine if a
matrix has an inverse? If you are struggling with reducing this symbolic matrix,
please see the hint on the right.
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Applications of Determinants

In computing the inverse of a 2 by 2 matrix, the number ad− bc appears in the
denominator. We call this number the determinant. If I asked you to compute Take a guess as to why we call

this number the determinant.
What does it help determine?

the inverse of a 3 by 3 matrix, you would again see a number appear in the
denominator. We call that number the determinant. This holds true in all
dimensions.

Problem: Optional Let A =

a b c
d e f
g h i

. Use Gauss-Jordan elimination

to find the inverse of A, and show that the common denominator is a(ei−hf)−
b(di− gf) + c(dh− ge).

Definition 3.12: Determinants of 2 by 2 and 3 by 3 matrices. The In Sage, we’ve been using A.rref()
to get the reduced row echelon
form of A. You can type
A.determinant() to get the
determinant. Similarly, A.inverse()
will get you the inverse.

determinant of a 2× 2 and 3× 3 matrix are the numbers

det

[
a b
c d

]
=

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = adet

∣∣∣∣e f
h i

∣∣∣∣− bdet

∣∣∣∣d f
g i

∣∣∣∣+ cdet

∣∣∣∣d e
g h

∣∣∣∣
= a(ei− hf)− b(di− gf) + c(dh− ge)

We use vertical bars next to a matrix to state we want the determinant. Notice This approach generalizes to give
the determinant of any square
matrix. More on this soon.

the negative sign on the middle term of the 3 × 3 determinant. Also, notice
that we can compute three determinants of 2 by 2 matrices in order to find the
determinant of a 3 by 3.

Problem 3.24 The columns of each matrix below provide the edges of the
parallelogram beneath the matrix.

A =

[
2 0
0 3

]
B =

[
2 1
0 3

]
C =

[
1 2
4 0

]
D =

[
−2 1
1 2

]
E =

[
1 −2
2 1

]

1. Compute the determinant of each matrix above. What happens to the
determinant when you switch the order of the columns?

2. Use geometric reasoning to compute the area of each parallelogram (A =
bh). For the last two, note that the vectors (−2, 1) and (1, 2) are orthogonal,
so the parallelogram is a square. Find the length of each side.

3. For each parallelogram above, decide if you have to rotate clockwise or
counterclockwise to get from the vector in the first column to the vectors
in the second column. What does this have to do with the sign of the
determinant?

4. Consider the matrix F =

[
3
2

4
−1

]
. Draw the corresponding parallelogram

and make a guess as to whether or not the determinant is positive or
negative (without computing it). Then compute the determinant and use
it to guess the area of the triangle with vertices (0, 0), (3, 2), and (4,−1).
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The problem above uses inductive reasoning (lots of examples) to suggest that
the determinant of a matrix (up to a sign) is the area of a parallelogram. This
next problem asks you to use deductive reasoning to prove that the determinant
of a 2 by 2 matrix gives the area of a parallelogram whose edges are the columns
of the matrix.

Problem 3.25 To find the area of the parallelogram with vertexes O = (0, 0),
P = (a, c), Q = (b, d), and R = (a + b, c + d), we need to find the length of
OP (the base b), and multiply it by the distance from Q to OP (the height h).

Let ~b = ~OP and let ~h be the shortest vector from the line OP to the point Q.
Complete the following:

1. Find the projection of ~OQ onto ~OP . (You may need to look up a vector
projection formula.) Part of this formula requires that you compute the

length of ~b.

2. Recall that we can obtain the vector ~h by computing ~h = ~OQ−proj ~OP
~OQ.

We call this the vector component of ~OQ that is orthogonal to ~OP .
Compute ~h.

3. The length of ~h is the distance h from Q to OP . Find the length of ~h.

4. We now have b and h. Compute the product and simplify to show that
the area of the parallelogram is |ad− bc|. The algebra on this problem can

get quite messy.

The result above extends to 3 dimensions. The determinant of a 3 by 3
matrix gives the volume of the parallelepiped whose edges are the columns of
the 3 by 3 matrix. Because this result holds true in 1, 2, and 3 dimensions, we
can use the determinant to define an nth dimensional volume. This is precisely
what happens in practice.

Seeing Eigenvectors in Vector Fields

There is a connection between linear independence and the determinant.

Problem 3.26 Consider the matrices A =

[
1 −2
2 −4

]
, B =

[
2 −1
4 3

]
, and

C =

[
−2− λ 1

3 4− λ

]
. (Note that C =

[
−2 1
3 4

]
− λ

[
1 0
0 1

]
.)

1. Compute the determinants of A, B, and C. The determinant of C is called the
characteristic polynomial of[
−2 1
3 4

]
.2. Are the columns of A linearly independent or linearly dependent? Explain.

3. Are the columns of B linearly independent or linearly dependent? Explain.

4. Make a conjecture about determinants and linear independence.

5. Find two different values λ so that C has linearly dependent columns.
(Your answer should involve irrational numbers.)

A main goal in this chapter has been to answer the following two questions:

1. For which nonzero vectors ~x (eigenvectors) is it possible to write A~x = λ~x?

2. Which scalars λ (eigenvalues) satisfy A~x = λ~x?



CHAPTER 3. LINEAR ALGEBRA ARITHMETIC 59

These questions are precisely connected to when a vector causes a radial push
away or pull towards the origin. Let’s give some formal definitions.

Definition 3.13: Eigenvector, Eigenvalue, Characteristic Polynomial.
Let A be a square n× n matrix.

• An eigenvector of A is a nonzero vector ~x such that A~x = λ~x for some
scalar λ. (Matrix multiplication reduces to scalar multiplication.) We
avoid letting ~x be the zero vector because it is trivially true that A~0 = λ~0
no matter what λ is.

• If ~x is an eigenvector with A~x = λ~x, then we call λ an eigenvalue of A.

• We call det(A− λI) the characteristic polynomial of A. It is a polynomial
in λ of degree n, hence has n roots (counting multiplicity). These roots
are the eigenvalues of A.

Problem 3.27 Consider the matrix A =

[
5 6
3 −2

]
.

1. Show that the eigenvalues are λ = 7 and λ = −4. You’ll want to compute

the determinant of A− λI =

[
5− λ 6

3 −2− λ

]
2. If we let λ = 7, find a nonzero vector ~x = (x, y) such that A~x = 7~x. You’ll

need to row reduce

[
5− 7 6 0

3 −2− 7 0

]
.

3. If we let λ = −4, find a nonzero vector ~x = (x, y) such that A~x = −4~x.

4. If λ = 6, then what is the only solution ~x = (x, y) to A~x = 6~x?

Problem 3.28 Consider the matrix A =

[
3 1
4 6

]
.

1. Find the characteristic polynomial of A, and use it to determine the
eigenvalues of A.

2. For each eigenvalue, find all corresponding eigenvectors.

Problem 3.29 Consider the matrix A =

[
6 4
3 2

]
. Find the eigenvalues of A.

Then for each eigenvalue, find all corresponding eigenvectors.

Matrix Multiplication and Inverses

Problem 3.30: Encryption Consider the matrix A =

2 1 −1
5 2 −3
0 2 1

. Joe

decides to send a message to Ben by encrypting the message with the matrix A.
He first takes his message and converts it to numbers by replacing A with 1,
B with 2, C with 3, and so on till replacing Z with 26. He uses a 0 for spaces.
After replacing the letters with numbers, he breaks the message up into chunks
of 3 letters. He then multiplies each chunk of 3 by the matrix A, resulting in
a coded message. For example, to send the message “good job ben” he firsts



CHAPTER 3. LINEAR ALGEBRA ARITHMETIC 60

converts the letters to the numbers and places them in a large matrix M (top
to bottom, left to right)go

o

 ,
d
j

 ,
ob
 ,
be
n

→
 7

15
15

 ,
 4

0
10

 ,
15

2
0

 ,
 2

5
14

 = M =

 7 4 15 2
15 0 2 5
15 10 0 14

 .
To encode the matrix, he computes

AM =

14 −2 32 −5
20 −10 79 −22
45 10 4 24

 .
and then sends the numbers [[14, 20, 45], [−2,−10, 10], [32, 79, 4], [−5,−22, 24]]
to Ben. Ben uses the inverse of A to decode the message.

1. Find the inverse of A.

2. Use A−1 to decode [[14, 20, 45], [−2,−10, 10], [32, 79, 4], [−5,−22, 24]] and
show the message is “good job ben”.

3. Decode the message [[39, 89, 22], [20, 48, 4], [39, 88, 33]].

Problem 3.31 The eigenvalues of the matrix A =

[
2 6
18 5

]
are λ1 = 14 and

λ2 = −7. An eigenvector corresponding to λ1 = 14 is ~x1 = (1, 2). An eigenvector
corresponding to λ2 = −7 is ~x2 = (−2, 3).

1. What is the product A~x1? What is the product A~x2? Can you explain
how to get these products without actually doing matrix multiplication.

2. What is the product AQ where Q =
[
~x1 ~x2

]
=

[
1 −2
2 3

]
. You can do We place the eigenvectors of A

into the columns of Q.
this product by using your answer to the first part.

3. Find a matrix D so that AQ = QD. Any idea why we use D for this [There are several ways to do this
problem. You could multiply both
sides on the left by the inverse of
Q to solve for D. Another way is
to reason about the connection
between eigenvalues, eigenvectors,
the matrix A, and linear
combinations.]

matrix? See the hint on the side.

4. Suppose A is a 3 by 3 matrix with eigenvectors ~x1, ~x2, and ~x3, corre-
sponding to the eigenvalues λ = 2, 4,−5, respectively. If we let Q =[
~x1 ~x2 ~x3

]
, then make a guess as to what D should equal so that

AQ = QD. Explain your guess. Guess what D equals if we instead place
the eigenvectors into Q in the order Q =

[
~x2 ~x3 ~x1

]
?

In the problem above, we wrote AQ = QD where D is a diagonal ma-
trix whose diagonal entries are the eigenvalues of A. The columns of Q are
eigenvectors of A, which we place in the same order as the eigenvalues on the
diagonal of D. We can use this idea to obtain a matrix with any desired eigen-
value/eigenvector pairs. In particular, this means we can observe something in
nature and look for outward/inward pushes/pulls. From these observations we
know Q and D, which means we can solve for A.

Problem 3.32 Suppose you know that the matrix A has eigenvalues λ1 = 2
and λ2 = −3 with corresponding eigenvectors ~x1 = (2,−1) and ~x2 = (1, 3).
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1. We can write AQ = QD where Q =

[
2
−1

1
3

]
and D =

[
2 0
0 −3

]
. Use this Since AQ = QD, what does

multiplying both sides by Q−1 on
the right yield?information to solve for A. You can get Q−1 quickly from Problem 3.23.

Your matrix A should have fractional values in it, with a denominator
equal to the determinant of Q.

2. We could have instead written AQ = QD where Q =

[
1
3

2
−1

]
and

D =

[
−3 0
0 2

]
(reversing the order we put things into Q and D). Use this

information to solve for A.

3. Suppose we know that a vector field ~F applies the forces F (4,−2) = (8,−4)
and F (−1,−3) = (3, 9). Explain why we know two eigenvectors are (4,−2)
and (3, 9) with corresponding eigenvalues λ = 2 and λ = −3. Use this
information to state Q and D, and then use AQ = QD to find the matrix

A such that F (x, y) = A

(
x
y

)
.

4. You should have gotten the exact same matrix A in each problem above,
though the Q and D used on each part was different. Guess another choice
for Q and D, different than the three above, so that AQ = QD. Why did
you make this guess?

Applications of Determinants

Recall that the determinant of a 2× 2 and 3× 3 matrix are the numbers

det

[
a b
c d

]
=

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = adet

∣∣∣∣e f
h i

∣∣∣∣− bdet

∣∣∣∣d f
g i

∣∣∣∣+ cdet

∣∣∣∣d e
g h

∣∣∣∣
= a(ei− hf)− b(di− gf) + c(dh− ge)

Notice that we compute three determinants of 2 by 2 matrices in order to find
the determinant of a 3 by 3. We now extend this to give a way to compute
determinants of any matrix.

Definition 3.14: Minors, Cofactors, and General Determinants. Let A
be an n by n matrix.

• The minor Mij of a matrix A is the determinant of the the matrix formed
by removing row i and column j from A.

• The cofactor Cij is the product of the minor Mij and (−1)i+j . This gives


+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...

. . .


This sign matrix keeps track of the
(−1)i+j portion in the cofactor.

Cij = (−1)i+jMij .

• To compute the determinant, first pick a row or column. Then take each
entry aij in that row or column and multiply the entry by its cofactor Cij .
The determinant is the sum of these products.

The determinant is a linear combination of the cofactors of any
row or column of the matrix, where we use the entries of that
row or column as the scalars.

Using summation notation, we can write |A| =
∑n
k=1 aikCik (if we chose

row i) or alternatively |A| =
∑n
k=1 akjCkj (if we chose column j).
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Problem 3.33 Compute the determinant of

2 3 −1
1 0 0
4 2 5

 in 3 ways.

1. Compute the cofactors of the first row of the matrix, and use them to Watch this relevant YouTube
video.obtain the determinant. Please show each step of your work, don’t just

skip straight to an answer. You’ll need to explain what you did in class,
and you can’t do this if you just skip all the steps in between.

2. Use the cofactors of the second row to obtain the determinant.

3. Find the determinant by using a linear combination of the cofactors of the
third column.

Note: The determinant, using a linear combination of the cofactors along the
second column, is

3C1,2 + 0C2,2 + 2C3,2 = (3)(−1)1+2

∣∣∣∣1 0
4 5

∣∣∣∣+ (0)(−1)2+2

∣∣∣∣2 −1
4 5

∣∣∣∣+ (2)(−1)3+2

∣∣∣∣2 −1
1 0

∣∣∣∣
= −(3)

∣∣∣∣1 0
4 5

∣∣∣∣+ (0)

∣∣∣∣2 −1
4 5

∣∣∣∣− (2)

∣∣∣∣2 −1
1 0

∣∣∣∣
= · · · (you can finish).

Problem 3.34 Compute the determinants of the matrices

A =


2 1 −6 8
0 3 5 4
0 0 1 5
0 0 0 −4

 and B =


3 2 5 −1
0 8 4 2
0 −1 0 0
0 −5 3 −1

 .
You can make these problems really fast if you use a linear combination of
cofactors where most of the scalars are zero.

Problem 3.35 Consider the matrices

A =

1 0 2
1 1 1
2 3 1

 and B =

1 0 −2
1 1 1
2 3 0

 .
These matrices are related to the rocket booster problem (Problem 3.11). You can use Sage to perform all

your work. First store the
matrices as A and B. Then use
A.inverse(), B.inverse(),
A.determinant(), and
B.determinant(), etc. to check.

1. Compute the determinants of A and B. Show this part by hand, though
you should use software to check your answer.

2. Row reduce A and B. Use software and just show us the rref.

3. Are the columns of A linearly independent or linearly dependent? What
about the columns of B?

4. Row reduce both [A|I] and [B|I], and then state the inverse of each (or
explain why it does not exist). Use software and just show us the rref.

5. How many solutions are there to A~x = ~0? How many solutions are there
to B~x = ~0?

http://www.youtube.com/watch?v=DiULKK1CzR0&feature=share&list=PL7A2089C33C8EFC84
http://www.youtube.com/watch?v=DiULKK1CzR0&feature=share&list=PL7A2089C33C8EFC84
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6. How many solutions does x

1
1
2

+ y

0
1
3

+ z

2
1
1

 =

0
0
0

 have?

How many solutions does x

1
1
2

+ y

0
1
3

+ z

−2
1
0

 =

0
0
0

 have?

7. Make some conjectures about the relationships you see above.

Definition 3.15: Singular. We say that a matrix is singular when the deter-
minant of A equals zero, which is precisely when the matrix does not have an
inverse.

Seeing Eigenvectors in Vector Fields

Remember, to find the eigenvalues and eigenvectors of a matrix, we need to find
nonzero vector solutions to (A−λI)~x = ~0. This means the determinant of A−λI
must be zero, which is the quick formula we use for computing eigenvalues.

Problem 3.36 Consider the matrix A =

4 0 0
0 2 1
0 1 2

. Show that the charac-

teristic polynomial of A is (4−λ)(λ−3)(λ−1), and then state the eigenvalues of
A. Then for each eigenvalue, find all corresponding eigenvectors. Show your row
reduction steps to get the eigenvectors. (You’ll need to row reduce 3 matrices,
but with each one the row reduction should be quite fast as the bottom row
should reduce to all zeros.)

Problem 3.37 Consider the matrices B =

3 0 0
0 2 1
0 1 2

 and C =

3 1 0
0 2 1
0 1 2

.

Feel free to use software on this problem to perform any needed row reductions.

1. Show that the characteristic polynomial for both B and C is (3− λ)(λ−
3)(λ− 1). What are the eigenvalues?

2. For each eigenvalue of B, state all the corresponding eigenvectors. Show us
the matrix you need to row reduce, show the rref (from software), and then
state the eigenvectors by writing (x, y, z) in terms of the free variables.

3. For each eigenvalue of C, repeat the previous step.

4. If you have a repeated eigenvalue, how many linearly independent eigen-
vectors should you expect to find?

When you are done, you should have written down 4 matrices (2 for each part),
each matrix’s rref, and then stated the eigenvectors by writing (x, y, z) in terms
of the free variables on each part.
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Solving Systems of Equations

Recall that there are three types of row operations, namely (1) swap rows, (2)
multiply a row by a nonzero constant, and (3) add a multiple of a row to another
row.

When you row reduce the matrix

[
a b c
d e f

]
using Gauss-Jordan elimination

(or any 2 by n matrix), we can count the largest number of row operations we’ll
ever need to perform. Assume at each stage we decide to swap two rows to
get a nice nonzero number in the pivot, and then we multiply that row by a
nonzero number to obtain a leading 1. With a 2 by n matrix, we would swap
rows 1 and 2, and then multiply row 1 by a nonzero number. Then we would
add a multiple of row 1 to row 2 to eliminate the entry below this leading 1. We
would then multiply row 2 by a nonzero number to obtain a leading 1. Then
we’d need one more row operation to eliminate the number above the pivot in
column 2. This is a total of 5 operations (we swapped 1 time, multiplied a row
2 times, and added a multiple of a row to another 2 times).

For larger matrices, how many row operations are needed to perform Gauss-
Jordan elimination? This question is extremely important to computer program-
ming, as the answer related to the time needed for a computer to row reduce a
million by million matrix, something that happens all the time since the advent
of computers.

Problem: Number of operations - Challenge Here’s your challenge: How

many row operations are needed to fully reduce an m by n matrix, where n > m.

• For a 3 by 4 matrix, we would swap rows a maximum of 2 times (once for
each row but the last). We would need to multiply a row by some number
3 times (once for each leading 1). We would add a multiple of a row to
another 3 times in the forward elimination and 3 times in the backward
elimination (this puts the zeros above and below each pivot). We now
have 2 + 3 + 6 = 11 row operations.

• Now consider a 4 by 5 matrix. How many row swaps at most will you
need? How many times will you need to multiply to get a leading 1? How
many times will you need to add a multiple of a row to another to get a
zero above or below a pivot? List all these out, then write the number of
row operations needed.

• Now consider a 5 by 6 matrix. Repeat the above.

• Now consider a 6 by 7 matrix. Repeat the above. Did you get 41 row
operations?

• Give a formula f(n) so that for each n, the number f(n) is the maximum
number of row operations. We currently know f(1) = 1, f(2) = 5,
f(3) = 11, f(4) =?, f(5) =?, f(6) = 41.

If you’ve never see the online encyclopedia of integer sequences, please head to
http://oeis.org/. Try the sequence 1, 5, 11, ....

Problem 3.38 Let A =

[
6− c 2

2 3− c

]
where c is a real number.

1. For which values of c are the columns of A linearly independent?

2. For which values of c is the matrix A invertible?

http://oeis.org/
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3. For which values of c are there infinitely many solutions to A~x = ~0?

4. For which values of c is the determinant of A equal to zero?

5. For which values of c does the rref of A equal the identity matrix?

6. For which values of c is the matrix A singular?

7. For which values of c is λ = 0 an eigenvalue of A?

Seeing Eigenvectors in Vector Fields

There are many connections between vector fields and eigenvalues/eigenvectors.
The next three problems have you explore this topic, and make some conjectures.

Problem 3.39 The following three vector fields are represented by matrices
with imaginary eigenvalues. Compute the eigenvalues for each, construct a
vector field plot, and on the plot add several trajectories (the path followed by
a particle that is dropped into this field).

1. ~F (x, y) =

[
−1 3
−2 −4

] [
x
y

]
=

[
−x+ 3y
−2x− 4y

]
= (−x+ 3y,−2x− 4y).

2. ~F (x, y) = (x− y, x)

3. ~F (x, y) = (−2y, x).

Make a conjecture as to why one spirals in, one spirals out, and one just wraps
around in ellipses.

Problem 3.40 Start by downloading the Mathematica notebook Vector-
Fields.nb (click on the link). The goal of this problem is to make a connection
between a vector field and its corresponding eigenvalues/eigenvectors. Once the
notebook is open, click somewhere in the text. Hold down Shift and press Enter
to evaluate the commands and produce a vector field plot. The eigenvector
directions are drawn in green. You can click on the bubbles with crosshairs
to adjust the vector field (the adjustable vectors are are the columns of the
matrix). Play around with the animation until you feel like you can answer each
of the following questions. Write your answers to the first 4 by writing complete
sentences, and provide a rough hand sketch of a vector field for each case to
match your sentences.

1. If the vector field pushes things outwards in all directions, what do you
know about the eigenvalues?

2. If the vector field pulls things inwards in all directions, what do you know
about the eigenvalues?

3. How can you tell, by looking at a vector field plot, that one eigenvalue is
positive and the other is negative?

4. If the vector field involves swirling motion, what do you know about
the eigenvalues? What makes the difference between spiraling inwards,
outwards, or just spinning in circles?

https://www.dropbox.com/s/4unuvdciow8orcf/316-VectorField.nb?dl=1
https://www.dropbox.com/s/4unuvdciow8orcf/316-VectorField.nb?dl=1
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5. (Challenge) What happens when you have a repeated eigenvalue? This one
has lots of correct answers, and it is a topic for much further discussion.
See if you can get an example of a repeated eigenvalue with a behavior
that’s different from the above.

If you have the first 4, you can present in class. We’ll have you come up to the
computer and show us what you did.

We’ve already seen how to visualize the solution to a first order systems of
ODEs. All we have to do is draw the corresponding vector field. The solutions
to the ODE are the trajectories that follow the vectors in the field. In the
previous chapter we visualized solutions by drawing a vector field. The next
problem has you construct visual graphical solutions by only considering the
eigenvalues and corresponding eigenvectors. The vector field plot is not needed.

Problem 3.41 Consider the system of ODEs x′ = y, y′ = 8x− 2y. This is
a system of ODEs whose solution would give the position (x, y) of a particle
whose tangent vectors are (x′, y′) = (y, 8x− 2y). In other words, solving this
ODE will tell us the trajectories we can see from a plot of the vector field
~F (x, y) = (y, 8x − 2y). On this problem, do not draw the vector field, as the Once you have finished, you

should look at a vector field plot
of ~F (x, y) = (y, 8x− 2y). Your
trajectory plots should follow the
vectors in the vector field plot, but
you didn’t ever have to make the
vector field plot.

goal is to answer all the questions below by just knowing the eigenvalues and
eigenvectors.

1. Write this system of ODEs in the form[
x′

y′

]
= A

[
x
y

]
=

[ ] [
x
y

]
.

Find the eigenvalues of A, and then give an eigenvector for each eigenvalue.

2. The eigenvectors determine two lines through the origin. Draw these lines
on the same plot. This will divide the plane into 4 parts.

3. If an object starts at (2, 4), draw the path the object will follow. Draw
your path in the same plot that contains the lines determined from your
eigenvectors. Then repeat this part for each initial condition (0, 4), (−2, 4),
(−1, 4), and (2,−2).

You should have single plot that contains 2 lines, and then 5 trajectories. Two of
your trajectories will match up with your lines, but it’s important that you note
which trajectory moves radially outwards, and which moves radially inwards.

This concludes the chapter. Look at the objectives at the beginning of the
chapter. Can you now do all the things you were promised?
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Exam Review

To prepare for the exam, we will spend one day of class focused on review. The goal of this class period is to
have each student find/create examples to illustrate each of the big ideas from the material we have been
studying. You’ll see a list of the big ideas on the next page. To prepare for class, here is your assignment.

1. For each concept on the next page, find or create an example that illustrates the concept.

2. Organize your work into a “lesson plan” where you include the problem and key steps to solving that
problem on your lesson plan.

3. Come to class and spend 1 hour with a partner teaching from the ideas in your lesson plan. The idea
here is to let each person share an example, then swap roles. If you both feel like you need more practice
in a specific area, spend your time there.

4. Report in I-Learn that you have completed your lesson plan and taught it to your peer, and upload
your document to I-Learn.

If you are gone for the STEM fair, or for some other reason, then you can still complete this assignment
by finding another student from our class and spend 1 hour teaching each other from your examples.
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Chapter 1 - Review

1. Find the differential of a function, express it as a linear combination of partial derivatives, and then
write this linear combination as the product of a matrix (the derivative) and a vector of differentials.

2. Explain how to construct the plot of a vector field and draw trajectories on that plot. You should also
be able to locate graphically directions in which a vector field either pushes object directly away (or
pulls objects directly towards) the origin along straight line paths.

3. Construct contour plots and gradient plots for functions of the form z = f(x, y), and discuss the
relationships between these two types of plots.

4. Use integration by substitution and/or integration by parts to find the potential of a vector field or
differential form.

5. Solve an ordinary differential equation of the form f(y)dy = g(x)dx by computing potentials of both
sides and equating them.

6. Explain how to compute the Laplace transform of a function.

Chapter 2 - First Order ODEs

1. Identify and solve separable and exact ODEs by finding a potential.

2. Show how to obtain and use an integrating factor to solve an ODE.

3. Explain how to use a change of variables to solve an ODE.

4. Apply the modeling process and proportionality to analyze exponential growth and decay, Newton’s
law of cooling, mixing tank problems, Torricelli’s law, the logistics model, and systems of first order
differential equations.

5. Use Laplace transforms to solve first order ODEs, employing a partial fraction decomposition when
needed.

Chapter 3 - Linear Algebra Arithmetic

1. Explain the difference between linearly independent and linearly dependent. When vectors are linearly
dependent, write one of the vectors as a linear combination of the others.

2. Solve systems of equations by obtain the reduced row echelon form (rref) of a matrix (Gauss-Jordan
elimination).

3. Explain how to compute the inverse of a matrix. Then use the inverse to solve various problems such
as finding ~x in A~x = ~b or finding A in AQ = QD.

4. Show how to compute the determinant of a square matrix of any size. Be able to articulate the
connection among determinants, linear dependence, and invertibility.

5. Explain how to see eigenvectors and the sign of eigenvalues in a vector field. Then use this knowledge
to show how to obtain eigenvalues and eigenvectors from determinant and row reduction computations.
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Extra Practice

Please use the problem list below to find extra practice problems to help you learn. You’ll find the problems
listed below at the end of Chapter 1 (pages 23-28, including solutions) in Linear Algebra by Ben Woodruff.
This text is freely available online. The text also references Schaum’s Outlines Beginning Linear Algebra by
Seymour Lipschutz for even more practice.

• https://content.byui.edu/file/c2f91762-7a1e-4d0b-a1ae-8d5f5f548e17/1/341-Book.pdf

Concept Suggested Relevant

Basic Notation 1bcf,2abehln 1,2

Gaussian Elimination 3all,4acf 3,4

Rank and Independence 5ac,6bd 5,6

Determinants 7adgh 7

Inverses 8ag,9ac 8,9

Eigenvalues 10abdghi 10

Summarize 11(multiple times) 11

Remember that you can check almost all of your work with technology. Use the following technology links
to help you check your understanding.

• Sage RREF calculator

https://content.byui.edu/file/c2f91762-7a1e-4d0b-a1ae-8d5f5f548e17/1/341-Book.pdf
http://bmw.byuimath.com/dokuwiki/doku.php?id=rref_calculator


Chapter 4

Linear Algebra
Applications

After completing this chapter, you should be able to:

1. Explain the connection between vector fields and their corresponding
eigenvalues and eigenvectors. Use this knowledge to apply the second
derivative test and explore systems of ODEs at equilibrium points.

2. Show how to solve various problems relating to conservation laws (such
as stoichiometry, Kirchoff’s electrical laws, Markov Processes, etc.) by
finding the kernel of a matrix.

3. Use Cramer’s rule to solve systems, and explain when you would choose
Cramer’s rule over row reduction.

4. Find interpolating polynomials, and use the transpose to solve the least
squares regression problem.

5. Appropriate apply the words span, basis, vector space, dimension, eigenspace,
and linear transformation.

Nonconservative Eigenvector Problems

Vector fields and eigenvalues provide us with precisely the key information
needed to locate maximums, minimums, and saddles for functions of the form
z = f(x, y).

Problem 4.1 Consider the function f(x, y) = x2 + 4xy− 4x+ y2 + 6y. The Here’s a plot of several level
curves of
f(x, y) = x2 + 4xy − 4x+ y2 + 6y
and its gradient. In one direction
the gradient is pulling things
towards the origin. In another
direction, the gradient is pushing
things away from the origin.

derivative (gradient) is the vector field Df(x, y) = (2x+ 4y − 4, 4x+ 2y + 6).

1. At what point(s) does Df(x, y) = ~0? These are the potential locations of
maximums, minimums, or saddles.

2. Compute the second derivative of f , which should give you a 2 by 2
symmetric matrix. This matrix is called the Hessian.

3. By looking at the plot to the right, are the eigenvalues of D2f(x, y) both
positive, both negative, or do they differ in sign? How can you tell? Then
confirm you are correct by computing the eigenvalues and eigenvectors of
D2f(x, y).

70
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4. Recall that the gradient points in the direction of greatest increase. Using
this information alone, does the function have a maximum, minimum, or
saddle point.

We can summarize the results from the problem above into a theorem from
multivariate calculus.

Theorem 4.1. Let f(x, y) be a function that is twice continuously differentiable.
Suppose that Df(x, y) = (0, 0) when (x, y) = (a, b), so that (a, b) is a critical
point. To determine if the point (a, b) corresponds to a maximum, minimum, or
saddle point, we compute the eigenvalues of D2f(a, b) (the second derivative is
called the Hessian).

• If all eigenvalues are positive, then f has a minimum at (a, b).

• If all eigenvalues are negative, then f has a maximum at (a, b).

• If the eigenvalues differ in sign, then f has a saddle at (a, b).

• If zero is an eigenvalue, then the second derivative test fails.

Projections and Linear Regression

Problem 4.2 Sally found the treasure in the corn field. She’s now looking
for treasure in a swamp. There’s a road through the swamp that runs parallel to
the vector ~v = (3, 4). Her current location is (0, 0) and the treasure (geocache)

is located at the position ~b = (2,−4) (units are hundreds of yards). When Sally
decides to leave the road, she’ll have to wade through some swamp water. She
would prefer to spend as little time in the swamp as possible. Her goal is to
walk along the road until she reaches the point closest to the treasure, and then
wade straight to the treasure. This means she needs to find a scalar c so that c~v
gets her as close to the treasure as possible. See the picture below.

~v = (3, 4)

~b = (2,−4)

c~v

~n

~v

~b = c~v + ~n

c~v

~n

The vector ~n represents the path she must take through the swamp. Her goal is
to find a scalar c so that ~b = c~v + ~n and ~n is as short as possible.
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1. What is the angle between ~v and ~n? Why does ~v · ~n = 0?

2. Sally knows that the treasure is at ~b = c~v + ~n. Since ~v · ~n = 0, she decides
to dot both sides of this equation, on the left, by the vector ~v to get
~v ·~b = ~v · (c~v + ~n). Show that in general

c =
~v ·~b
~v · ~v

Then show that with Sally’s specific road vector ~v and treasure vector ~b,
the constant c is c = −2/5.

The vector c~v above is often called the orthogonal projection of ~b onto ~v.
The word orthogonal means that ~v · ~n = 0, i.e. that there is a 90 degree angle
between ~v and ~n.

Problem 4.3 Now assume that Sally is an astronaut in space. She’s moving
through an asteroid field and knows there is safe passage if she follows the vector
~v = (1,−2,−3). She needs to get to the point ~b = (3,−6,−11). She already
knows that if she follows ~v three times, she’ll end up pretty close by arriving at
(3,−6,−9). However, she wants to follow ~v until she is as close to ~b as possible,
as leaving the known safe path could be dangerous.

1. Determine the scalar c so that c~v is as close to ~b as possible. Your answer
should be close to 3. Use the formula from the previous problem.

2. Let’s swap to a different question. Suppose we would like to find an
equation of a line y = mx through the origin that passes through the three
points (1, 3), (−2,−6), and (−3,−11). To pass through all three points
we need to solve the system of equations 3 = m(1), −6 = m(−2), and
−11 = m(−3). Rewrite this system of equations as the vector equation

(state ~v and ~b)

~vm = ~b ⇒

?
?
?

m =

?
?
?

 .
Explain why there is no solution to this problem.

3. What should we choose the slope m to equal so that ~vm will be as close
to ~b as possible?

Conservation Laws through Eigenvectors and Kernels

Many problems in nature arise from conservation laws. These laws generally
focus on the principle that matter is neither created nor destroyed, rather it is
just moved, changed, or something. Any of the following could be viewed as a
conservation law:

• What comes in must come out.

• Voltage supplied equals voltage suppressed.

• Atoms before equal atoms after.

• The change in a quantity is how much it increases minus how much it
decreases.
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• Current in equals current out.

• The sum of the forces in every direction must match the total force.

• The force and moments must sum to zero when an object is at rest.

• This list could go on for a while.

Throughout this chapter, we’ll see several different conservation laws. You’ll
focus on understanding these conservation laws in your major classes. We’ll
see that almost every one of these problem can be written in the matrix form
A~x = ~0. We’ll see that λ = 0 is an eigenvalue, which means that when we follow
the eigenvector direction, the underlying vector field neither pushes outward nor
inward. In this eigenvector direction, the system is conserving something.

Definition 4.2: Homogeneous System, Kernel. Because we’ll encounter
problems of the form A~x = ~0 quite often, we make some definitions.

• We say that the linearly system A~x = ~b is homogeneous if ~b = ~0.

• The set of solutions to A~x = ~0 is called the kernel (or null space) of A.

Chemical reaction stoichiometry is the study of balancing chemical equations.
A chemical reaction will often transform reactants into by-products. The by
products are generally different compounds, together with either an increase
or decrease in heat. One key rule in stoichiometry is that a chemical process
neither creates nor destroys matter, rather it only changes the way the matter
is organized. For simple reactions (with no radioactive decay), this conservation
law forces the number of atoms entering a reaction to be the same as the number
leaving. The next problem asks you to use this conservation law to create a
balanced chemical reaction equation.

Problem 4.4: Stoichiometry The chemical compound hydrocarbon dode-

cane (C12H26) is used as a jet fuel surrogate (see Wikipedia for more info). This
compound reacts with oxygen (O2), and the chemical reaction produces carbon
dioxide (CO2), water (H2O), and heat. Suppose we expose some dodecane to
oxygen, and that a chemical reaction occurs in which the dodecane is completely
converted to carbon dioxide and water. Conservation requires that the number
of atoms (H, C, and O) at the beginning of the chemical reaction must be the
exact same as the number at the end. We could write the chemical reaction in
terms of molecules as

x1C12H26+x2O2 = x3CO2+x4H2O or x1C12H26+x2O2−x3CO2−x4H2O = 0,

where x1 molecules of dodecane and x2 molecules of oxygen were converted
to x3 units of carbon dioxide and x4 units of water. If we look at each atom
(carbon, hydrogen, and oxygen) individually, we obtain three equations to relate
the variables x1, x2, x3, x4. The carbon equation is simply

x1(12) + x2(0) = x3(1) + x4(0) or x1(12) + x2(0)− x3(1)− x4(0) = 0.

Your job follows:

1. Write the other two conservation equations (for hydrogen and oxygen),
and then organize your work into the matrix product A~x = ~0. This means
you are working with a homogeneous system.

2. Solve the corresponding system of equations by row reduction. As there
are only 3 equations with 4 unknowns, you should obtain infinitely many
solutions. Write each variable in terms of the free variable. You have
found the kernel of the matrix A.
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3. If about 10,000 molecules of water are present at the end of the reaction,
about how many molecules of dodecane were burned?

4. The matrix A was not square. We can make the system square by adding If your answer on part 4 looks like
your answer on the previous part,
good. The point is that finding an
eigenvector corresponding to
λ = 0 is the exact same as finding
the kernel.

the trivial equation 0 = 0, a row of zeros, to the bottom of the matrix.
Let B be this matrix. Why do we know λ = 0 is an eigenvalue of this
matrix? Find an eigenvector corresponding to λ = 0.

Visualizing Linear Transformations between Vector Spaces

Problem 4.5 After getting the treasure in the swamp, Sally moves on to
find a treasure located in a small town. She has a map of the town that shows
the city blocks. However, when she looks at a satellite image of the city it’s
slightly different than her map. Here are the two maps (the city map is on the
left, the satellite on the right).

City Map Satellite View

The city grid is not lined up with compass directions. When the city map tells
her to go up one block, this really means her (x, y) position should follow the
vector ~v1 = (1, 3). To go right 1 block, she follows the vector ~v2 = (2,−1).
She has to learn to work with two different coordinate systems, namely the
city coordinates (given in blocks) and the (x, y) satellite coordinates (given in
hundreds of yards). Assume that Sally is currently at the origin (0, 0).

1. If Sally goes up 2 blocks, and right 3 blocks, what are here (x, y) coordinates
(in hundreds of yards)?

2. If Sally moves up c1 blocks and right c2 blocks, then her (x, y) coordinates
are [

x
y

]
=

[
1
3

]
c1 +

[
2
−1

]
c2.

Rewrite this linear combination as a matrix product A

[
c1
c2

]
=

[
x
y

]
(What is

the matrix A?). You can check if you are correct by computing A

[
1
0

]
=

[
1
3

]
and A

[
0
1

]
=

[
2
−1

]
.

3. If the treasure is located at the (x, y) coordinates (0, 7), what directions
would you give her in terms of blocks? If the treasure is located at (1,−7.5),
what directions would you give?
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One way we can use a matrix is to think of the matrix as a map. When
Sally was walking through the city in Problem 4.5, she had a map of the city
in her hands. This map gave her the coordinates of locations in the city, but
did so in a much simplified way. Going right on the map 1 block resulted in
following the vector (2,−1). Going up 1 block resulted in following the vector
(1, 3). It’s much easier to give directions in terms of blocks.

If Sally walks 2 blocks right, and 1 block up, then she arrives at

[
2
−1

]
(2) +[

1
3

]
(1) =

[
7
1

]
. In the city map, we base our all movement on the vectors (1, 0)

and (0, 1). When looking at actual (x, y) position, we base all our movements on
the vectors (2,−1) and (1, 3). We call each of these collections of independent
vectors a basis. We call (c1, c2) = (2, 1) the coordinates of the point (x, y) = (7, 1)
relative to the basis {(2,−1), (1, 3)}. We can describe any point (x, y) using the
simplified coordinates (c1, c2) relative to this basis.

Definition 4.3: Basis and Coordinates Relative to a Basis. If the vectors
~v1, ~v2, . . . , ~vn are linearly independent, then we’ll say these vectors form a basis.
We use the word “basis” because we can write (base) other vectors uniquely as
a linear combination of these basis vectors. You have been using the standard
basis vectors (1, 0) and (0, 1) your entire life to talk about vectors in the plane.
To plot the point (2, 3), we think “right 2, up 3” which is the same as the vector
equation (2, 3) = 2(1, 0) + 3(0, 1).

Suppose B = {~v1, ~v2, . . . , ~vn} is a basis, and ~x is the linear combination

~x = ~v1c1 + ~v2c2 + · · ·+ ~vncn.

Then we call c1, c2, . . . , cn the coordinates of ~x relative to the basis B.
In terms of matrices, when the columns of A are linearly independent and

A~c = ~x, we say that ~c is the coordinates of ~x relative to the columns of A.

A matrix A takes each coordinate (c1, c2) and transforms it to the point[
x
y

]
= A

[
c1
c2

]
.

Problem 4.6 Consider the matrix A =

2 1 −1
1 2 0
0 4 3

 .
1. Compute the determinant of A.

2. Now create a matrix B so that the ijth entry of B is the cofactor Cij If you forgot what a cofactor is,
you’ll want to review the
definition. See Definition 3.14 on
page 61.

(remove row i and column j, compute the determinant, and then times
by an appropriate sign). This will require that you compute nine 2 by 2
determinants.

3. Compute the inverse of A with software.

4. Make a conjecture about the connection between the determinant of A,
this matrix of cofactors B, and the inverse of A.

In your work above, you should have noticed that you had to interchange the
rows and columns of B to make your conjecture. This process of interchanging
rows and columns, called transposing a matrix, will show up in so many of our
applications that we make a definition.



CHAPTER 4. LINEAR ALGEBRA APPLICATIONS 76

Definition 4.4: The Transpose AT . Symmetric Matrix. If A is an m by
n matrix, then the transpose of A is the n by m matrix formed by interchanging
the rows and columns. Row 1 is now column 1. Row 2 is now column 2. Just
think of each row as a vector, and then place those vectors in the columns of a
new matrix. We use the symbol AT to stand for the transpose of a matrix.

We’ll often encounter square matrices where the transpose of the matrix is
the matrix itself. If A = AT then we say the matrix is symmetric. When a
vector field has a potential, its derivative satisfies this property.

Nonconservative Eigenvector Problems

Problem 4.7 Consider the function f(x, y) = x3 − 3x2 − y2 + 2y Here’s a plot of several level curves
of f(x, y) = x3 − 3x2 − y2 + 2y
and the gradient. There are two
critical points.

- 1 0 1 2 3

- 1

0

1

2

3

1. At what point(s) does Df(x, y) = ~0? You should obtain two points. These
are the potential locations of maximums, minimums, or saddles.

2. Compute the second derivative of f , which is a 2 by 2 symmetric matrix.

3. Pick one of the critical points. Use the vector field plot to the right to
decide if the eigenvalues of D2f(x, y) are both positive, both negative,
or differ in sign at that critical point. Then state if the function has a
maximum, minimum, or saddle at that point. Then repeat with the other
critical point.

4. Now compute the eigenvalues of the Hessian at each critical value. You’ll
need to find the eigenvalues of two different matrices. This should confirm
your answer to part 3. (The matrix is diagonal, so computing eigenvalues
should be quick.) Don’t forget that you are finding eigenvalues of D2f(a, b),
not D2f(x, y).

The following example adds a little more information to this discussion. I’ve
included it to give you one additional piece of information, namely how the
eigenvalues and eigenvectors connect to the concavity of the function.

Example 4.5. For the function f(x, y) = x2 + xy + y2, the gradient is Df =[
2x+ y x+ 2y

]
, which is zero only at x = 0, y = 0 (solve the system of

equations 2x + y = 0, x + 2y = 0). The Hessian is D2f =

[
2 1
1 2

]
. The

eigenvalues are found by solving 0 = det

[
2− λ 1

1 2− λ

]
= (2 − λ)2 − 1 =

4 − 4λ + λ2 − 1 = (λ − 3)(λ − 1), so λ = 3, 1 are the eigenvalues. Since both
eigenvalues are positive, the gradient pushes things away from the origin in
all direction, which means in every direction you move from the critical point,
you’ll increase in height. There is a minimum at (0, 0).

The eigenvectors of the Hessian help us understand more about the graph of
the function. An eigenvector corresponding to 3 is (1, 1), and corresponding to
1 is (−1, 1). These vectors are drawn in figure 4.1, together with two parabolas
whose 2nd derivatives are precisely 3 and 1. The parabola which opens upwards
the most quickly has a 2nd derivative of 3. The other parabola has a second
derivative of 1. In every other direction, the 2nd derivative would be between 1
and 3.
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Figure 4.1: The eigenvectors of the second derivative tell you the directions
in which the 2nd derivative is largest and smallest. At each critical point,
two eigenvectors are drawn as well as a parabola whose second derivative (the
eigenvalue) matches the second derivative of the surface in the corresponding
eigenvector direction.

Projections and Linear Regression

Problem 4.8 Jimmy is using a rocket suit to travel out in space. His rocket
suit had 4 good boosters that allowed travel in any direction, with a backup
booster in case one got damaged. However, some tiny meteorites happened to
pass by and take out two of his boosters, as well as his radio to call for help.
He’s now only able to move in the directions ~v1 = (1, 1, 1) and ~v2 = (−1, 1, 2).

His space ship is sitting at ~b = (−1, 4, 7).

1. Show that Jimmy cannot arrive at his ship using his two working boosters.
In other words, show that we cannot write ~b as a linear combination of ~v1
and ~v2? Set up an appropriate matrix equation, row reduce the equation,
and use your row reduction to give an answer.

2. Jimmy has a one shot back up gun. This gun will propel him towards the
ship if he points the gun directly away from the ship and fires. It’s easy to
miss aim, so he would like to get as close to the ship as possible before he
fires the gun. He needs to find c1 and c2 so that ~w = ~v1c1 + ~v2c2 gets him
as close to the ship as possible. The picture below illustrates the general
idea. The vectors ~v1 and ~v2 give Jimmy a plane of possible movements.

~v1

~v2

~b

The space ship is up here.

~w = ~v1c1 + ~v2c2

Jimmy wants to get here.

~n

When Jimmy has arrived at the closest spot to the ship, he’ll have the
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smallest ~n so that

~v1c1 + ~v2c2 + ~n = ~b or

1
1
1

 c1 +

−1
1
2

 c2 + ~n =

−1
4
7

 .

Why must ~vT1 ~n = 0 and ~vT2 ~n = 0?

3. Since there are two unknown constants c1 and c2, we need two equations.
Multiply both sides of the above equation on the left by ~vT1 =

[
1 1 1

]
.

Why does ~n vanish from the equation? This gets us one equation.

4. To get a second equation, we multiply both sides by ~vT2 =
[
−1 1 2

]
.

We now have two equations with two unknowns c1 and c2. Solve and show
that c1 = 11/7 and c2 = 37/14.

The problem above asked you to find the point in a plane that was closest
to a point not on the plane. This is called the orthogonal projection of ~b onto
the plane formed by the vectors ~v1 and ~v2. If we let A =

[
~v1 ~v2

]
, then the

projection of ~b onto this plane is w = ~v1c1 + ~v2c2 = A

[
c1
c2

]
. Our goal is to find[

c1
c2

]
such that ~n = ~b−A

[
c1
c2

]
is as short as possible. The next problem shows

that you can accomplish this by solving ATA~x = AT~b for ~x. We just take the
problem A~x = ~b which has no solution, multiply both sides by AT , and then
solve.

Problem 4.9 Suppose we would like to find an equation of a line y = a0+a1x
that passes through the three points (−1,−1), (1, 4) and (2, 7). If such a line
does not exist, we’d like to find a line that passes close to these three points.

1. The three points give us three equations that involve the unknown constants
a0 and a1. Show that we can write these equations in the matrix form
A~x = ~b and vector form ~v1a0 + ~v2a1 = ~b1 −1

1 1
1 2

[a0
a1

]
=

−1
4
7

 or

1
1
1

 a0 +

−1
1
2

 a1 =

−1
4
7

 .
Then show that there is no solution to this problem.

2. We now know that no linear combination of ~v1 = (1, 1, 1) and ~v2 = (−1, 1, 2)

will give us the vector ~b = (−1, 4, 7). We would like to find scalars a0
and a1 so that ~v1a0 + ~v2a1 is as close to ~b as possible. This is the
exact same question as the previous problem (where Jimmy could not
get to his space ship). Multiply both sides of the inconsistent equation

A~x = ~b on the left by

1
1
1

T =
[
1 1 1

]
, and then multiply both sides by

−1
1
2

T =
[
−1 1 2

]
. This should get you two different equations that

involve c1 and c2.
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3. Compute ATA =

[
1 1 1
−1 1 2

]1 −1
1 1
1 2

 and AT~b =

[
1 1 1
−1 1 2

]−1
4
7

.

You should see that both of your equations above are in the matrix equation

ATA~x = AT~b ⇒
[

1 1 1
−1 1 2

]1 −1
1 1
1 2

[a0
a1

]
=

[
1 1 1
−1 1 2

]−1
4
7

 .
Make sure you simplify the matrix products ATA and AT~b, as this should
become a system of 2 equations and 2 unknowns.

4. Now solve ATA~x = AT~b for ~x =

[
a0
a1

]
. Use your answer to state the line

y = a0 + a1x that passes nearest these three points.

The transpose of a matrix plays a crucial role in finding projections. When
the problem A~x = ~b has no solution, it is impossible to write ~b as a linear
combination of the columns of A. If we multiply both sides on the left by AT ,
then we have an equation that we can solve to obtain the coefficients ~x so that
A~x is as close to ~b as possible. This is the key idea to regression.

Conservation Laws through Eigenvectors and Kernels

When we perform a partial fraction decomposition, Our goal is to rewrite a
complicated fraction as the sum of simpler fractions. We are not changing the
quantity that the fraction represents, rather we are just changing how we express
the fractions. This is a conservations law, as the fractional quantity is conserved.
Can we answer this problem by looking for the kernel of some matrix, or an
eigenvector corresponding to λ = 0?

Problem 4.10 Consider the partial fraction decomposition

8s+ 7

(s− 2)(s+ 3)
=

A

s− 2
+

B

s+ 3

which we can rewrite in the form

8s+ 7 = A(s+ 3) +B(s− 2).

Let’s compare several different ways of solving this problem.

1. Complete this partial fraction decomposition. Use any method you like.

2. Now let’s solve
cs+ d

(s− 2)(s+ 3)
=

A

s− 2
+

B

s+ 3

Rather than thinking of c and d as known constants, let’s make them
variables in our linear system of equations. Our goal is to solve

(A+B − c)s+ (3A− 2B − d) = 0

which we can rewrite in the matrix form Why did I save the last two
columns for c and d?[

1 1 −1 0
3 −2 0 −1

]
A
B
c
d

 =

[
0
0

]
.
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This is a matrix equation of the form A~x = ~0, so the solutions are the
kernel of A. Solve this matrix equation (find the kernel of A) and write
your answer in terms of the free variables. Please use software to row
reduce, and just share the key parts of your work (as shown below).

[
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

]
rref−−→

[
1 0 ∗ ∗ ∗
0 1 ∗ ∗ ∗

]
⇒


A
B
c
d

 =


∗
∗
∗
∗

 c+


∗
∗
∗
∗

 d.
3. We can rewrite the two equations c = c and d = d as the equations 0 = 0

and 0 = 0. Adding two rows of zeros to our matrix equation yields
1 1 −1 0
3 −2 0 −1
0 0 0 0
0 0 0 0



A
B
c
d

 =


0
0
0
0

 .
Can you explain, from the definition of eigenvalues, why λ = 0 is an
eigenvalue of this matrix? Then find all eigenvectors of this matrix corre-
sponding to λ = 0.

Problem 4.11: Traffic Flow Consider the following traffic flow grid.

A B

CD

100

200 100

150

50

5050

100

x1

x2

x3

x4

The numbers on the edges represent the number of vehicles that either enter
or leave the system each hour. The variables x1, x2, x3, and x4 represent the
number of cars on each road. Assume that all streets are one-way streets where
the arrows give the direction of traffic flow.

1. How do you know there are 400 total cars entering this network of roads
each hour? Are all these cars leaving? This is a conservation problem?

2. The number of cars entering an intersection must match the number of
cars leaving an intersection. We can use this to build a system of equations
for the traffic flows x1, x2, x3, x4. Every hour at node A there are 300 cars
entering the intersection and x1 + x4 cars leaving the intersection. This
gives us an equation x1 + x4 = 300. Continue in this fashion to obtain
an equation at each intersection point. You should have a system of 4
equations with 4 unknowns.
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3. Write your system of equations in the matrix form A~x = ~b. What is A,
what is ~x, and what is~b? Is this system homogeneous or non homogeneous?

4. Solve your system of equations. When you are presenting this kind of

information in class, you should use the pattern B
rref−−→ R ⇒ ~x = ..., so

show us the augmented matrix B, show us its rref R, and then state the
solution ~x as a linear combination of vectors, namely
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 rref−−→


1 0 0 ∗ ∗
0 1 0 ∗ ∗
0 0 1 ∗ ∗
0 0 0 0 0

⇒

x1
x2
x3
x4

 =


∗
∗
∗
∗

x4 +


∗
∗
∗
∗

 .

Whenever I see a problem that involves a conservation law, I think two
things. For one, there is probably a homogeneous system A~x = ~0 somewhere in
the background whose kernel is the solution. Two, if I make sure A is a square
matrix (possibly adding rows of zeros), then I can rephrase “find the kernel” as
“find the eigenvectors corresponding to zero.” To accomplish finding this matrix
A, we’ll often have to think of given constants as variables. Let’s do this with
the previous problem.

Problem 4.12 Use the same setting as the previous traffic flow problem,
however, let’s change the given values to be variables. Starting in the upper left
corner and moving clockwise, replace the numbers 100, 200, 100, 150, etc., with
the variables a, b, c, d, e, f , g, h. We now have 12 unknowns, namely x1, ..., x4,
a, b, ..., h.

1. At node A, our equation is now x1 + x4 − a − b = 0. Write the other 3
equations and express the homogeneous system in the form A~x = ~0 where
A is a 4 by 12 matrix. State the matrix A.

2. Find the kernel of A, and write your solution as a linear combination of

vectors where the scalars are the free variables (use the B
rref−−→ R⇒ ~x = ...

pattern). Your solution should look like

x1
x2
x3
x4
a
b
c
d
e
f
g
h



=



∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗



x4 +



∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗



b+



∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗



c+



∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗



d+



∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗



e+



∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗



f +



∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗



g+



∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗



h.

3. The 4th row of your rref is not zero (which should show you that a is
not a free variable). Write the equation given by this 4th row. Can you
interpret this 4th equation as a conservation law?



CHAPTER 4. LINEAR ALGEBRA APPLICATIONS 82

Visualizing Linear Transformations between Vector Spaces

Have you noticed in every matrix problem we can always write the solution as a
linear combination of vectors? When the system is homogeneous, the solution
to A~x = ~0 (the kernel) is always all linear combinations of a few vectors. We
take a vector times a free variable, plus a vector times a free variables, etc. The
solution is the set of all linear combinations of a few vectors. It would be nice to
say “all linear combinations of” in an efficient way. We’ll use the word span to
talk about forming all linear combinations, the word vector space to talk about
the vectors in the span, and then dimension to talk about the geometric size of
the span (is it a line, a plane, a 3D space, etc.).

Definition 4.6: Span, Basis, Vector Space, and Dimension. Consider
the set of vectors S = {~v1, ~v2, · · · , ~vn}.

• The span of S is the set of all linear combinations of the vectors in S.

• When the vectors in S are linearly independent, we say that the vectors
form a basis for their span.

• A vector space is the span of a collection of objects (we’ll focus on vectors
and functions).

• A basis for a vector space is a collection of linearly independent objects
whose span is the vector space.

• The dimension of a vector space is the number of vectors in a basis for
the vector space.

Problem 4.13 We’ve seen each of the following problems before. On this
problem, you’ll practice using the words span, vector space, basis, and dimension.

1. In problem 3.1 on page 42, Sally could move along the road (−1, 1) and
the rows of corn (2, 1). Is the span of these two vectors the entire plane?

[Hint: You can row reduce

[
−1 2 x
1 1 y

]
, or you can come up with another

explanation as to why any vector (x, y) must be a linear combination of
the given two.]

2. Suppose our astronaut Jimmy has 4 boosters (see Problem 3.11) that allow
bidirectional movement in the directions (1, 1, 2), (0, 1, 3), (2, 1, 1), and
(−2, 1, 0). Show that the span of these vectors is all of three dimensional
space. Then select from these boosters a basis for R3. [You’ll want to row
reduce a matrix to answer this. Show the matrix and its rref.]

3. If the 4th booster breaks, what kind of object is the span of the remaining
three directions? Is it all of space, a plane, a line, a circle, a parallelogram,
etc.? Then state the dimension of and give a basis for the vector space
obtained as the span of these three vectors.

The set of vectors (x, y) in the plane forms a vector space of dimension 2. We
know this because the vectors (1, 0) and (0, 1) are linearly independent and we
can obtain any point (x, y) in the plane as the linear combination (1, 0)x+(0, 1)y.
This shows that the two vectors (1, 0) and (0, 1) form a basis for the set of
vectors in the plane. We call this vector space R2.

Problem 4.14 Read the preceding paragraph (if you have not already).
For each vector space below, produce a collection of independent vectors (or
functions) whose span is the space. You might need to rref a matrix and obtain
a solution first. State the dimension of the vector space.
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1. The set of vectors (x, y, z) in space (R3).

2. The kernel of the matrix A =

[
1 1 −1 0
3 −2 0 −1

]
from Problem 4.10. Your work here generalizes to

show that the kernel of any matrix
is always a vector space.

3. The solutions to B~x = 3~x for B =

3 0 0
0 2 1
0 1 2

 from Problem 3.37.

4. The solutions to C~x = 3~x for C =

3 1 0
0 2 1
0 1 2

 from Problem 3.37.

5. (Challenge) All polynomials a0 + a1x+ a2x
2 + a3x

3 of degree 3 or less.

You can present in class if you got the first four.

From the examples above, we see that the solutions to A~x = λ~x form a
vector space. This is easy to see when we realize that A~x = λ~x is the same
equation as (A− λI)~x = ~0, which means that to find eigenvectors, we must find
the kernel of A− λI. Let’s give a name to this vector space of eigenvectors.

Definition 4.7: Eigenspace. Let λ be an eigenvalue of A. The eigenspace of
A corresponding to λ is the set of solutions to A~x = λ~x. We write EA(λ) for
the eigenspace of A corresponding to λ. The geometric multiplicity of λ is the
dimension of EA(λ).

Once we have a collection of vectors in the kernel of a matrix, or a collection
of eigenvectors corresponding to the same eigenvalue, the span of these vectors
gives us an entire vector space full of vectors that will still be in the kernel. The
next problem asks you to show why.

Problem 4.15 Recall that the kernel of A is the set of solutions ~x to A~x = ~0.

Suppose that ~y and ~z are both in the kernel of a matrix A, so we know A~y = ~0
and A~z = ~0. Show that any linear combination of ~y and ~z is also in the kernel
of A. In other words, show that a~y + b~z is also in the kernel of A.

[Hint: Why does A~y = ~0? What is A~z? Then compute A(a~y+b~z) (distribute
and simplify). Make sure you show each step of your work.]

Because of the previous problem, we say that the kernel is closed under linear
combinations. We can’t get out of the kernel by performing linear combinations
of things that are in the kernel. This fact is true in any vector space.

Any linear combination of vectors in a vector space will still be in the
vector space. Vectors spaces are closed under linear combinations.

Conservation Laws through Eigenvectors and Kernels

Kirchoff’s Electrical Laws

Gustav Kirchoff discovered two laws of electricity that pertain to the conservation
of charge and energy. To describe these laws, we must first discuss voltage,
resistance, and current.

• Current is the flow of electricity. We’ll often compare it to water flow or
traffic flow.
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Figure 4.2: Electrical Circuit Diagrams.

• As a current passes across a conductor, it encounters resistance. Ohm’s
law states that the product of the resistance R and current I across a
conductor equals the voltage V , i.e. RI = V . If the voltage remains
constant, then a large resistance corresponds to a small current.

• A resistor is an object with high resistance which is placed in an electrical
system to slow down the flow (current) of electricity. Resistors are measured
in terms of ohms. The larger the ohms, the smaller the current.

Figure 4.2 illustrates two introductory electrical systems. In this diagram, wires
meet at nodes (illustrated with a dot). Batteries and voltage sources (represented
by or other symbols) supply a voltage of E volts. At each node the current
may change, so the arrows and letters i represent the different currents in the
electrical system. The electrical current on each wire may or may not follow
the arrows drawn (a negative current means that the current flows opposite
the arrow). Resistors are depicted with the symbol , and the letter R
represents the ohms.

Kirchoff discovered two laws. They both help us find current in a system,
provided we know the voltage of any batteries, and the resistance of any resistors.

1. Kirchoff’s current law states that at every node, the current flowing in
equals the current flowing out (at nodes, current in = current out).

2. Kirchoff’s voltage law states that on any loop in the system, the directed
sum of voltages supplied equals the directed sum of voltage drops (in loops,
voltage in = voltage out). To use this law, pick a spot in the system. Then
move around the system following a path that eventually gets you back to
where you began (a closed curve). If you encounter a battery (a voltage
source), then it counts as voltage in. If you encounter a resistor as you
move with the current, then the voltage drop is Ri. If you encounter a
resistor while moving opposite the current, then times by a negative to
get a voltage drop of −Ri.

Let’s use Kirchoff’s laws to generate a system of equations for the two loop
system. Remember that every time a current encounters a resistor, the voltage
drop is V = RI, the product of the resistance and the current.

Problem 4.16 Consider the two loop system in figure 4.2. Assume that the
voltage supplied from the battery E, as well as the ohms R1, R2, and R3, on
the resistors are known. The currents i1, i2, and i3 are unknown.
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1. Use Kirchoff’s laws to explain how to obtain each of the equations below:

i1 − i2 − i3 = 0
−i1 + i2 + i3 = 0

R1i1 +R2i2 − E = 0
−R2i2 +R3i3 = 0.

R1i1 +R3i3 − E = 0.

[Hint: If you encounter a resistor while moving backwards along a loop,
then the voltage drop becomes a voltage gain (times by a negative).]

If you were unable to explain why Kirchoff’s laws gave the equations above,
you can still present the rest of this problem to the class and I’ll help you.

2. Some of the equations above are linear combinations of the other equations.
How could you obtain the 2nd and 5th as a linear combination of the
others?

3. Suppose R1 = 2, R2 = 3, and R3 = 6 ohms. Solve the system of equations
above by row reducing an appropriate matrix (think of E as an unknown
and find the kernel of a matrix). State a basis for the solutions.

4. If we know the power source is E = 12 V, what is i1? If we measure the
current in the first wire to be i1 = 10 amps, then what is E?

Projections and Linear Regression

When we want to find the coefficients of an equation such as y = mx + b or
y = ax2 + bx+ c that passes through several points, remember that the key idea
is to write the linear system of equations A~x = ~b that we wish to solve. If the
equation has no solution, then we multiply both sides by AT and then solve the
corresponding system. This gets us the linear combination of the columns of A
that is closest to ~b. We call this linear regression.

Problem 4.17 Consider the 5 points

(−1, 1), (0,−1), (1,−2), (2,−1), (2,−2)

1. Use linear regression to give an equation of the line y = a0 + a1x that best
fits these 5 points. (Remember to set up the system A~x = ~b, and then
multiply on the left by the transpose AT .)

2. Use linear regression to give an equation of the parabola y = a0+a1x+a2x
2

that best fits these 5 points. For this one, your system A~x = ~b looks like
1
1
1
1
1

−1
0
1
2
2

?
?
?
?
?


a0a1
a2

 =


1
−1
−2
−1
−2

 .

Just multiply both sides by AT and then solve the system of equations.
The coefficients are rather ugly (one is −115/78).

When the number of points matches the number of unknown coefficients, we
can find an equation of the model without using linear regression. To organize
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our work, let’s first standardize the notation. Rather than writing y = mx+ b,
let’s write y = a0 + a1x (where a0 = b and a1 = m). For a parabola, let’s write

y = a0 + a1x+ a2x
2 =

2∑
k=0

akx
k. We can now write any polynomial in the form

y = a0 + a1x+ · · ·+ anx
n =

n∑
k=0

akx
k.

By standardizing the coefficients, we can use summation notation to express
any degree polynomial by changing the n on the top of the summation sign.

Problem 4.18 Answer the following by row reducing an appropriate matrix
(just use software). [Hint: Each point produces an equation.] If one of the
following problems has no solution, explain why there is no solution.

1. Find the intercept a0 and slope a1 of a line y = a0 + a1x that passes
through the points (1, 2) and (3, 5). [We could have used m and b, but I
chose to use a0 and a1 so we can see how this generalizes to all dimensions.]

2. Find the coefficients a0, a1, and a2 of a parabola y = a0 + a1x
1 + a2x

2

that passes through the points (0, 1), (2, 3), and (1, 4). [Hint: The second
point produces the equation 3 = a0 + a1(2) + a2(2)2.]

3. Give an equation of a cubic polynomial y = a0 + a1x
1 + a2x

2 + a3x
3 that

passes through the four points (0, 1), (1, 3), (1, 4), and (2, 4). [You should
have a linear system with 4 equations and 4 unknowns.]

4. Suppose that we collect the 6 data points (1, 1), (2, 3), (−1, 2), (0,−1),
(−2, 0), (3, 1), and we would like to find a polynomial that passes through
all 6 points. State the degree n of this polynomial. Then find the coef-
ficients a0, a1, . . . , an of this polynomial. Use technology to do your row
reduction. When you present in class, show us the matrix you entered
into a computer, and then show us the reduced row echelon form together
with the polynomial.

Visualizing Linear Transformations between Vector Spaces

Cramer’s Rule

Gabriel Cramer developed a way to solve linear systems of equations by using
determinants. For small systems, the solution is extremely fast. For large
systems the method looses its power because of the complexity of computing
determinants. However, when the coefficients in the system are variables,
Cramer’s rule provides an extremely fast algorithm for obtaining solutions. I’ll
remind you occasionally throughout the problem set to apply Cramer’s rule
when the problem involves variable coefficients.

Problem 4.19: Cramer’s Rule Our goal on this problem is to find a quick
way to solve the matrix equation[

a11
a21

a12
a22

] [
x1
x2

]
=

[
b1
b2

]
.

Let’s look at an example and from it develop a general rule. Let ~v1 = (a11, a21) =

(2,−2) and ~v2 = (a12, a22) = (1, 2), so A =

[
2 1
−2 2

]
. If we know that x1 = −3
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and x2 = −2, the we have ~b = x1~v1 + x2~v2 = (−8, 2). In the picture below, the

solid red vector is ~v1, the solid blue vector is ~v2, and the solid black vector is ~b.
Use the picture below, to answer the questions that follow.

[Hint: Each question can be answered by thinking about determinants as areas.]

1. Explain why x1
∣∣~v1 ~v2

∣∣ =
∣∣x1 ~v1 ~v2

∣∣. Remember that when we put
vertical bars on a matrix, that
means we compute the
determinant.

2. Now explain why
∣∣x1 ~v1 ~v2

∣∣ =
∣∣∣~b ~v2

∣∣∣. [Hint: Why do the two purple

parallelograms have the same area?]

3. Combine the previous two parts and solve for x1 to show that

x1 =

∣∣∣~b ~v2

∣∣∣∣∣~v1 ~v2
∣∣ =

∣∣∣∣b1b2 a12
a22

∣∣∣∣∣∣∣∣a11a21

a12
a22

∣∣∣∣
and then obtain a similar formula for x2. You can see the solution in the

theorem below.
4. Consider the system of equations x+2y = 3, 4x+5y = 6. Use the formulas

you just developed to solve this system. You’ll need to compute three
determinants.

The previous problem is a proof by picture of Cramer’s rule in 2D. The
proof of the theorem is similar in all dimensions. The key idea is to connect
determinants to area. Here’s a formal statement of Cramer’s Rule.

Theorem 4.8 (Cramer’s Rule). Consider the linear system given by A~x = ~b,
where A =

[
~v1 ~v2 · · ·~vn

]
is an n by n matrix whose determinant is not

zero. Let D = |A|. For each i, replace vector ~vi with ~b, and then let Di be the
determinant of the corresponding matrix. The solution to the linear system is

x1 =
D1

D
, x2 =

D2

D
, · · · xn =

Dn

D
.

For the 2 by 2 system [
a11
a21

a12
a22

] [
x1
x2

]
=

[
b1
b2

]
,
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Cramer’s rule states the solution is (provided |A| 6= 0)

x1 =
D1

D
=

∣∣∣∣b1b2 a12
a22

∣∣∣∣∣∣∣∣a11a21

a12
a22

∣∣∣∣ , x2 =
D2

D
=

∣∣∣∣a11a21

b1
b2

∣∣∣∣∣∣∣∣a11a21

a12
a22

∣∣∣∣ .

Projections and Linear Regression

Problem 4.20 Solve the following. [Hint: Because the problem involves
variable points, Cramer’s rule will be much faster than row reduction.]

1. Find the intercept a0 and slope a1 of a line y = a0 + a1x that passes
through the points (x1, y1) and (x2, y2). In other words, solve the system
1a0 + x1a1 = y1 and 1a0 + x2a1 = y2 for the unknowns a0 and a1. You’ll
just need to write this system in matrix form, and then use Cramer’s rule
to finish.

2. Use Cramer’s rule to state the coefficient a1 of a parabola y = a0 + a1x
1 +

a2x
2 that passes through the three points (x1, y1), (x2, y2), and (x3, y3).

You could similarly find a0 and a2, but don’t worry about it.

Can you think of any conditions where your solutions above will not be valid?

We’ve seen how to use linear regression to find an equation of lines, parabolas,
cubics, and more that best fit several data points. The key is to set up a system
which has no solution, multiply both sides on the left by the transpose, and then
solve. Let’s use this idea to obtain a general solution for finding an equation of
the linear regression line that best approximates some arbitrary points.

Problem 4.21 Consider the five points

(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5).

We would like to find an equation of the least squares regression line y = a0+a1x
that best fits these points. Set up the matrices A, ~x,~b, and AT . Multiply together
ATA and AT~b (your result should involve sums of the form

∑
xi,
∑
yi,
∑
xiyi,

and
∑
x2i ). Then solve the equation ATA~x = AT~b and state the coefficients a0

and a1.
[Hint: Since the system involves variable coefficients, try using Cramer’s rule.

It should kick out the solution almost instantly with 3 two by two determinants.
One of these determinants should be (5) (

∑
xiyi)− (

∑
xi) (

∑
yi).]

The formula you developed above is the formula found in software programs.
It’s also the formula you’ll find in statistic textbooks, high school textbooks,
online help sites, etc. They just change the 5 to an n.

Conservation Laws through Eigenvectors and Kernels

Let’s return to another problem involving Kirchoff’s electrical laws.

Problem 4.22 Consider the three loop system below.
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Assume that the voltage supplied from the battery E and that the ohms Rj on
the resistors are known. The currents are unknown. Even though E is known,
treat it as an unknown so that it can act as the free variable in our final solution.

1. There are 4 nodes in this system. Write the 4 equations we obtain from
Kirchoff’s current law (flow in equals flow out at a node).

2. There are three inner loops in the system above. Write the equations
formed by going around each inner loop using Kirchoff’s voltage law
(current in equals current out along any loop). As a reminder, here’s how
to get the equation from the middle loop. Start at the node in the upper
left corner and move clockwise. We encounter R3 while moving with i3.
We then move down i4 and encounter R4. Along i6 at the bottom we
move left and encounter R6. We then move up (against) i2 and encounter
R2. Our equation is

−R2i2 +R3i3 +R4i4 +R6i6 = 0,

where the negative on R2i2 comes because we encountered R2 while moving
against the flow of i2.

3. You should have 7 equations with 7 unknowns (treating E as the last
unknown). Write your system of equations in the form A~x = ~0. Your
matrix will have Ri’s in it, lots of zeros, and some 1’s and −1’s.

4. If R1 = 1, R2 = 1, R3 = 1, R4 = 1, R5 = 1, R6 = 1, find the unknown
currents by finding an eigenvector of A corresponding to λ = 0 (i.e., give
a basis for the eigenspace EA(0), which just means find the kernel of A or
just solve the system).

5. If E = 12 V, what is i1? If i1 = 12 amps, what is E?

Visualizing Linear Transformations between Vector Spaces

We’ve been using linear combinations to organize almost all our work. The
solutions to A~x = ~b are always a linear combination of some vectors. The matrix
product A~x is a linear combination of the columns of A. We can use the rref
of a matrix to write each column as a linear combination of the pivot columns.
Once we have a basis for the kernel, every other solution is a linear combination
of these basis vectors. The list goes on.

You’ve been using operations that preserve linear combinations for quite
some time. We already know that for a matrix A and a linear combination of
vectors c1~x1 + c2~x2, we can compute

A(c1~x1 + c2~x2) = c1A(~x1) + c2A(~x2).

This is because we first know that matrix multiplication is distributive (so
A(c1~x1 + c2~x2) = A(c1~x1) + A(c2~x2). We also know that A(c~x) = cA~x which
just says that we can times a vector by a constant and then multiply on the left
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by the matrix, or we could wait and times A~v by the constant, and either way
we’ll get the same answer. These two key ideas show that matrix multiplication
preserves linear combinations. The next problem has you connect this to some
other things you have seen before.

Problem 4.23 Complete the following:

1. Explain why
d

dx
(c1f1(x) + c2f2(x)) = c1

d

dx
(f1) + c2

d

dx
(f2). What two

differentiation rules are needed to explain why this is true? Once you are
finished, you’ll have shown that the derivative operator preserves linear
combinations of functions.

2. Explain why

∫ b

a

c1f1 + c2f2dx = c1

∫ b

a

f1dx + c2

∫ b

a

f2dx. Again, this

shows that the integral operator preserves linear combinations of functions.

3. Does the Laplace transform preserve linear combinations of functions?

Each of the examples above provided an example of a function, operation,
or transformation that preserved linear combinations. When this occurs, we can
perform the linear combination either before or after we perform the operation.
Let’s make a definition to isolate this pattern.

Definition 4.9: Function, Transformation, Operator. A function f has a
domain D and range R. The domain D is the set of inputs to the function. The
range is the set of outputs. The words function,

transformation, and operator are
all synonyms. We just typically
use transformation to talk about
functions when the domain is
vectors, and operator to talk
about functions when the domain
is functions.

• When the domain D is a collections of vectors, we’ll often say that f is a
transformation of vectors and write T (~x) instead of f(x). An example is
T (~x) = A~x where A is a matrix.

• When the domain D is a collection of functions, we’ll often say that f is
an operator on functions and write L(g) instead of f(g). An example is

L(g) = d
dxg or another is L(g) =

∫ b
a
gdx.

Definition 4.10: Linear function, Linear Transformation, Linear Oper-
ator. When the domain D and range R of a function (transformation, operator)
are vector spaces (so we can perform linear combinations), then we say that
the function f , transformation T , or operator L is linear if it preserves linear
combinations. This means that

f(c1x1 + c2x2) = c1f(x1) + c2g(x2) or

T (c1~x1 + c2~x2) = c1T (~x1) + c2T (~x2) or

L(c1f1 + c2f2) = c1L(f1) + c2L(f2).

We can apply linear combinations either before or after we apply the function,
and we’ll get the exact same result.

Above problem 4.23, we showed that T (~x) = A~x is a linear transformation
and in that problem we showed that the derivative, integral, and Laplace
transform are linear operators. We can differentiate a sum by differentiating
each piece separately (term-by-term differentiation) and we can pull constants
out. Similarly, we can integrate term-by-term, and pull constants out. These
are precisely the key properties behind a linear function.

If you ever find yourself saying, “Just do each part individually, and
constants come out,” chances are pretty high that you are using
linearity.
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If A is a matrix, then the product A~x is a linear transformation. We’ll often
write this as T (~x) = A~x. Do you remember Candice’s treasure map in Problem
??. Once she knew how to locate 2 linearly independent object on her map
(the two trees), she could translate the entire map. Once we understand how
the map transforms a basis for the domain, we understand the entire linear
transformation.

Problem 4.24 Suppose that we have a linear transformation T : R3 → R2.
Since we are mapping vectors from 3D to 2D, we could think of this as a
way of portraying a three dimensional world on a flat 2D screen (so computer
animation).

We’ve been told that T (1, 0, 0) = (1, 3), T (0, 1, 0) = (−2, 4), and that
T (1, 1, 1) = (3, 1).

1. Show that (1, 0, 0), (0, 1, 0), and (1, 1, 1) are a basis for R3. (Put the
vectors in the columns of a matrix, row reduce, and make an observation.)

2. Now write (0, 0, 1) as a linear combination of (1, 0, 0), (0, 1, 0), and (1, 1, 1).
(Add a 4th column to your matrix from the first part, compute the rref,
and then complete the problem).

3. We know that T is linear, so we must have

T (c1~v1 + c2~v2 + c3~v3) = c1T (~v1) + c2T (~v2) + c3T (~v3).

Since we know T at the three vectors (1, 0, 0), (0, 1, 0), and (1, 1, 1), and
from part 2 we found the constants c1, c2, and c3, we can now compute
T (0, 0, 1). Do so now.

4. Since (x, y, z) = (1, 0, 0)x+ (0, 1, 0)y + (0, 0, 1)z, and we know T at each
of these three vectors, compute T (x, y, z).

5. Find a matrix A so that T (x, y, z) = A

xy
z

.

Not every function, transformation, or operator is linear. The next problem
has you distinguish between a few examples.

Problem 4.25 Complete the following. When a variable is not listed as part
of the domain, we assume it is constant.

1. Show that f(x) = ax2 is not linear (a is a constant). [Does f(c1x1+c2x2) =
c1f(x1) + c2f(x2)?]

2. Show that f(a) = ax2 is linear (x is a constant). [Does f(c1a1 + c2a2) =
c1f(a1) + c2f(a2)?]

3. Consider f(x) = mx+ b. Show that f is not a linear function of x. Wait! So f(x) = mx+ b is not
linear? Ask me about this in class.

4. Consider f(m, b) = mx+ b. Show that f is a linear function of m and b.
[Does f(c1(m1, b1) + c2(m2, b2)) = c1f(m1, b1) + c2f(m2, b2)?]

5. Which do you think is linear, f(x) = ax2+bx+c or f(a, b, c) = ax2+bx+c? This last examples explains why
we use the phrase “linear”
regression to find the coefficients
of any degree polynomial that
passes through some given data
points.

We’ll come back to linear transformations all semester long. We’ll soon see
that solving differential equations requires that we find the kernel of a linear
operator.
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Conservation Laws through Eigenvectors and Kernels

Problem 4.26: Google PageRank (Thanks to David Stowell for this prob-

lem) The Google Search Engine uses an algorithm called PageRank. The basic Many people think that we use
the word PageRank because we
are ranking web pages. The name
comes from its creator, Larry Page.
You can read more via a Google
search (ironic), or with the article
http://epubs.siam.org/doi/abs/10.1137/050623280.

idea is that the world wide web contains a number of documents with links
connecting them all. Each document is ranked according to its importance.
A document’s importance score depends on how many other pages have links
pointing to it. To fix ideas,suppose that we have four pages in our web: P1, P2,
P3, and P4. Now suppose that this web has the following links:

• P1 has outgoing links to all other pages.

• P2 has outgoing links to P3 and P4.

• P3 has outgoing links to P1.

• P4 has outgoing links to P1 and P3.

To determine the importance of a particular page, we simply need to count
the number of times all the other pages have voted for that page. In addition,
each page has only one vote, or point, to give. It can give that one point to
one page, by voting for only one page, or it can also choose to divide its vote
among all the pages it votes for. In our example above, P1 has two incoming
links, called backlinks. Its importance score we’ll denote by x1 and we compute
it with x1 = (1)x3 + 1

2x4. Notice that the only links coming into P1 are from
P3 and P4. Moreover, P3 only votes once, while P4 splits its vote in two ways –
half of its vote goes to P1, the other half to P3.

1. Obtain an equation for x2, x3, and x4, similar to the one above. Then
write your system of equations in the form

0 0 1 1
2

1/3 0 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



x1
x2
x3
x4

 =


x1
x2
x3
x4

 .
2. Look at the structure of the matrix. In particular, what do you notice

about the columns of the matrix?

3. Notice that the above equation can be written as A~x = λ~x. What is the
eigenvalue λ? (If we write y = x, then the slope is there, even though it
appears to be missing.)

4. Compute the eigenvector associated with this eigenvalue. From your
computation, which page is the most important?

The world wide web consists of billion to trillions of pages. Modern computers
can find eigenvectors of this size of a matrix extremely quickly.

Problem 4.27: Markov Process Suppose we own a car rental company
which rents cars in Idaho Falls and Rexburg. The last few weeks have shown a
weekly trend that 60% of the cars which are rented in Rexburg will remain in
Rexburg (the other 40% end up in Idaho Falls). About 80% of the cars which
are rented in Idaho Falls will remain in Idaho Falls (the other 20% end up in
Rexburg).

http://epubs.siam.org/doi/abs/10.1137/050623280
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1. If there are currently 60 cars in Rexburg and 140 cars in IF, how many
will be in each city next week? If this trend continues, how many will be
in each city in 2 weeks?

2. Let Rn and In be the number of cars in Rexburg and Idaho Falls, respec-
tively, at the beginning of the nth week, where R0 = 60 and I0 = 140. We
know that we can compute Rn+1 by summing of 60% of Rn and 20% of
In. This gives us the equation Rn+1 = 0.6Rn + 0.2In. Write a similar
equation for In+1 and then organize your work into the matrix form

A

(
Rn
In

)
=

(
Rn+1

In+1

)
.

You can check your work by computing A

(
R0

I0

)
=

(
R1

I1

)
, which you

computed above.

3. We would like to know if the number of cars will stabilize in each city.
This would mean that if the current week’s car totals are R and I, then
we could find the next week’s totals by solving the system

A

(
R
I

)
=

(
R
I

)
.

The totals don’t change, so we call this a steady state solution. Find the

steady state solution by solving A

(
R
I

)
=

(
R
I

)
.

4. In the long run, what proportion of the cars will end up in Rexburg?

5. Because the system A

(
R
I

)
=

(
R
I

)
had a nonzero solution, we know

something about the eigenvalues of the matrix A. Can you spot an
eigenvalue of A without doing any computations? Recall that an eigenvalue satisfies

the equation A~x = λ~x.
(We’ll answer 4 and 5 in class if you are unable. The key parts are 1-3.)

In the problem above, each week we could assign a car a state (Rexburg or IF).
The matrix A above helped us get from one state to another. Other examples of
states are “open” or “closed” in an electrical circuit, or “working properly” and
“working improperly” for operation of machinery at a manufacturing facility.
Stock market analysts use Markov processes and a generalization called stochastic
processes to make predictions about future stock values. A car rental company
which rents vehicles in different locations can use a Markov Process to keep track
of where their inventory of cars will be in the future. Imagine if you worked for
Alamo and had thousands of car rental spots. Knowing where your cars will end
up will let you know where to hire drivers, so you can move the cars to where
they are needed.

We call the matrix A in a Markov process a transition matrix. It’s the matrix
which tells you how to move from the current state ~xn to the next state ~xn+1.
This means we have

~x1 = A~x0

~x2 = A~x1 = A(A~x0) = A2~x0

~x3 = A~x2 = A(A~x1) = · · · = A3~x0

~x4 = A~x3 = A(A~x2) = · · · = A4~x0

...
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You can find the nth state by computing ~xn = An~x0. We just raise the matrix
to a power, and times by the initial state. The next problem has you examine
what happens when you raise a matrix to a power.

Problem 4.28 Raising a matrix to a power An can be rather time consuming.
There’s a really simple way to do it if you know the eigenvalues and eigenvectors.
First write AQ = QD and then solve for A. We can then write A2 = AA =
(QDQ−1)(QDQ−1).

1. LetD =

[
2 0
0 3

]
. ComputeD2, D3, andDn. Make a guess for

a 0 0
0 b 0
0 0 c

n.

2. Explain why A2 = QD2Q−1. (See the margin for a hint.) Then explain We know A2 = QDQ−1QDQ−1.
Does anything cancel?why A3 = QD3Q−1 and An = QDnQ−1.

3. Suppose that the eigenvalues of A are λ = 1 and λ = 1/2, with corre-

sponding eigenvectors (1, 2) and (3, 4). Explain why lim
n→∞

Dn =

[
1 0
0 0

]
,

and then compute lim
n→∞

An.

We’ll soon start seeing partial fraction decomposition problems where the de-
nominator consists of repeated roots. For example, we’ve already seen problems
of the form

1

s3(s− 1)
=
As2 +Bs+ C

s3
+

D

s− 1
=
A

s
+
B

s2
+
C

s3
+

D

s− 1
.

What form should we use for the partial fraction decomposition of
1

s(s− 1)3
?

We could use
1

s(s− 1)3
=
A

s
+
Bs2 + Cs+D

(s− 1)3
,

but then we can’t simplify the complex fraction on the right. What if instead
we shifted our polynomial so that it was centered at s− 1. All we would need
to do is replace each s in the numerator with s− 1. This gives us

1

s(s− 1)3
=
A

s
+
B(s− 1)2 + C(s− 1) +D

(s− 1)3
=
A

s
+

B

s− 1
+

C

(s− 1)2
+

D

(s− 1)3
.

This new option produces 4 quite simple fractions.

Problem 4.29: Partial Fractions with Repeated Roots We can write

1

(x+ 1)3(x− 3)
=
A(x+ 1)2 +B(x+ 1) + C

(x+ 1)3
+

D

x− 3

=
A

(x+ 1)
+

B

(x+ 1)2
+

C

(x+ 1)3
+

D

x− 3
.

1. Multiply both sides by the denominator of the original. Use software if
needed to expand the right hand side. Then set up a system of equations by
equating coefficients. Finally, solve this system for the unknown constants
A, B, C, and D. Show us the matrix you row reduced, and the rref.
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2. If instead we wanted to solve the partial fraction decomposition problem

mx3 + nx2 + px+ q

(x+ 1)3(x− 3)
=

A

(x+ 1)
+

B

(x+ 1)2
+

C

(x+ 1)3
+

D

x− 3

where we treated m,n, p, q as free variables, what 4 by 8 matrix A should
we row reduce to solve the matrix equation A~x = ~0. Row reduce this
matrix, and then state A, B, C, and D in terms of m,n, p, q.

Visualizing Linear Transformations between Vector Spaces

Problem 4.30 Let A =

 1 3 4
−2 0 −2
0 1 1

 and let T be the transformation

T (~x) = A~x.

1. What are T (1, 0, 0), T (0, 1, 0), T (0, 0, 1), and T (2, 3, 0)?

2. Is T linear? [Does T (c1~x1 + c2~x2) = c1T (~x1) + c2T (~x2)?]

3. Find (x, y, z) such that f(x, y, z) = (5,−2, 1), or explain why it is not
possible.

4. The set of possible outputs of T is an object in 3D. It is the span of the
columns of A, and often called the column space of A. Describe that
object (is it a line, a plane, all of space, something else). [Hint: row reduce
the matrix. How many pivots are there.]

5. Find the kernel of T , i.e. solve T (~x) = ~0. [Your rref above should give this
to you.]

Matrices provide us with the key examples to understanding linear trans-
formations. However, a matrix by nature requires that we look at functions
between finite dimensional spaces. The key linear transformations we will study
throughout the semester will involve infinite dimensional spaces (like the space
of all differentiable functions). Most of the ideas we have learned will still
be useful to us as we explore functions between infinite dimensional vector
spaces. Near the end of the semester, we’ll even start discussing eigenvalues and
eigenfunctions of linear transformations between infinitely dimensional vector
spaces. This is where most modern innovations come from. You’ll explore these
concepts in greater detail in future classes.

Conservation Laws through Eigenvectors and Kernels

Problem 4.31 In a certain town, there are 3 types of land zones: residential,
commercial, and industrial. The city has been undergoing growth recently, and
the city has noticed the following 5 year trends.

• Every 5 years, they’ve notice that 10% of the residential land gets rezoned
as commercial land, while 5% of the residential land gets rezoned as
industrial. The other 85% of residential land remains residential.

• For commercial land, 70% remains commercial, while 10% becomes resi-
dential and 20% becomes industrial.
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• For industrial land, 60% remains industrial, while 25% becomes commercial
and 15% becomes residential.

• Currently the percent of land in each zone is 40% residential, 30% com-
mercial, and 30% industrial.

Let’s assume that these trends continue over an extended period of time.

1. The current state is ~x0 = (40, 30, 30). After 5 years, what percentage of
land will be zoned residential? Commercial? Industrial? Answering this
question should give you the transition matrix A so that ~x1 = A~x0.

2. Use software to find ~x2, ~x3, and ~x4 (the land use percentages after 10, 15,
and 20 years).

3. Find the steady state solution to this Markov Process by solving A~x = 1~x
(i.e., the eigenvector corresponding to the eigenvalue λ = 1.)

Visualizing Linear Transformations between Vector Spaces

Problem 4.32 Consider the differential equation y′ − 3y = 0. Let L be
the operator L(y) = y′ − 3y. With the operator notation, we can rewrite the
differential equation as L(y) = 0 (so we need to find the kernel of L).

1. What is the domain of L?

2. Show that L is a linear operator by computing L(c1y1+c2y2) and c1L(y1)+
c2L(y2) and verifying that they are the same.

3. Solve the differential equation y′ − 3y = 0 by using separation of variables.

4. Obtain a single solution (no unknown constants) to the ODE.

5. Using the single solution, can you obtain all solutions as a linear combina-
tion of the single solution?

The solutions to the first order ODE y′− 3y = 0 are linear combinations of a
single solution. This is precisely because the ODE is a linear first order ODE. If
we had a 2nd order linear ODE, then solution would be all linear combinations
of two independent solutions. The next problem introduces this idea.

Problem 4.33 Consider the differential equation y′′ + 3y′ + 2y = 0. Let
L be the operator L(y) = y′′ + 3y′ + 2y. With the operator notation, we can
rewrite the differential equation as L(y) = 0 (so we need to find the kernel of L).

1. What is the domain of L?

2. Show that L is a linear operator by computing L(c1y1+c2y2) and c1L(y1)+
c2L(y2) and verifying that they are the same.

3. Show that both e−2x and e−x are in the kernel of L.

4. Are e−2x and e−x linearly independent? Why?

5. Why is y = c1e
−2x + c2e

−x a solution to the differential equation y′′ +
3y′ + 2y = 0?

This concludes the chapter. Look at the objectives at the beginning of the
chapter. Can you now do all the things you were promised?
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Extra Practice

Please use the problem list below to find extra practice problems to help you learn. You’ll find the problems
listed below at the end of Chapter 2 (pages 55-61, including solutions) in Linear Algebra by Ben Woodruff.
This text is freely available online. The text also references Schaum’s Outlines Beginning Linear Algebra by
Seymour Lipschutz for even more practice.

• https://content.byui.edu/file/c2f91762-7a1e-4d0b-a1ae-8d5f5f548e17/1/341-Book.pdf

Concept Suggested Relevant

Kirchoff’s Laws 1

Cramer’s Rule 2

Interpolating Polynomials 3

Least Squares Regression 4

Partial Fraction Decomposition 5

Markov Process 6

2nd Derivative Test 7

Remember that you can check almost all of your work with technology. Use the following technology links
to help you check your understanding.

• Sage RREF calculator

https://content.byui.edu/file/c2f91762-7a1e-4d0b-a1ae-8d5f5f548e17/1/341-Book.pdf
http://bmw.byuimath.com/dokuwiki/doku.php?id=rref_calculator


Chapter 5

Homogeneous ODEs

After completing this chapter, you should be able to:

1. Explain Hooke’s Law in regards to mass-spring systems. Construct and
solve differential equations that model spring motion, with or without the
presence of a damper.

2. Speak using the vocabulary and language of higher order ODEs, such as
homogeneous, linear, coefficients, superposition principle, basis of solutions,
etc.

3. Use Laplace transforms and s-shifting to solve homogeneous IVPs.

4. Use eigenvalues and eigenvectors to solve homogeneous ODE’s.

5. Explain how to immediately jump from the characteristic polynomial to
the solution of a homogeneous ODE.

Building Mathematical Models

In this chapter, we’re going to learn how to solve a huge collection of higher order
differential equations. Before diving into the details, let’s make sure we know
WHY we would even want to do so. If I knew you all had the same background,
we could dive into lots of examples directly related to your field (you’ll do that
in future classes in your major). Since we have a diverse background in our class,
we’ll stick mostly to models that connect velocity, position, and acceleration.
Before the next chapter ends, we’ll add to this some information about electrical
circuits.

For our first model, let’s look at how we can obtain the position of an object
in projectile motion from knowledge about the acceleration and velocity. You’ve
solved this problem before, but the solution required neglecting air resistance.

Example 5.1. In multivariate calculus, we encountered the differential equation
y′′ = −g. In this differential equation, the only force FT = my′′ acting on an
object in projectile motion is the force of gravity FG = −mg. Equating these
two gives us the ODE my′′ = −mg, or just y′′ = −g. If we have initial position
y(0) = y0 and initial speed y′(0) = v0, then the solution is y = − 1

2gt
2 + v0t+ y0.

We found that solution by integrating twice.

We don’t have to neglect air resistance anymore. We could talk about sky
diving (risky), dropping bombs (deadly), throwing math books off a roof (illegal),
putting a satellite into geosynchronous orbit (useful), or dropping a pebble from
the top of a waterfall (head to Yellowstone and try it - sounds like we need a

98
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field trip). The next problem asks you to revisit the example above, but now
add in air resistance.

Problem 5.1 Joe hikes up to the top of Lower Falls in Yellowstone. His
hope is to gauge the height h of the waterfall. He plans to drop a pebble from
the top, and time how long it takes for the pebble to hit the ground. He’ll need
a model that predicts the height of the pebble at any time t.

For this to work, Joe has to make some assumptions. His assumptions might
be way off, but that’s how science works. We start with assumptions and then
turn those assumptions into differential equations. Here’s what Joe assumes:

• He assumes Newton’s second law of motion, namely that F = ma (the
total force is the mass times the acceleration).

• He assumes that the total force is comprised of two parts.

• The first force FG comes from a constant acceleration due to gravity. He
assumes that gravity is constant a = −g. The negative sign comes because
the acceleration causes a decrease in height.

• The second part comes from air resistance. He assumes that the faster the
pebble goes, the greater this force will be. If the pebble’s speed were to
double, then this force should double. So he assumes that the force due to
air resistance FR is proportional to the pebble’s velocity.

Let y(t) represent the height, above ground, of the pebble after t seconds. Use
Joe’s assumptions to answer the following:

1. Rewrite Newton’s second law of motion in terms of y, y′, and/or y′′.

2. What is the constant force FG due to gravity?

3. Rewrite Joe’s assumption about air resistance in terms of y, y′ and/or y′′.

4. The total force F is the sum of the two forces, i.e. we can write F = FG+FR.
Use this fact, together with your answers from the previous parts, to obtain
a second order ODE. You don’t have to solve the ODE, rather you just
need to obtain it.

5. If we let y′ = v so that v′ = y′′, then show how to rewrite your ODE above
in the matrix form [

y′

v′

]
=

[
0 1
0 −k/m

] [
y
v

]
+

[
0
−g

]
.

If you need any hints, try searching the web for “modeling motion if we assume
that air resistance is proportional to speed.”

Congrats. You’ve just set up your first second order ODE. Let’s now look at
another position/velocity/acceleration model, but this time related to springs.
We’ll start by considering the following scenario. We attach an object with
mass m to a spring. We place the spring horizontally, and put the mass on a In the next chapter, we’ll hang the

spring from a ceiling. In this case,
we’ll have an additional force
Fg = −mg acting on the spring.

frictionless track. We let go of the object, and allow it to come to rest. We’ll
use the function x(t) to keep track of the position of the spring at any time t,
with x = 0 corresponding to equilibrium (the mass is at rest). Robert Hooke
(1635 – 1703) developed the following law, called Hooke’s law:

The force needed to extend (or compress) a spring a distance x is
proportional to the distance x. Note that the force acts opposite the
displacement.
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Problem 5.2 Read the preceding paragraph. Then answer the following:

• Draw a picture of a horizontal track. On the left end of the track, put a
wall. Put an object, like a square block, in the center of your track and
draw a spring that connects the wall to the block.

• Explain why mx′′(t) = −kx(t). We generally just write mx′′ = −kx (the
t is assumed).

• If it takes 8 N = 8kg m/s2 to move an object whose mass is 4 kg about .3
m, what is the spring constant k? How far would a 12 N force cause the
same object to move?

Hooke’s law is not a perfect model for all springs, but it does a good job for
most, provided the displacement is not too large. If the displacements are too
large, then the spring may deform, which changes the properties of the spring in
all future computations. If you take your car out onto extremely bumpy roads,
and purposefully hit some nasty bumps, you could permanently damage the
shocks. In this case, you would want to replace your springs.

We need one more model before we start solving some ODEs. We’ll use the
exact same spring model as before. Place a horizontal spring whose modulus is
k on a frictionless track. Attach an object whose mass is m to the end of the
spring. We now place the entire mass-spring system underwater. When it was We don’t have to place the spring

underwater to get the same affect.
We could use a dashpot to resist
the motion. One type of dashpot
is a cylindrical tube placed around
a cylindrical object, so that as the
object moves, its sides come in
contact with the dashpot,
resulting in friction that resists
motion. See Wikipedia for more
info.

exposed to air, we neglected air resistance. Now we’ll have to take resistance
into account.

Problem 5.3 When we have no resistance, the mass-spring system ODE
is FT = FS , or mx′′ = −kx. Let’s place the mass-spring system underwater,
and assume that the liquid applies a resistive force that is proportional to the
velocity of the object. If the object is resting, the liquid doesn’t apply a force.
If you double the speed, then the resistive force doubles. If you triple the speed,
the resistive force triples.

1. Modify the second order ODE mx′′ = −kx to account for the resistive
force of water.

2. Then show that we can write this 2nd order ODE as a system of ODEs in
the matrix form [

x′

v′

]
=

[
0 1

−k/m −c/m

] [
x
v

]
.

Solving ODE Systems with Eigenvalues and Eigenvectors

We will need to perform lots of partial fraction decompositions in the next
few problems. It would be nice if we had a really easy way to perform them
symbolically. Row reduction and Cramer’s rule will be our friends. Start by
completing the following problem, which is a slight adaptation of a problem
from the previous chapter.

Problem 5.4 Consider the partial fraction decomposition

8s+ 7

(s− 2)(s+ 3)
=

A

s− 2
+

B

s+ 3

which we can rewrite in the form

8s+ 7 = A(s+ 3) +B(s− 2).

http://en.wikipedia.org/wiki/Dashpot
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1. Complete this decomposition (find A and B). Use any method you like.

2. Now let’s solve
cs+ d

(s− 2)(s+ 3)
=

A

s− 2
+

B

s+ 3

Rather than thinking of c and d as known constants, let’s make them
variables in our linear system of equations. Our goal is to solve

cs+ d = (A+B)s+ (3A− 2B) or (A+B − c)s+ (3A− 2B − d) = 0

which we can rewrite in the matrix form Why did I save the last two
columns for c and d?[

1 1 −1 0
3 −2 0 −1

]
A
B
c
d

 =

[
0
0

]
.

This is a matrix equation of the form M~x = ~0. Find a basis for the kernel
of the matrix M .

3. Change the 2 by 4 matrix above to solve the partial fraction decomposition

cs+ d

(s− p)(s− q)
=

A

s− p
+

B

s− q
.

Find the kernel of this 2 by 4 matrix (use software). Then state A and B
in terms of c, d, p, and q.

4. Use Cramer’s rule to quickly solve[
1 1
−q −p

] [
A
B

]
=

[
c
d

]
and verify that your answer in part 3 is correct. Under what circumstances
would your answer not be valid?

You’ll find that either row reduction with software that can handle symbolic
entries (both Sage and Mathematica can do this), or using of Cramer’s Rule,
will greatly simplify lots of the work we need to do below. You’ve proven the
following theorem.

Theorem 5.2. If p 6= q, the solution to the partial fraction decomposition

cs+ d

(s− p)(s− q)
=

A

s− p
+

B

s− q
yields A =

−cp− d
q − p

, B =
cq + d

q − p
.

Problem 5.5 Consider the system of ODEs

x′ = 2x+ 3y
y′ = 5x+ 4y

⇒
[
x′

y′

]
=

[
2 3
5 4

] [
x
y

]
⇒ d~x

dt
= A~x.

1. Find the eigenvalues of A. Then find a basis for each eigenspace (i.e. find
an eigenvector corresponding to each eigenvalue). Pick vectors for your
bases that do not have fractions in them (rescale if needed).
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2. Recall that the Laplace transforms of each equation are

sX − x0 = 2X + 3Y
sY − y0 = 5X + 4Y

⇒ −x0 = (2− s)X + 3Y
−y0 = 5X + (4− s)Y ⇒

[
−x0
−y0

]
=

[
(2− s) 3

5 (4− s)

] [
X
Y

]
,

where X is the Laplace transform of x(t) and Y is the Laplace transform
of y(t). Solve for X and Y (Cramer’s rule should make this super fast).
Do you see any connections between your solution here and your work
with eigenvalues?

3. After factoring the denominators and setting up some partial fraction To complete these partial fraction
decompositions, use Theorem 5.2.
Just label what c, d, p, q are, and
then write down the solution. You
should find that

A =
−x0(7)− (−4x0 + 3y0)

−8
=

3

8
(x0+y0),

B =
x0(−1) + (−4x0 + 3y0)

−8
=

1

8
(5x0−3y0).

I’ll let you get C and D.

decompositions, show that

X =
sx0 − 4x0 + 3y0
(s− 7)(s+ 1)

=
A

s− 7
+

B

s+ 1

Y =
sy0 + 5x0 − 2y0
(s− 7)(s+ 1)

=
C

s− 7
+

D

s+ 1

Then complete both partial fraction decompositions and state the values
of A, B, C, and D. See the margin for a hint.

4. Recall that the inverse Laplace transforms of X and Y are

x(t) = Ae7t +Be−1t

y(t) = Ce7t +De−1t
⇒

[
x
y

]
=

[
A
C

]
e7t +

[
B
D

]
e−1t

How are the vectors (A,C) and (B,D) related to the eigenvectors in your
bases from part 1?

The previous problem shows us that if we know the eigenvalues λ1 6= λ2 and
corresponding eigenvectors ~x1 and ~x2 of a 2 by 2 matrix A, then the solutions
to d~x

dt = A~x are of the form ~x = c1~x1e
λ1t + c2~x2e

λ2t. Let’s check this pattern
one more time.

Problem 5.6 Consider a mass spring system where m = 1 kg, c = 5 kg/s,
and k = 6 kg/s2. The corresponding ODE from Problem 5.3 is x′′+5x′+6x = 0.
If we let v = x′, then the second order ODE is the same as v′ + 5v + 6x = 0.
We can write all this as the first order system

x′ = v = 0x+ 1v
v′ = −6x− 5v

⇒
[
x′

v′

]
=

[
0 1
−6 −5

] [
x
v

]
⇒ d~x

dt
= A~x.

1. Find the eigenvalues of A. Then give a basis for each eigenspace, avoiding
fractions.

2. Compute the Laplace transforms of both equations. Show that Remember that we use capital
letters often to stand for the
transformed function of the
corresponding lowercase letter. So
here X is the transform of x, and
V is the transform of V .

−x0 = −sX + 1V
−v0 = −6X + (−5− s)V

and then solve for X and V . (Use Cramer’s rule and Theorem 5.2.)

3. Perform appropriate partial fraction decompositions on X and B. Use A
and B as the numerators for X, and C and D for the numerators of V .

4. Compute the inverse Laplace transform of both X and V . You should One easy way to check if you are
right on this problem is that v′

should be x, which is why
C = −3A and D = −2B. This
should also match your
eigenvectors (1,−3) and (1,−2).

at this point have x = Ae−3t + Be−2t and V = Ce−3t + De−2t, where
you solved for A, B, C, and D when you computed the partial fraction
decompositions. See the margin for a hint.
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Problem 5.7 Consider the system of mixing tanks in Problem 2.29. There
were two tanks. The first tank contained 6 lbs of salt in 10 gallons of water, and
the second tank contained no salt in 20 gallons of water. We attached hoses to
the tanks and transfered 2 gallon/minute of solution from tank 1 to tank 2, and
vice versa. Our goal is to find the amount of salt in each tank at any time t.

1. If we let y1(t) and y2(t) represent the amount of salt in each tank after t
minutes, then we’ve already shown that we can write this as the system of
differential equations

y′1 = − 2
10y1 + 2

20y2
y′2 = 2

10y1 −
2
20y2

⇒
(
y′1
y′2

)
=

[
−1/5 1/10
1/5 −1/10

](
y1
y2

)
⇒ d~y

dt
= A~y.

Find the eigenvalues of A. Then give a basis for each eigenspace (find an
eigenvector corresponding to each eigenvalue).

2. Based on our previous two problems, a general solution to this ODE should

be

(
y1
y2

)
= c1

(
∗
∗

)
e∗t + c2

(
∗
∗

)
e∗t, where the asterisks come from the

eigenvalues and eigenvectors. Give the general solution by replacing the
asterisks with appropriate values.

3. We were told that when t = 0, we have y1(0) = 6 lbs and y2(0) = 0 lbs.
Use this information to find the scalars c1 and c2.

Did you notice on this previous problem that we completely skirted around
Laplace transforms and partial fraction decompositions? Instead, we just used
eigenvalues and eigenvectors to get a general solution. We found the scalars c1
and c2 only after writing down the general solution. We’ll come back to this
more soon.

The theory of homogeneous differential equations

In the previous section, we found that eigenvalues and eigenvectors played a

huge role in solving first order systems of the form
d~x

dt
= A~x. The ODEs from

the first problems we can write as

my′′ + ky′ = −mg, mx′′ + kx = 0, and mx′′ + cx′ + kx = 0.

If we divide each ODE by m, then we can write each ODE in the general form

y′′ + p(t)y′ + q(t)y = r(t).

This introduces our next definitions.

Definition 5.3: Linear, Constant Coefficient, and Homogeneous.

• If we can write an ODE in the form y′′ + p(t)y′ + q(t)y = r(t), then we
say the ODE is a second order linear ODE.

• The functions p(t) and q(t) we call the coefficients of the linear ODE.

• If the coefficients are constant, the we say the ODE is a constant coefficient
linear ODE.
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• When the right hand side equals zero, so r(t) = 0, then we say the linear
ODE is homogeneous. Otherwise we say the ODE is non homogeneous.

• We use the words nth order linear ODE to talk about any ODE that we
can write in the form

y(n) + an−1(t)y(n−1) + · · ·+ a1(t)y′ + a0(t)y = r(t),

where y(n) is the nth derivative of y. We define coefficients, constant
coefficient, homogeneous, and non homogeneous, in the same way.

We just introduced a few new words. In the problems that follow, let’s
practice using these words. The next problem has you explain why we use the
word “linear.”

Problem 5.8 Consider the second order ODE y′′ + 7y′ + 6y = 0.

• Why is this ODE linear? Modify it so it is no longer linear, and show us
in class what would make it non linear.

• Is this ODE homogeneous? Explain.

• Is this ODE constant coefficient? Explain.

To solve second order linear homogeneous constant coefficient ODEs, we’ll
discover a pattern using the Laplace transform. In the previous chapter, we
showed that

L (y′) = sL (y)− y(0) = sY − y(0).

We need a rule for second derivatives. Repeated application of the single
derivative rule will give you all the rules we need.

Problem 5.9 Show that under suitable conditions, we can compute the
Laplace transform of the second derivative of y by using the formula

L (y′′) = s2L (y)− sy(0)− y′(0) = s2Y − sy(0)− y′(0).

Then show that

L (y′′′) = s3L (y)− s2y(0)− sy′(0)− y′′(0).

Conjecture a formula for the Laplace transform of the 7th derivative of y.
[Hint: As stated in the paragraph before this problem, apply the rule L (y′) =
sL (y)− y(0) multiple times.]

Solving Higher Order ODEs

We are now ready to solve a second order ODE with Laplace transforms.

Problem 5.10 Consider the IVP x′′ + 3x′ + 2x = 0, x(0) = x0, x′(0) = v0.
This models a mass-spring system where we’ve attached a mass of m = 1 kg to
a spring whose modulus is k = 2 kg/s2. A dashpot has been added to provide
friction with a coefficient of friction of c = 3 kg/s. We displace the spring right
y0 cm, and give it an initial velocity of v0 cm/s.

1. Is the ODE linear? Is it homogeneous? Are the coefficients constant?
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2. Compute the Laplace transform of both sides and show that

X =
sx0 + v0 + 3x0
s2 + 3s+ 2

.

3. Use a partial fraction decomposition to write Feel free to use Cramer’s rule, or
Theorem 5.2.

X =
A

s+ 1
+

B

s+ 2
,

where you give the constants A and B.

4. Find the solution x(t) to this IVP by computing the inverse Laplace
transform of X.

5. How are solutions to s2 + 3s+ 2 = 0 connected to your solution?

Let try another problem, but this time let’s not give any initial conditions.
We should notice a connection between the zeros of a polynomial and the final
solution.

Problem 5.11 Consider the ODE y′′ + 7y′ + 10y = 0. No initial conditions
are given, so we need a general solution.

1. Is the ODE linear? Is it homogeneous? Are the coefficients constant?

2. Compute the Laplace transform of both sides and solve for L (y) = Y .
Since we don’t have initial conditions, you’ll have to use some place holder
for y(0) and y′(0), like c and d. However, these variables c and d represent
arbitrary constants.

3. If we used a partial fraction decomposition, explain why we could write

Y =
A

s+ 2
+

B

s+ 5
.

Without doing the partial fraction decomposition, state the general solution
in terms of A and B.

4. (Optional)We can use the language of kernels and bases to connect this You have already found the
answers to all the blanks on the
left. This just asks you to write
your solution in terms of a basis
for a kernel of a linear operator.

solution to our work with matrices. The kernel of the operator L(y) = y′′+
7y′ + 10y is a vector space. A basis for the kernel of L is .
The dimension of the kernel of L is . All solutions to
L(y) = 0 are linear combinations of these two basis elements.

The theory of homogeneous differential equations

In the two examples above, we took an ODE ay′′ + by′ + cy = 0, applied a
Laplace transform, and obtained the polynomial as2 + bs+ c. The zeros of this
polynomial seem to be intimately connected to the solution. Let’s give this
polynomial a name.

Definition 5.4: Characteristic Polynomial (Equation). Consider the ho-
mogeneous constant coefficient ODE ay′′ + by′ + cy = 0.

• The characteristic polynomial of our ODE is as2 + bs + c. We could
alternately use aλ2 + bλ+ c. Some students of mine in previous

years have created a verb to get
from an ODE to its characteristic
polynomial. They coined the
phrase, “lambdacize the ODE.” I
think it describes the process
perfectly.
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• The characteristic equation of our ODE is as2 + bs + c = 0. We could
alternately use aλ2 + bλ+ c = 0.

• For higher order ODEs, we define the characteristic polynomial and char-
acteristic equation in the same way.

With these new words, we now have the correct vocabulary to discuss solving
ODEs. We noticed a pattern in the first few problems. From that pattern, we
developed some new words. Now we can use these words to simplify our solution
techniques.

Problem 5.12 For each ODE below, state the characteristic equation of the
ODE, find the zeros of the characteristic polynomial, and then state a general
solution to the ODE.

1. y′′ + 9y′ + 20y = 0, where y is a function of x. Note: your answer should
look like y(x) = c1e

?x + c2e
?x.

2. 2x′′ + 10x′ + 12x = 0, where x is a function of t.

3. p′′ − p′ − 12p = 0, where p is a function of q.

The definition of the characteristic equation allows us to alternately use the
variable λ instead of s. We’ve briefly seen why this is so when we completed
Problem 5.6. This next problem firmly connects what we are doing to eigenvalues
and eigenvectors.

Problem 5.13 Consider the ODE y′′ + 9y′ + 20y = 0 from the previous
problem. If we let y1 = y and y2 = y′, then we can write the ODE in the form
y′2 + 9y2 + 20y1 = 0. We can write this as the system of ODEs

y′1 = y2

y′2 = −20y1 − 9y2.

1. Write the system above in matrix form

(
y1
y2

)′
= A

(
y1
y2

)
=

[
∗ ∗
∗ ∗

](
y1
y2

)
. Hint: Don’t forget that you can

write y′1 = y2 as y′1 = 0y1 + 1y2.
It’s really easy to miss the 0 and 1
that are sitting in the problem.2. Find the eigenvalues and eigenvectors of A.

3. We showed in the previous problem that the solution to y′′+ 9y′+ 20y = 0
is y = c1e

−4t + c2e
−5t. We know that y′2 = y′ = −4c1e

−4t − 5c2c2e
−5t.

We can organize this work the vector form(
y
y′

)
=

(
y1
y2

)
= c1

(
1
−4

)
eλ1x + c2

(
1
−5

)
eλ2x.

What does this this have to do with the eigenvalues and eigenvectors of
the matrix?

We can now solve any 2nd order ODE provided the eigenvalues are real and
distinct. What do we do when they are not distinct, or are complex? To answer
these questions we need to learn a new Laplace transform rule that allows us to
work with problems involving repeated roots. In other words, how do we find
the inverse transform of any of the following:

1

(s+ 3)2
,

1

(s+ 3)3
,

1

s2 + 6s+ 25
=

1

(s+ 3)2 + 42
,

1

s2 + 6s− 7
=

1

(s+ 3)2 − 42
, etc.
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y(t) Y (s) provided

1
1

s
s > 0

t
1

s2
s > 0

tn
n!

sn+1
s > 0

eat
1

s− a
s > a

y′ sY − y(0)

y′′ s2Y − sy(0)− y′(0)

y(t) Y (s) provided

cos(ωt)
s

s2 + ω2
s > 0

sin(ωt)
ω

s2 + ω2
s > 0

cosh(ωt)
s

s2 − ω2
s > |ω|

sinh(ωt)
ω

s2 − ω2
s > |ω|

y(t) Y (s)

eaty(t) Y (s− a)

Table 5.1: Table of Laplace Transforms

The key is that we already know how to find the inverse transform of each of
the following:

1

(s)2
,

1

(s)3
,

1

(s)2 + 42
,

1

(s)2 − 42
, etc.

The more complicated versions are just shifts of the problems we already
understand. If we already know how to compute the inverse Laplace transform
of Y (s), then what is the inverse Laplace transform of Y (s−a) where we replace
each s with s− a?

Problem 5.14: The s-shifting Theorem In this problem we’ll develop a

rule for the inverse transform of Y (s− a).

1. We know that Y (s) = L {y(t)} =
∫∞
0
e−st[y(t)]dt. Replace s with s− a You’ll want to rewrite e−(s−a)t as

the product of two exponentials.and obtain a formula

Y (s− a) =

∫ ∞
0

e−st[?]dt.

This gives you a formula L {?} = Y (s− a). [Hint: The s-shifting theorem
is now in Table 5.1. Tackle this part of the problem without referring
to the table, and then check your answer before completing the last two
parts.]

2. What is the inverse Laplace transform of 1/s2?

What is the inverse Laplace transform of 1/(s− 4)2 and 1/(s+ 5)2?

Use software to check your answer. See the Laplace transform calculator
or use Mathematica.

3. What is the forward Laplace transform of cos(bt) and eat cos(bt)?

What is the forward Laplace transform of e7tt3 and e−7tt3?

Again, make sure you use software to check your answer.

Before we get too far, let’s practice the s-shifting theorem for Laplace
transforms. To apply the s-shifting theorem, we’ll need to become good at

completing the square. If we know the transform is
2

s2 + 4
, then the inverse

http://bmw.byuimath.com/dokuwiki/doku.php?id=laplace_transforms
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transform is sin(2t). If we know the transform is
2

(s+ 3)2 + 4
, then the inverse

transform is e−3t sin(2t). However, we would normally have a characteristic
polynomial in the form s2 + 6s+ 13, which we must complete the square on to
obtain (s+ 3)2 + 4. Once we complete the square, we can apply the s-shifting
theorem immediately.

Problem 5.15 Complete the following:

1. Find the Laplace transform of the following:

(a) t3 and t3e4t

(b) cos(2t) and e−3t cos(2t)

(c) 3 sin(7t) and 3e−5t sin(7t)

2. Find the inverse Laplace transform of the following:

(a)
3

s4
and

3

(s− 5)4

(b)
s+ 3

(s+ 3)2 + 4
and

1

(s+ 3)2 + 4

(c)
s

(s+ 3)2 + 4
. [Note: You might want to add and subtract 3 from the

numerator, so that you have s = (s+ 3)− 3.

Make sure you check all your answers with software. See the Laplace transform
calculator or use Mathematica.

Let’s now tackle some problem where the characteristic equation does not
have real zeros, or has repeated zeros.

Problem 5.16 Consider the ODE x′′ + 16x = 0.

1. Compute the Laplace transform of both sides of the ODE and solve for
L (x) = X. You’ll have x(0) and x′(0) in the numerator of your solution.

2. Compute the inverse Laplace transform of X. Your answer will involve
x(0) and x′(0), and it should involve sines and cosines.

3. What is the characteristic polynomial of the ODE? Show that its roots
are purely imaginary.

The previous problem showed us how to tackle a problem where the roots
of the characteristic polynomial are purely imaginary. What do we do if the
roots repeat, or if they are complex of the form a± bi? The next two problems
address this.

Problem 5.17: Repeated Roots Consider the ODE y′′ + 6y′ + 9y = 0.

1. What are the zeros of the characteristic equation? From these zeros, guess
a general solution. (It’s OK if you’re wrong.)

2. Compute the Laplace transform of both sides of ODE. Then solve for Y .

3. Using a partial fraction decomposition, we can write

Y =
A(s+ 3) +B

(s+ 3)2
=

A

(s+ 3)
+

B

(s+ 3)2
.

Explain why this means we know

y(t) = Ae−3t +Bte−3t.

http://bmw.byuimath.com/dokuwiki/doku.php?id=laplace_transforms
http://bmw.byuimath.com/dokuwiki/doku.php?id=laplace_transforms
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4. If y(0) = 7 and y′(0) = 0, then what are A and B?

Problem 5.18: Complex Roots Consider the ODE y′′ + 4y′ + 13y = 0.

1. What are the zeros of the characteristic equation?

2. Compute the Laplace transform of both sides of ODE. Then solve for Y
and complete the square of the denominator.

3. Using a partial fraction decomposition, we can write

Y =
A(s+ 2) +B

(s+ 2)2 + 32
=

A(s+ 2)

(s+ 2)2 + 32
+

B

(s+ 2)2 + 32
.

Use the s-shifting theorem to solve for y(t). Use software to check if you
are correct (Wolfram Alpha can give you the solution to this one).

We can now solve EVERY second order homogeneous constant coefficient
ODE. All we have to do is find the characteristic equation. The zeros unlock a
general solution of the ODE.

Problem 5.19 Suppose that we have a second order ODE, and we have
already computed the roots of the characteristic polynomial to be λ1 and λ2.

1. If λ1 = −3 and λ2 = −5, then y(t) = .
If the roots are real and λ1 6= λ2, then y(t) = .

2. If λ1 = −3 and λ2 = −3, then y(t) =
If the roots are real and λ1 = λ2, then y(t) = .

3. If λ1 = −2 + 3i and λ2 = −2− 3i, then y(t) = .
If the roots are complex where λ = a± bi, then y(t) = .

4. If λ1 = 5i and λ2 = −5i, then y(t) = .
If the roots are purely imaginary so that λ = ±bi, then y(t) = .

Problem 5.20 Complete each of the following:

1. Consider the ODE y′′ + 4y′ + 3y = 0. Find the characteristic polynomial,
complete the square (if needed), and state a general solution.

2. Consider the ODE y′′ + 6y′ + 9y = 0. Find the characteristic polynomial, What do you do with a repeated
root?complete the square (if needed), and state a general solution.

3. Consider the ODE y′′ + 2y′ + 5y = 0. Find the characteristic polynomial, Your answer should involve sines
and cosines.complete the square (if needed), and state a general solution.

Problem: Optional Consider the ODE ay′′ + by′ + cy = 0.

1. Obtain the characteristic equation. Complete the square. State the zeros
of the characteristic equation. [When you finish this problem, you will
have proved the quadratic formula.]
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2. If we let y1 = y and y2 = y′, we obtain the system of ODE y′1 = y2 and

ay′2+by2+cy1 = 0. Write this system in the matrix form

(
y1
y2

)′
= A

(
y1
y2

)
(state the matrix A), and then find the eigenvalues of A.

Now that we have a general solution, let’s show how to quickly obtain the
solution to an IVP. The key principle, is to first obtain a general solution.
Differentiate your general solution, and then use your initial conditions to find
the unknown constants.

Problem 5.21 Consider the IVP y′′ + 6y′ + 5y = 0, with y(0) = 4 and
y′(0) = 5. Obtain a general solution. Then compute y′(t). Plug the initial
conditions into both y and y′ to solve for the unknown constants in your general
solution.

Problem 5.22 Consider the IVP y′′ + 6y′ + 9y = 0, with y(0) = 4 and
y′(0) = 5. Obtain a general solution. Then compute y′(t). Use the initial
conditions to solve for the unknown constants in your general solution.

Problem 5.23 Consider the IVP y′′ + 2y′ + 5y = 0, with y(0) = 4 and
y′(0) = 5. Obtain a general solution. Then compute y′(t). Use the initial
conditions to solve for the unknown constants in your general solution.

Recall from the introductory examples that we can model the position of a
spring using the ODE

mx′′ + cx′ + kx = 0

The constants m, c, and k are physical constants related to the mass-spring
system.

• The mass of the object attached to the spring is m.

• The spring constant, or modulus, is k.

• The coefficient of friction of any attached dashpot is c. If no dashpot is
attached, then we just let c = 0.

Problem 5.24 Attach a mass of m kg to a spring with modulus k kg/s2.

1. Set up a differential equation whose solution gives the position x(t) of
the spring at any time t. Solve this ODE and give a basis for the set of
solutions.

2. If we displace the mass x0 cm from equilibrium, and give the object an
initial velocity of v0 cm/s to the right, then determine the position of the
spring at any time t.

3. You should see that the solution is a linear combination of trig functions,
hence will oscillate indefinitely. What is the period of oscillation?

4. If you doubled the spring constant k, would the period increase or decrease?
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Problem: Optional Suppose we attach a mass of m kg to a spring with

modulus k kg/s2. We displace the object y0 cm from the equilibrium position
of the spring, and give the object an initial velocity of v0 cm/s away from
equilibrium. In the absence of friction, the mass-spring system will oscillate in a
regular pattern. Give a formula for the amplitude of the oscillation. [Hint: If
you write your solution in the form y(t) = C sin(ωt+ φ), then you can quickly
read off the amplitude. How do you write y(t) = A cos(bt) + B sin(bt) in the
form C sin(ωt+ φ)?]

Each of the problems above dealt with undamped motion, there was no
friction to slow down the motion. What if the system includes a dashpot,
something placed around the mass-spring system that adds friction to the
system. Wikipedia has some excellent pictures of what a dashpot could look
like. I like to think of an old screen door, and the cylindrical tube at the bottom
of the door that helps close the door and prevent it from smashing little fingers.
Ask me in class to show you a dashpot on our classroom door.

Problem 5.25 Recall from the introductory examples that we can model
1 2 3 4
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0.4
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the position of a spring using the ODE mx′′ + cx′ + kx = 0. We now attach a
mass of 1 kg to a spring with k = 16 kg/s2. We extend the spring 1 cm and
then release it. The spring is inside a dashpot, to add friction to the system,
and the dashpot has a coefficient of friction equal to c kg/s.

1. If c = 0 then a basis for the general solution is cos 4t and sin 4t. For each of
c = 2, 8, 17, state a basis for the general solution (you’ll see the irrational
number

√
15 when c = 2).

2. The graph of the IVPs for c = 0, 2, 8, 17 are shown on the right. Match
each graph to the correct coefficient of friction. Explain.

3. As the coefficient of friction increases, describe with a sentence or two
what happens to the graph of the solution.

We already know that the general solution to the ODE y′′ + y = 0 is
y = c1 cos t + c2 sin t. In this problem, we’ll discover a crucial identity that
connects the trigonometric functions to complex exponentials.

Problem 5.26: Euler’s Identity Consider the ODE y′′ + y = 0. This

models the undamped motion of a spring where m = 1 and k = 1.

1. Explain why both y(t) = c1 cos t + c2 sin t and also y(t) = c3e
it + c4e

−it

are a general solution to this ODE.

2. Using the general solution y(t) = c1 cos t+c2 sin t and the initial conditions
y(0) = 1 and y′(0) = 0, show that y(t) = cos t is the solution to this IVP.
Then use the general solution y(t) = c3e

it + c4e
−it with the same initial

conditions to show that y(t) =
eit + e−it

2
is also the solution to this IVP.

Since solutions to IVPs are unique, this proves that cos t =
eit + e−it

2
.

3. Repeat the process above with the initial conditions y(0) = 0 and y′(0) = 1

to prove that sin t =
eit − e−it

2i
.
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4. The equations cos t =
eit + e−it

2
and sin t =

eit − e−it

2i
show us how to

write cos t and sin t as a linear combination of eit and e−it. Use these
equations to explain why

cos t+ i sin t = eit.

This formula is Euler’s identity.

Problem 5.27 Two tanks are connected with hoses and pumps so that 3
gallons/second flows back and forth between the tanks. The first tank is a 60
gallon tank, with 2 lbs of salt inside. The second tank is a 90 gallon tank with
23 lbs of salt in it. Please find the amount of salt in each tank at any time t.

1. Write a linear system of ODEs in the form(
y′1
y′2

)
= A

(
y1
y2

)
.

whose solution will give the amount of salt in each tank at any time t.

2. Compute the eigenvalues and eigenvectors of A, and then write a general
solution to this system of ODEs. Your solution should involve arbitrary
constants c1 and c2.

3. Use the initial conditions to solve for c1 and c2.

4. Construct a graph that contains the the vector field representing the You can check your work with
technology. Follow this link.coefficient matrix and the parametric plot ~y(t) = (y1(t), y2(t)) of your

solution.

Higher Order ODEs

In the previous sections, we focused mainly on second order ODEs. We started by
using Laplace transforms to find the exact solutions. The accompanying partial
fraction decomposition was sometimes rather ugly, so we opted for guessing the
form of the solution, and then taking derivatives to determine the unknown
constants.

Problem 5.28 Consider the ODE y′′′ + 3y′′ + 3y′ + y = 0 (where y is a
function of x, not t). Compute the Laplace transform of both sides, and solve
for Y . The denominator factors as (s+ 1)3. Explain why a general solution is
y = c1e

−x + c2xe
−x + c3x

2e−x.
For the ODE y′′′′+ 4y′′′+ 6y′′+ 4y′+ y = 0, whose characteristic equation is

(s+ 1)4 = 0, make a guess as to the solution. Then use a computer and dsolve
to check that your answer is correct. (Wolfram Alpha can solve this.)

If you encounter a repeated root, what does that contribute to the solution?
Explain this in a way that you and others can remember it. Write a few sentences,
and give an example.

Problem 5.29 In each problem below, you are given the characteristic
equation of an ODE. State the general solution of the ODE.

http://bmw.byuimath.com/dokuwiki/doku.php?id=systems_of_odes_grapher
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1. (s+ 3)(s+ 2)(s+ 1) = 0

2. (s+ 3)(s+ 3)(s+ 1) = 0

3. (s+ 3)3(s2 + 9) = 0

4. (s+ 3)2(s2 + 9)2 = 0

5. (s+ 3)2(s2 − 9)2 = 0 (Note the sign change.)

When we find a basis of solutions for an ODE, we need to know that the
functions are linearly independent. If they are not linearly independent, then
they are not a basis. Is there a simple way to determine if solutions are linearly
independent? For example, how do we know that for a 3rd order ODE whose
characteristic equation is (s+ 3)(s+ 2)(s+ 1) = 0 that the functions e−t, e−2t,
and e−3t are linearly independent? Can we use matrices and determinants to
tackle this? The answer is yes, and its proof is beyond the scope of our class.

Definition 5.5: Wronskian. The Wronskian of a collection of n functions is
the determinant of an n by n matrix that we form by placing the functions in
the first row and then each other row is the derivative of the row above. This
gives us the Wronskian as

W (y1, y2) =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ , W (y1, y2, y3) =

∣∣∣∣∣∣
y1 y2 y3
y′1 y′2 y′3
y′′1 y′′2 y′′3

∣∣∣∣∣∣ , etc.

Problem 5.30 For each collection of functions below, compute the Wron-
skian. Then decide if the functions are linearly independent or linearly dependent.

1. e3t and 4e3t

2. cos t and sin t

3. et, e2t, and e3t

4. cosh t, sinh t, and et (Simplify this one fully.)

5. What does the Wronskian equal if the functions are linearly dependent?

You should have found that two were dependent, and two were independent.

This concludes the chapter. Look at the objectives at the beginning of the
chapter. Can you now do all the things you were promised?
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Extra Practice

The problems below come from Schaum’s Outlines Differential Equations by Richard Bronson. If you are
struggling with a topic from the preparation problem set, please use this list as a guideline to find related
practice problems.

Concept Sec Suggestions Relevant Problems

Vocabulary of ODEs 8* 33-35 1-3,33-35

2nd Order Homogeneous 9* 1,7,12,21,27,40 1-15, 17-45

nth Order Homogeneous 10* 3,7,8,9,12,18,37,41,44,49 All

IVPs (Homogeneous) 13 9 4,9,13

Applications 14 2,3,5,29,31,34,41-43 1-8,26-43

Laplace Transforms 21* 26, 54 14(c),15(b),25,26,54-58,

Inverse Transforms 22* 7, 34-36,38,read 12 and 18,44 6-10,15-19,29-30,32-53

Solving ODES 24 26,44 5,26,31,36,43,44

Wronskian and Theory 8* 9,10,18,20,43,48,53,58 5-10, 13-20, 31,36-64

*The problems in these sections are quick problems. It is important to do lots of them to learn the pattern
used to solve ODEs. You may be able to finish 7 or more problems in 15 minutes or less. Please a bunch so
that when you encounter these kinds of problems in the future you can immediately give an answer and move
forward.

Remember that you can check almost all of your work with technology. Use the following technology links
to help you check your understanding.

• Links are coming.

• Links are coming.



Chapter 6

Non Homogeneous ODEs

After completing this chapter, you should be able to:

1. Explain Hooke’s Law in regards to mass-spring systems, where there is an
external force. Construct and solve differential equations which represent
this physical model, with or without the presence of a damper and be able
to interpret how solutions change based on changes in the model.

2. Explain how to obtain solutions to non homogeneous ODEs by finding a
particular solution yp and the kernel yh to the corresponding homogeneous
ODE.

3. Use the method of undetermined coefficients to solve non homogeneous
linear ODEs.

Optional Explain Kirchhoff’s voltage law, Ohm’s law, and how to model electrical
circuits using 2nd order non homogeneous linear ODEs. Illustrate how
results about circuits can be translated into results about mass-spring
systems.

6.1 Non Homogeneous Linear Systems

In the previous chapter, we focused on solving homogeneous ODEs of the form
L(y) = 0. We need to learn how to solve non homogeneous ODEs, namely
L(y) = r(t) where r(t) 6= 0. Before solving these kinds of ODEs, let’s revisit

solving matrix equations of the form A~x = ~0 (homogeneous) and A~x = ~b (non
homogeneous). As we compare the solutions to these matrix equations (where
solving is much easier), we’ll glean some patterns that help us with solving non
homogeneous ODEs.

I highly suggest you complete this review problem, and check your answer,
to make sure you are comfortable with how to express infinitely many solutions
in vector form.

Review Suppose we want to solve the system A~x = ~b. We row reduce the
augmented matrix and obtain

[
A ~b

]
rref−−−→


1 0 −3 4 0 5
0 1 2 1 0 −2
0 0 0 0 1 3
0 0 0 0 0 0

 .

115
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What’s the solution? Give a basis for the kernel of A? See 1 for an answer.

If the vector ~b above had been ~b = ~0, what would the right most column have
been after row reduction? If you said, “A column of all zeros,” then congrats.
In this case, how would it have affected the solution? It would just remove the
constant vector from the solution.

Problem 6.1 Consider the homogeneous linear system


x+ 2y − 3z = 0

2x+ 4y − 6z = 0

−x− 2y + 3z = 0

.

1. Solve this homogeneous system. Show us your rref, and then your solution
(in vector form).

2. Solve the non homogeneous system


x+ 2y − 3z = 4

2x+ 4y − 6z = 8

−x− 2y + 3z = −4

.

3. Compare and contrast the two solutions.

Problem 6.2 Consider the matrix equation A~x = ~b given by

 1
−1
2

0
3
1

1
5
4

−2
5
−3



x1
x2
x3
x4

 =

0
0
0

 .
1. Give a basis for the kernel of A. In other words, solve this homogeneous

matrix equation.

2. Solve the non homogeneous equation

 1
−1
2

0
3
1

1
5
4

−2
5
−3



x1
x2
x3
x4

 =

−1
10
1

 .
3. How is your solution to the homogeneous problem related to your solution

of the non homogeneous problem? Compare and contrast the two.

Problem 6.3 Consider the matrix equation A~x = ~b. Suppose that ~x1 and
~x2 are both solutions to this non homogeneous equation.

1. Why is ~x1 − ~x2 a solution to the homogeneous equation A~x = 0? [Hint: If

A~x1 = ~b and A~x2 = ~b, then what is A(~x1 − ~x2)?

1 The free variables are x3 and x4, as these columns don’t have a pivot. The three nonzero
rows of our rref give the equations x1 − 3x3 + 4x4 = 5, x2 + 2x3 + x4 = −2, and x5 = 3. We
solve for each variable in terms of the free variables to obtain

x1 = 3x3 − 4x4 + 5
x2 = −2x3 − x4 − 2
x3 = x3
x4 = x4
x5 = 3

or in vector form


x1
x2
x3
x4
x5

 =


3
−2
1
0
0

x3 +


−4
−1
0
1
0

x4 +


5
−2
0
0
3

.

The kernel of A comes by making the last column all zeros. A basis for the kernel is
(3,−2, 1, 0, 0) and (−4,−1, 0, 1, 0) (the kernel does not include the last vector).
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2. If ~x1 and ~x2 are solutions to A~x = ~b, explain why ~x2 − ~x1 must be in the
kernel of A.

3. If ~xp is a single particular solution to A~x = ~b, and we know that a basis

for the kernel is ~x1, ~x2, . . . , ~xn, then explain why all solutions to A~x = ~b
can be written in the form

~x = c1~x1 + c2~x2 + · · ·+ cn~xn + ~xp = ~xh + ~xp,

where ~xh = c1~x1+c2~x2+· · ·+cn~xn is a general solution to the homogeneous
equation A~x = ~0.

4. If we replace A~x = ~b with any linear function L(y) = r, does this result
still hold? Namely, does the set of solutions to L(y) = r equal y = yh + yp
where yp is a single solution to the problem, and yh is a general solution
to the homogeneous equation L(y) = 0?

Look back at the last few problems. Do you notice how we solved a few
problems using matrices and noticed a pattern, namely that the solution to
A~x = ~b is simply ~xh + ~xp, where ~xh is the general solution to the homogeneous

equation A~x = ~0 (i.e. the kernel), and ~xp is a single solution to the original
equation. The last problem showed that this pattern continued for ANY linear
function (operator, transformation). So if we can show something is linear, then
the solution follows the same technique.

6.2 Solving Non Homogeneous ODEs

From the last section, we now know that the solutions to a non homogeneous
ODE L(y) = r(t) must look like y = yh + yp where yh is the general solution to
the homogeneous ODE, and yp is a single particular solution.

Definition 6.1: Particular yp and Homogeneous yh Solution. Given a
non homogeneous ODE, a particular solution to the ODE is any one single
solution yp to the ODE. The homogeneous solution which we call yh is a general
solution to the corresponding homogeneous ODE.

We’ve already seen a couple of ODEs that are non homogeneous in the
previous section. We have the tools to solve them with Laplace transforms.
Let’s look at a few examples, discover some patterns, and then speed things up.

Review We’ll occasionally need to solve inverse transforms with rather
ugly coefficients. Let’s review this. Find the inverse Laplace transform of
fs2 + gs+ h

s2(s+ 3)
. See 2 for an answer.

Problem 6.4 Consider the ODE my′′ = −ky′−mg from Problem 5.1. This Please use dsolve with
WolframAlpha to check EVERY
problem you do in this chapter.
Class will go much better if you
do.

ODE models the position of a pebble (or any other object) as it falls through
the air. With this problem, we assumed that gravity pulls the object down (the
−mg term), and that air resistance is proportional to velocity (the −ky′ terms).

2 We use a partial fraction decomposition to write

fs2 + gs+ h

s2(s+ 3)
=
As+B

s2
+

C

s+ 3
=
A

s
+
B

s2
+

C

s+ 3
.

The inverse transform is A + Bt + Ce−3t. We can obtain A, B, and C in terms of f , g,
and h. Since fs2 + gs+ h = (As+B)(s+ 3) + Cs2, we would solve the system f = A+ C,
g = 3A+B, h = 3B, which gives B = h/3, A = g/3− h/9, and C = h/9− g/3.
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1. For the homogeneous ODE my′′ + ky′ = 0, what are the zeros of the
characteristic polynomial? Show that a general solution to this homoge-
neous ODE is yh(t) = c1e

−kt/m + c2. We use the h in the subscript to just
remind us that the solution came from solving the homogeneous ODE.

2. For simplicity, let’s have m = 1, k = 5, and g = 32. Use Laplace transforms See WolframAlpha

to solve the ODE y′′ + 5y′ = −32 if y(0) = 0 and y′(0) = 0. Make sure
you check the link on the side to see if you have the correct answer.

3. Your solution involves 3 terms. Which terms are part of the homogeneous
solution? Which term is not part of the homogeneous solution? We call
this term a particular solution and write yp. Circle yp in your solution
above.

4. Use software to obtain a general solution to the ODE y′′+ 5y′ = −32 with See WolframAlpha

no initial values given (see the link on the side). How can you use your
work above to obtain this solution?

For our mass spring systems in the last chapter, we placed the system
horizontally so that we could ignore the force due to gravity. Let’s now hang
the mass-spring system vertically.

Problem 6.5 Consider a vertical mass-spring system inside a dashpot. The
object’s mass is m kg. The dashpot applies a frictional force proportional to the
velocity and has a coefficient of friction equal to c kg/s. The spring constant is
k kg/s2.

1. Use Newton’s second law of motion to explain why my′′ = −cy′−ky−mg,
or my′′ + cy′ + ky = −mg.

2. For simplicity, suppose m = 1 kg, c = 5 kg/s, and k = 4 kg/s2. Give the
solution yh to the homogeneous ODE y′′ + 5y′ + 4y = 0.

3. Using the same conditions, use Laplace transforms to solve the non homo- See WolframAlpha

geneous ODE y′′ + 5y′ + 4y = −32. [You might want to use y(0) = h and
y′(0) = v, but remember they are arbitrary.]

4. As t→∞, what happens to y(t)?

Review Find the inverse Laplace transform of
1

s(s2 + 9)
. See 3 for an answer.

Problem 6.6 Consider a vertical mass-spring system without friction, so
the corresponding ODE is my′′ = −0y′ − ky −mg, or my′′ + ky = −mg.

1. Let m = 1 kg and k = 4 kg/s2. Solve the homogeneous ODE y′′ + 4y = 0.

2. Use Laplace transforms to solve the non homogeneous ODE y′′+4y = −32. See WolframAlpha

[You might want to use y(0) = y0 and y′(0) = v0, but remember that they
are arbitrary.]

3 The quadratic s2 + 9 does not factor over the reals, so we write

1

s(s2 + 9)
=
A

s
+
Bs+ C

s2 + 9
,

whose inverse transform is A + B cos(3t) + C
3

sin(3t). Multiplying both sides by s(s2 + 9)

gives 1 = A(s2 + 9) + (Bs+ C)(s). Equating coefficients gives the system 0 = A+B, 0 = C,
1 = 9A. Solving this system yields A = 1/9, B = −1/9, and C = 0.

http://www.wolframalpha.com/input/?i=dsolve+y%27%27%2B5y%27%3D-32%2C+y%280%29%3D0+and+y%27%280%29%3D0
http://www.wolframalpha.com/input/?i=dsolve+y%27%27%2B5y%27%3D-32
http://www.wolframalpha.com/input/?i=dsolve+y%27%27%2B5y%27%2B4y%3D-32
http://www.wolframalpha.com/input/?i=dsolve+y%27%27%2B4y%3D-32
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3. Compare your solutions to the homogeneous and non homogeneous ODEs.

In all three problems above, we applied an external force to the physical
system. This constant force −mg showed up on the right hand side of the ODE.
Whenever we apply an external force to a problem, it shows up on the right hand
side of an ODE. If all the forces are internal, then we are solving a homogeneous
ODE. Any external forces change it to a non homogeneous ODE.

The forces above are all constant. What do we do with a non constant force?
The same thing! It just might get messier. Because we know how to compute
Laplace transforms of polynomials, exponentials, cosines and sines, and products
of these, we’ll focus our attention on external forces that involve these kinds of
functions.

Learning to Guess Appropriately

In the last chapter, we discovered that we can solve homogeneous ODEs by
simply finding the zeros of a polynomial. We gleaned all this information by
studying Laplace transforms. In this section, let’s tackle a few problems and look
for patterns that should greatly simply our ability to solve non homogeneous
ODEs. In all these problems, we’ll be solving second order ODEs of the form
L(y) = r(t).

Problem 6.7 Consider the ODE y′′ + 5y′ + 4y = r(t), which we could write
as L(y) = r(t), where L(y) is a linear operator.

1. Find a general solution to the homogeneous ODE y′′ + 5y′ + 4y = 0.
Remember, we use the notation yh as a name for the general solution to
the homogeneous ODE.

2. Let r(t) = 3t. The Laplace transform yields (check if you want)

Y =
sy(0) + y′(0) + 5y(0)

s2 + 5s+ 4
+

3

s2(s2 + 5s+ 4)

=

[
a

s+ 4
+

b

s+ 1

]
+

[
c

s+ 4
+

d

s+ 1
+
es+ f

s2

]
.

Don’t spend any time doing the partial fraction decompositions. Instead,
explain why a solution to y′′ + 5y′ + 4y = 3t must be

y = c1e
−4t + c2e

−t +At+B,

where c1 and c2 are arbitrary (depending on the initial conditions), but
A and B are the same regardless of the initial conditions (they could be
determined by doing a partial fraction decomposition).

3. Since c1 and c2 are arbitrary constants, let them be zero. This means
a particular solution to our ODE is yp = At + B. Substitute yp =
At + B, y′p = A and y′′p = 0 into the ODE y′′ + 5y′ + 4y = 3t to get
0 + 5(A) + 4(At+B) = 3t+ 0. Use this to find A and B.

4. We now have yh and yp. State a general solution to the ODE. See WolframAlpha

5. If r(t) = 7t3− 4t, make a guess as to what form yp would take. Use dsolve See WolframAlpha

to check if you are correct.

Did you notice that if the external force r(t) is a polynomial, then a particular
solution yp is a polynomial of the same degree?

http://www.wolframalpha.com/input/?i=dsolve+y%27%27%2B5y%27%2B4y%3D3t
http://www.wolframalpha.com/input/?i=dsolve+y%27%27%2B5y%27%2B4y%3D7t%5E3-4t
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Problem 6.8 Again consider the ODE y′′ + 5y′ + 4y = r(t), or L(y) = r(t).
We know the solution to L(y) = 0 (the kernel of L) is yh = c1e

−4t + c2e
−t. The

kernel is two dimensional with basis e−4t and e−t.

1. Let r(t) = 2 cos 3t. The Laplace transform yields

Y =
sy(0) + y′(0) + 5y(0)

s2 + 5s+ 4
+

s

(s2 + 9)(s2 + 5s+ 4)[
a

s+ 4
+

b

s+ 1

]
+

[
c

s+ 4
+

d

s+ 1
+
es+ f

s2 + 9

]
.

Don’t complete the partial fraction decomposition, rather explain why a
solution to y′′ + 5y′ + 4y = 2 cos 3t must be

y = c1e
−4t + c2e

−t +A cos(3t) +B sin(3t),

where c1 and c2 are arbitrary (depending on the initial conditions), but
A and B are the same regardless of the initial conditions (they could be
determined by doing a partial fraction decomposition).

2. Since c1 and c2 are arbitrary constants, let them be zero. This means a
particular solution to our ODE is yp = A cos 3t+B sin 3t. Compute two
derivatives and then substitute yp, y

′
p and y′′p into the ODE to get

(A cos 3t+B sin 3t)′′+5(A cos 3t+B sin 3t)′+4(A cos 3t+B sin 3t) = 2 cos 3t.

Use this equation to show A = − 1
25 and B = 3

25 . [Hint: The right hand
side is 2 cos 3t+ 0 sin 3t.]

3. We now have yh and yp. State a general solution to the ODE. Use the
link to the right to check if you are correct. See WolframAlpha

4. If r(t) = sin(7t), make a guess as to what form yp would take. Use software
to check that you are correct.

Did you notice that if the external force r(t) involves a sine or a cosine, then
a particular solution will be a linear combination of both sine and cosine with
the same frequency?

Let’s look at one more, but this time let’s have r(t) involve exponentials.
Something different happens when r(t) is actually part of the kernel of L.

Problem 6.9 Again consider the ODE y′′ + 5y′ + 4y = r(t), or L(y) = r(t).
We know the kernel of L is yh = c1e

−4t + c2e
−t.

1. Let r(t) = 7e−3t. Compute the Laplace transform of both sides, and
solve for Y . Explain why a solution to y′′ + 5y′ + 4y = 7e−3t must be
y = c1e

−4t + c2e
−t + Ae−3t, where c1 and c2 are arbitrary, but A could

be determined by doing a partial fraction decomposition (just set the
decompositions up, don’t spend time finding the constants).

2. Since c1 and c2 are arbitrary constants, let them be zero. This means a
particular solution to our ODE is yp = Ae−3t. Substitute yp, y

′
p and y′′p

into the ODE to get

(Ae−3t)′′ + 5(Ae−3t)′ + 4(Ae−3t) = 7e−3t.

Use this equation to find A.

http://www.wolframalpha.com/input/?i=dsolve+y%27%27%2B5y%27%2B4y%3D2+cos%283t%29
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3. We now have yh and yp. State a general solution to the ODE. See WolframAlpha

4. If r(t) = e−2t, make a guess as to what form yp would take. Use Wolfra-
mAlpha to check if you are correct.

5. If r(t) = e−4t, make a guess as to what form yp would take. Use Wolfra-
mAlpha to check if you are correct. You should notice that this answer
takes on a slightly different form than the others. What makes it different?
Why do you think this difference occurred?

Did you notice that when the external force is an exponential, then a
particular solution is an exponential. Also, did you notice that if the external
force is part of kernel (the solution to the homogeneous solution), then our
particular solution was multiplied by t?

The previous three problems developed some key ideas we need to expand.
Whenever we need to solve an ODE of the form L(y) = r(t), we have a few
things to consider.

• First, we need the solution yh to the homogeneous ODE L(y) = 0. This is
the kernel of the linear function L.

• Then we need to find a particular solution yp to L(y) = r(t). The previous
3 problems suggest that we can guess a form for yp (based off r), and then
take derivatives to determine the value of any undetermined coefficients in
our guess.

• The last problem suggested that if r(t) is actually part of the kernel, then
we have to modify our guess slightly (multiply by t) to get yp.

We need to make sure this pattern works on more problems. Here’s where
software comes in handy. We can use dsolve with WolframAlpha to kick out
solutions to ODEs really fast. What we need is to practice guessing a particular
solution with lots of ODEs, and make sure we build up the right patterns. Then,
we can start tackling every non homogeneous ODE in a consistent, fast, clean,
way. The next problem asks you to do this. Here’s a pattern of what I expect.

• For the ODE y′′ + 5y′ + 6y = t + e−7t, the characteristic equation is
λ2 + 5y + 6 = (λ + 2)(λ + 3) = 0. This gives yh = c1e

−2t + c2e
−3t.

Since r(t) = t + e−7t, I’m going to guess that yp = (At + B) + (Ce−7t).
I guessed At + B because of the first degree polynomial t in r(t). I
guessed Ce−7t because of the exponential e−7t in r(t). Checking my guess
with WolframAlpha shows I’m correct, where A = 1/6, B = −5/36 and
C = 1/20. See WolframAlpha

Problem 6.10 Consider the ODE y′′ + 6y′ + 9y = sin(4t) + e−t.

1. Find the kernel of L(y) = y′′ + 6y′ + 9y (i.e. state yh).

2. Make a guess for yp (with undetermined coefficients), and explain why
you made this guess.

3. Use WolframAlpha to find the coefficients in your guess yp. Update your
guess above (with any reasons for the changes needed). Then state a See WolframAlpha

general solution.

4. Repeat parts 2 and 3 if instead you needed to solve y′′ + 6y′ + 9y = e−3t.
What makes this different?

http://www.wolframalpha.com/input/?i=dsolve+y%27%27%2B5y%27%2B4y%3D7e%5E%28-3t%29
http://www.wolframalpha.com/input/?i=dsolve+y%27%27%2B5y%27%2B6y%3Dt%2Be%5E%28-7t%29
http://www.wolframalpha.com/input/?i=dsolve+y%27%27%2B6y%27%2B9y%3Dsin%284t%29%2Be%5E%28-t%29
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Problem 6.11 For each problem below, (1) state yh, (2) make a guess for
yp (your guess will involve undetermined coefficients), and then (3) check your
answer using software (giving the value of any coefficients in your guess). If
your guess was wrong, please tell us your original guess, and why it was wrong.

1. y′′ + 3y′ + 2y = t+ e−2t + e−5t See WolframAlpha

2. y′′ + 4y = 4t2 − 3 cos(3t) + 5 sin(2t) (Some constants could be zero.) See WolframAlpha

3. y′′ + 7y′ + 10y = 5e−2t cos(3t)− 6e−5t See WolframAlpha

4. y′′ + 6y′ + 25y = 7e−3t − 2 cos(4t) + 6e−3t cos(4t) (Wolfram’s solution is
factored. Expand it.) See WolframAlpha

Let’s summarize the patterns we’ve seen.

Problem 6.12 Suppose that L(y) = r(t) is a linear ODE.

1. If r(t) is in the table below, what would you guess for yp?

Form of r(t) Guess for yp

keat

ktn

k cos(ωt)

k sin(ωt)

keat cos(ωt)

keat sin(ωt)

2. If r(t) involves a sum of terms in the table above, what do you guess for
yp? Write sentence or two to explain what you should do. In particular if
r(t) = 7 cos(2t)− 3 sin(2t) + 8e3t cos(2t), then tell us your guess for yp.

3. If part of your guess is in the kernel of L, how should you modify your
guess? Again, write a sentence or two to explain what you should do. In
particular, if yh involves c1e

−3t and r(t) = 7e−3t + t3, then tell us your
guess for yp.

The ideas above work with higher order ODEs as well. Let’s try this on a
5th order ODE.

Problem 6.13 Suppose we have a constant coefficient linear differential
equation of the form L(y) = r(t). It’s a 5th order ODE, and the characteristic
equation has zeros 2,−3,−3,−4 + 5i,−4 − 5i. State the solution yh to the
homogeneous ODE, and then explain how to make a guess yp if r(t) = 3e−2t −
7e2t + 5e−3t + cos(5t)− 12e−4t sin(5t).

At this point, we’ve got the basic idea to solve L(y) = r(t), provided L is
a constant coefficient linear operator. We find yh, and then guess a particular
solution yp, with undetermined coefficients. We then take a couple derivatives to
figure out the unknown constants. We call this “The Method of Undetermined
Coefficients.” Here’s a few observations:

http://www.wolframalpha.com/input/?i=dsolve+y%27%27%2B3y%27%2B2y%3Dt%2Be%5E%28-2t%29%2Be%5E%28-5t%29
http://www.wolframalpha.com/input/?i=y%27%27%2B4y+%3D+4t%5E2-3%5Ccos%283t%29%2B5%5Csin%282t%29
http://www.wolframalpha.com/input/?i=y''%2B7y'%2B10y%3D%205e%5E%7B-2t%7D%5Ccos(3t)%20-6e%5E%7B-5t%7D
http://www.wolframalpha.com/input/?i=y''%2B6y'%2B25y%20%3D%207e%5E%7B-3t%7D-2%5Ccos(4t)%20%2B6e%5E%7B-3t%7D%5Ccos(4t)
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• We could just solve all the ODEs using Laplace transforms. The problem
is that if we need a general solution, the solution might get ugly really
fast. Laplace transforms work best when we have initial conditions.

• If we have initial conditions, maybe we should just do a Laplace transform
flat out. No guessing is needed. We’ll have to decide which is faster.

• These ideas work on higher order ODEs, in the exact same way they work
on second order ODEs.

6.3 Applications

At this point, we need to practice the method of undetermined coefficients.
Rather than just solve a bunch of ODEs with no application, let’s connect each
one to a physical problem.

Problem 6.14 Remember that the ODE my′′ + cy′ + ky = r(t) is used to
model a mass spring system with an applied external force of r(t). Complete
the following:

1. Solve the IVP y′′ + 5y′ + 6y = 20e−t, where y(0) = 0, y′(0) = 0. See WolframAlpha

2. Solve the IVP y′′ + 5y′ + 6y = 20e−2t, where y(0) = 0, y′(0) = 0. See WolframAlpha

3. Check both your answers with Wolfram Alpha. You may have to expand
WolframAlpha’s solution to get it to match yours.

Problem 6.15 We build a rocket and attach an engine. In free fall, we Most rocket engines have a three
part thrust. The engine first
ramps up (linearly) to some
constant thrust, stays at that
constant thrust for a time, and
then ramps down linearly. We’ll
revisit this again in the next
chapter, when we have some
powerful tools for working with
piecewise defined functions.

already know the ODE which models the motion is my′′ + ky′ = −mg. The
engine adds an additional external force r(t) to this system. Because the engine
burns fuel as it propels upwards, the mass m(t) now depends on time. This
gives us the ODE m(t)y′′ + ky′ = −m(t)g + r(t). If we fire the rocket in space,
then we could neglect the −m(t)g part (but then k would probably also be zero).
We need a good model for engine thrust.

Let’s fire a toy rocket from the earth’s surface. Suppose m = .2 kg and
k = .6 kg/s. For simplicity, use g = 10m/s2. Let’s assume the rocket thrust
starts out fast, and drops to zero exponentially. We’ll also assume that the fuel
is extremely light, so that we can assume m(t) is just the constant .2 kg. This
gives us an external force f(t) = aebt for some known constants a and b.

1. In this chapter, we are studying linear constant coefficient non homogeneous
ODEs. If we allowed m to change with t, why does the material in this
chapter no longer apply?

2. Why are the initial conditions y(0) = 0 and y′(0) = 0.

3. If r(t) = 7e−5t, determine the rocket’s height y(t) after t seconds. Here
I gave you some specific numbers to work with. This is often the key to
working on a problem with symbols.

4. If r(t) = aebt, determine the rocket’s height y(t) after t seconds.

For the next problem, let’s imagine attaching the left end of a spring to a
wheel, and then rotate the wheel. We’ll keep the mass-spring system horizontal,
so we can neglect gravity. Please look at the links to

http://www.wolframalpha.com/input/?i=y%27%27%2B5y%27%2B6y%3D20+e%5E%7B-t%7D%2C+y%280%29%3D0%2C+y%27%280%29%3D0
http://www.wolframalpha.com/input/?i=y%27%27%2B5y%27%2B6y%3D20+e%5E%7B-2t%7D%2C+y%280%29%3D0%2C+y%27%280%29%3D0
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• LearnersTV or

• Wolfram Demonstrations Project

to see a picture of such a system. This rotating wheel applies a periodic external
force to the mass-spring system. This force is often called a driving force.

Problem 6.16 Let’s attach a mass-spring system to a wheel. Suppose m = 1

20 40 60 80 100 120 140

-15

-10

-5

5

10

15

Notice the beats. In this example,
ω = 2, m = 1.1, c ≈ 0, and k = 4.
Since ω0 =

√
4/1.1 ≈ 2 = ω, the

solution results in large periodic
oscillations. If the oscillations are
too large, they will destroy the
system.

and k = 4 (with no dashpot). The driving force, r(t), is periodic.

1. Assume the driving force is r(t) = 7 sin(5t). Solve the IVP y′′ + 4y =
7 sin(5t), where y(0) = 0 and y′(0) = 0.

2. Assume m and k are known constants, and the driving force is r(t) =
F sin(ωt), where ω 6=

√
k/m. Solve the IVP my′′ + ky = F sin(ωt), where

y(0) = 0 and y′(0) = 0.

Problem 6.17 Again, let’s attach a mass-spring system to a wheel. Suppose

20 40 60 80 100 120 140

-100

-50

50

100

When ω0 = ω and friction is
negligible, a system will oscillate
with an amplitude that grows
without bound. Beware of this
situation, as any mechanical
system which undergoes this kind
of oscillation will self destruct.

m = 1 and k = 4 (with no dashpot). The driving force, r(t), is periodic.

1. Assume the driving force is r(t) = 7 sin(2t). Solve the IVP y′′ + 4y =
7 sin(2t), where y(0) = 0 and y′(0) = 0.

2. Assume m and k are now some constant, and the driving force is r(t) =
A sin(ωt), where ω =

√
k/m. Solve the IVP my′′ + ky = F sin(ωt), where

y(0) = 0 and y′(0) = 0.

Make sure you ask me in class to graph your two solutions above in Mathe-
matica. The plots get interesting when ω ≈

√
k/m, and the solution produces

steady beats. You should see a rhythmic rise and fall in the amplitude of the
solution. When ω =

√
k/m, the solution grows without bound. The following

YouTube videos show the collapse of the Tacoma Narrows bridge, and airplane
flutter. The points to these videos is to show you the dangerous things that can
(and do) happen to a structure when the designer forgets to take into account
how external driving forces might interact with the internal frequencies of the
mechanical system.

• The Tacoma Narrows bridge collapses.

• The tail of a small airplane begins to flutter.

• Watch a collection of flutter examples.

• An RC airplane looses its wing midflight.

In both problems above, we assumed there was no friction (c = 0). Can we
produce beats or resonance when there is friction? Let’s analyze this problem
and show that YES, bad things can still happen when friction is involved. To
discover when disaster might occur, we have to work with symbolic answers and
then ask, “What would it take to produce large oscillations?” Let’s analyze
this first with some specific numbers (to notice patterns) and then we’ll analyze
what happens symbolically.

Problem 6.18 Consider the ODE y′′ + 2y′ + 5y = 5 sin(3t).

1. Find a general solution to this ODE. See WolframAlpha

2. As t increases, what happens to the homogeneous solution?

http://www.learnerstv.com/animation/animation.php?ani=%2049&cat=physics
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&sqi=2&ved=0CEkQtwIwAw&url=http%3A%2F%2Fdemonstrations.wolfram.com%2FDrivenDampedOscillator%2F&ei=CwcuUdnmCIe9iwKUmYHQDw&usg=AFQjCNHgemDM_x_B8xl3DvNW0A--vPm2gA
http://www.youtube.com/watch?v=xox9BVSu7Ok
http://www.youtube.com/watch?v=iTFZNrTYp3k
http://www.youtube.com/watch?v=OhwLojNerMU
http://www.youtube.com/watch?v=lczhD2nUedY
http://www.wolframalpha.com/input/?i=y%27%27%2B2y%27%2B5y%3D5%5Csin%283+t%29
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3. If y(0) = 0 and y′(0) = 0, solve the IVP.

When friction enters a mass spring system, the homogeneous solution will
always die out over time. The particular solution yp is called the “steady-state”,
or “steady periodic” solution. As time moves on, friction will damp out all
oscillation except for the steady-state solution, yp.

Problem 6.19 Consider the ODE my′′ + cy′ + ky = F sin(ωt).

1. What are the roots of the characteristic polynomial?

2. We guess the steady-state solution (particular solution) is yp = A cos(ωt)+
B sin(ωt). Why do we never have to multiply the guess by t?

3. Find the steady-state solution. As a hint, you’ll probably find Cramer’s
Rule useful when solving for A and B (because you’ll get a linear system
with variables as coefficients). See WolframAlpha

In class, we’ll examine what it would take to get a really large amplitude for
the steady-state solution (thus destroying the mechanical system).

6.3.1 Electric circuits

Remember that Kirchoff’s voltage law states that the voltage (electromotive
force) impressed on a closed loop is equal to the sum of the voltage drops across
the other elements of the loop. We’ve summarized this by saying “voltage in
equals voltage out.” Because we’ve been using complex numbers in our work,
we’ll use I(t) to represent the current in a loop instead of i(t). We’ve already
used Kirchoff’s voltage law in connection with resistors. Let’s now add an
inductor and a capacitor to a single loop. Each element (resistor, inductor,
capacitor) produces the voltage drop given in the table below.

Component Voltage drop Other

Resistor RI Ohm’s law, where R is in ohms

Inductor LI ′ = L(dI/dt) L is in henrys

Capacitor
1

C
Q =

1

C

∫
Idt Q is in coulombs, C in farads.

The charge Q on a capacitor is related to the current by I(t) = dQ
dt , or Q =∫

I(t)dt.
We’ll be studying RC, RLC, and RL circuits in the next few chapters. Table

6.1 shows the differential equations corresponding to each type of circuit.
In a circuit with one resistor, one inductor, and one capacitor (an RLC

circuit), if the electromotive force is E(t), then Kirchoff’s Voltage law gives the
integro-differential equation

LI ′ +RI +
1

C
Q(t) = E(t) or LI ′ +RI +

1

C

∫
I(t)dt = E(t).

Differentiating both sides removes the integral and gives

LI ′′ +RI ′ +
1

C
I(t) = E′(t),

http://www.wolframalpha.com/input/?i=m+y%27%27%28t%29%2Bc+y%27%28t%29%2Bk+y%28t%29%3DF+%5Csin%28w+t%29
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E R

i

L

C

E R

i

C

E R

i

L

An RLC-circuit An RC-circuit An RL-circuit

LI ′ +RI + 1
C

∫
I(t)dt = E(t) RI + 1

C

∫
I(t)dt = E(t) LI ′ +RI = E(t)

LQ′′ +RQ′ + 1
CQ = E(t) RQ′ + 1

CQ = E(t)

LI ′′ +RI ′ + 1
C I = E′(t) RI ′ + 1

C I = E′(t)

Table 6.1: Typical diagrams of RCL, RC, and RL circuits, and their corre-
sponding ODEs. The first row is an integro-differential equation for the current
I(t). The second row is the ODE for the charge Q on the capacitor. The third
row is the derivative of the first row.

which is a second order linear differential equation with constant coefficients.
However, the initial conditions are in terms of initial charge Q(0) and initial
current I(0). To solve the differential equation for I, we need I ′(0), which we
can get from the equation LI ′(t) + RI(t) + 1

CQ(t) = E(t). Problem 14.13 in
Schaum’s provides an excellent example that summarizes the solution technique.

Problem: Optional Consider an RLC circuit with L = 1/2, R = 2, and

C = 2/3. Let’s plug the circuit into an alternating current power source (like
a wall outlet), which means we might have something like E(t) = 2 cos(3t).
Initially, assume that the current is zero and the charge on the capacitor is zero.
We’d like to find the current at any time t in the circuit.

1. Explain why the current satisfies I ′′ + 4I ′ + 3I = −12 sin(3t). Find a
general solution to this ODE. See WolframAlpha

2. We know that I(0) = 0 and Q(0) = 0. Use the equation LI ′(t) +RI(t) +
1
CQ(t) = E(t) to explain why I ′(0) = 4.

3. Find the current in the wire at any time t by solving the corresponding
IVP. Use the initial conditions you found in the previous part. See WolframAlpha

4. What is the steady-state current? (Which part of your solution above does
not vanish after sufficient time has passed? This would be the current
flowing through the circuit after the initial conditions have died out.)

Problem: Optional Consider an RLC circuit with L = 1, R = 8, and

C = 1
25 . Let’s plug the circuit into a 12 V battery, so we have E(t) = 12.

Initially, assume that the current is zero and the charge on the capacitor is zero.
We’d like to find the current at any time t in the circuit.

1. State the IVP whose solution would give the current at any time t. (What’s
the ODE, and what are the initial conditions I(0) and I ′(0)). [Hint: Use
the equation LI ′(t) +RI(t) + 1

CQ(t) = E(t) to find I ′(0).]

2. Find the current in the wire at any time t. Check your answer with
WolframAlpha (you’ll want to use y instead of I).

http://www.wolframalpha.com/input/?i=y%27%27%2B4y%27%2B3y%3D-12%5Csin%283t%29
http://www.wolframalpha.com/input/?i=y%27%27%2B4y%27%2B3y%3D-12%5Csin%283t%29%2C+y%280%29%3D0%2C+y%27%280%29%3D4
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3. What’s the steady-state current?

Observation 6.2. Mechanical models are expensive to build. Electrical models
are fairly simple to build and measure. If you need to create a mechanical system,
it may prove beneficial financially to start with an electrical model. Engineers
spend another semester on this idea in system dynamics. Hydraulic systems are
also very closely related. In bridging between mechanical and electrical systems,
we compare the following variables.

Mechanical System m c k r(t) = F0 cosωt y(t)

Electrical System L R 1/C E′(t) = E0ω cosωt I(t)

Solving a problem in one system (either mechanical or electrical) can provide
useful results in the other.

This concludes the chapter. Look at the objectives at the beginning of the
chapter. Can you now do all the things you were promised?
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Extra Practice

The problems below come from Schaum’s Outlines Differential Equations by Richard Bronson. If you are
struggling with a topic from the preparation problem set, please use this list as a guideline to find related
practice problems.

Concept Sec Suggestions Relevant Problems

Theory 8 21,65 21-23,65-67

Undetermined Coef 11 1,2,3,8,10,24,26,34,36,41,46,47,48 All

IVP 13 1,7,14 1,3,7,8,10,11,14

Applications 7 19,76 19-22,71-81

Applications 14 10,11,13,14,17,46,50,51,52,54,57 9-18,44-65

Remember that you can check almost all of your work with technology. Wolfram Alpha provides a great
resource for rapidly checking your work in this chapter.



Chapter 7

Laplace Transforms

After completing this chapter, you should be able to:

1. Explain how to compute Laplace transforms and inverse Laplace transforms.
Use Laplace transforms to solve IVPs.

2. Use and prove both both the s-shifting and t-shifting theorems.

3. Express discontinuous functions with the Heaviside function, and use the
Heaviside to set up and solve ODEs.

4. Express impulses in terms of the Dirac delta distribution, and use it to
set up and solve solve ODEs.

5. Compute convolutions, and show how to use the convolution theorem as
an inverse product rule for Laplace transforms.

You can find additional practice problems in Schaum’s Outlines Differential You may want to download this
Mathematica Technology
Introduction to check your work
throughout the entire chapter.

Equations by Richard Bronson. You’ll find relevant problems in chapters 21 -24,
as well as some extra practice problems at the end of this chapter. Do enough
of each type that you feel comfortable with the ideas.

You must practice lots of problems to gain a feel for patterns. Many of the
problems in 21-23 are fast. Please take a few minutes every day to just flat out
practice with the basics (kind of like when you were learning the times tables -
they get really fast if you just practice them). When you feel like you have the
basics down, see if you can complete chapters 21 and 22 in less than an hour. If
one stumps you, skip it and come back later.

Once you feel confident, chapters 23 (on convolutions and the heaviside
function) and 24 (solving IVPS) will help you use the Laplace transforms to
solve ODEs. At the end of this chapter are some additional problems to help
you cement your understanding. Table 7.1 summarizes the transforms we use
most often.

7.1 What we’ll be doing in class

I’ll be lecturing the first part of each day of class. I’ll then give you problems to
work on in groups for the remaining part of class. What should you be doing for
homework each night? You should be working on as many problems as you need
to in order to master the material we are learning. You can use chapters 21-24
in Schaums Outlines, and you can also use the problems listed after the table on
the next page. We’ll return to having students present problems in chapter 8.

129

https://content.byui.edu/file/664390b8-e9cc-43a4-9f3c-70362f8b9735/1/_zips/316-Tech-Introduction.zip
https://content.byui.edu/file/664390b8-e9cc-43a4-9f3c-70362f8b9735/1/_zips/316-Tech-Introduction.zip
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f(t) F (s) provided

1
1

s
s > 0

tn
n!

sn+1
s > 0

eat
1

s− a
s > a

y′ sY − y(0)

y′′ s2Y − sy(0)− y′(0)

eatf(t) F (s− a)

f(t) ∗ g(t) F (s)G(s)

f(t) F (s) provided

cos(wt)
s

s2 + ω2
s > 0

sin(wt)
ω

s2 + ω2
s > 0

cosh(wt)
s

s2 − ω2
s > |ω|

sinh(wt)
ω

s2 − ω2
s > |ω|

u(t− a) 1
se
−as

δ(t− a) e−as

f(t− a)u(t− a) L (f(t))e−as

f(t)u(t− a) L (f(t+ a))e−as

Table 7.1: Table of Laplace Transforms. Note that the s shifting theorem
L (eatf(t)) = F (s − a) has a positive a in the exponent, while the t shifting
theorem L (f(t− a)u(t− a)) = L (f(t))e−as has a negative a in the exponent.
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Extra Practice

I Find the Laplace transform of each of the following, and use the Mathematica Tech Intro to check your
answer.

1. f(x) = 8e−3x cos 2x− 4e4x sin 5x+ 3e7xx5

2. f(x) = xu(x− 4) + δ(x− 6)

3. f(x) = e3xu(x− 2) + 7δ(x− 4)

II Find the inverse Laplace transform of each of the following, and use Mathematica to check your answer.
Many of these will require you to use a partial fraction decomposition.

4.
s

(s+ 3)2 + 25
+

2

(s− 2)4
e−3s

5.
s

s2 + 4s+ 13
e−4s

6.
1

s(s2 + 1)
e−5s

7.
1

s2(s2 + 1)
e−3s

8.
2s+ 1

(s− 1)2(s+ 1)
e−7s

9.
1

(s− 1)(s+ 2)(s− 3)
e−4s

III Use Laplace transforms to find the position y(t) of an object or current current I(t) in each of the
following scenarios. I will give you the constants m, c, k and the driving force r(t), or I will give you
the inductance L, resistance R, capacitance C, and voltage source E(t), as well as any relevant initial
conditions. Your job is to use Laplace transforms to find the solution. Use Mathematica to check
your solution, and draw the graph of y(t) or I(t) and the steady-state (steady periodic) solution to see
how the Heaviside and Dirac delta functions affect the graph. The point here is to see these two new
functions affect solutions. I suggest that you do all of these problems with the computer, so you can
quickly see the effects of a Heaviside function or Dirac delta distribution.

10. m = 1, c = 0, k = 4, r(t) = u(t− 1), y(0) = 1, y′(0) = 0

11. m = 1, c = 0, k = 4, r(t) = δ(t− 3), y(0) = 1, y′(0) = 0

12. m = 1, c = 0, k = 4, r(t) = 7u(t− 3), y(0) = 1, y′(0) = 0

13. m = 1, c = 0, k = 4, r(t) = 7u(t− 3) + 11δ(t− 5), y(0) = 1, y′(0) = 0

14. m = 1, c = 0, k = 4, r(t) = 7tu(t− 3), y(0) = 1, y′(0) = 0

15. m = 1, c = 0, k = 4, r(t) = 7, y(0) = 1, y′(0) = 0

16. m = 1, c = 0, k = 4, r(t) = 7, y(π) = 1, y′(π) = 0

17. m = 1, c = 3, k = 2, r(t) = u(t− 2), y(0) = 0, y′(0) = 0

18. m = 1, c = 3, k = 2, r(t) = δ(t− 2), y(0) = 0, y′(0) = 0

19. m = 1, c = 3, k = 2, r(t) = 4u(t− 1), y(0) = 0, y′(0) = 0

20. m = 1, c = 3, k = 2, r(t) = 4u(t− 1) + 10δ(t− 2), y(0) = 0, y′(0) = 0

https://content.byui.edu/file/664390b8-e9cc-43a4-9f3c-70362f8b9735/1/_zips/316-Tech-Introduction.zip
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21. m = 1, c = 3, k = 2, r(t) = 4tu(t− 1), y(0) = 0, y′(0) = 0

For the electrical circuit problems below, the ODEs you’ll need are

LI ′′ +RI ′ +
1

C
I = E′, LI ′ +RI = E, and RI ′ +

1

C
I = E′.

Note that if you know Q(0), then the equation LI ′ +RI + 1
CQ = E will get you I ′(0), as we then have

I ′(0) =
E(0)−RI(0)− 1

CQ(0)

L
.

22. L = 0, R = 2, C = 1/5, E(t) = 12u(t− 2), Q(0) = 0 (use first order ODE)

23. L = 1, R = 2, C = 0, E(t) = 12u(t− 2), I(0) = 0 (use first order ODE)

24. L = 1, R = 2, C = 1/5, E(t) = 12, Q(0) = 0, I(0) = 0 (first find I ′(0).)

25. L = 1, R = 2, C = 1/5, E(t) = 12u(t− 2), Q(0) = 0, I(0) = 0

26. L = 1, R = 2, C = 1/5, E(t) = e3tu(t− 2), Q(0) = 0, I(0) = 0

27. L = 1, R = 2, C = 1/5, E(t) = 4 cos(3t), Q(0) = 0, I(0) = 0

28. L = 1, R = 4, C = 1/4, E(t) = u(t− 3), Q(0) = 0, I(0) = 0

29. L = 1, R = 4, C = 1/4, E(t) = e−2t, Q(0) = 0, I(0) = 0



Chapter 8

Power Series

This chapter covers the following ideas. When you create your lesson plan, it
should contain examples which illustrate these key ideas. Before you take the
quiz on this unit, meet with another student out of class and teach each other
from the examples on your lesson plan.

1. Compute MacLaurin series for various common functions, either directly
by taking derivatives, or by solving ODEs.

2. Use the power series method to solve ODEs where x = 0 is an ordinary
point.

3. Explain the Frobenius method (times by xλ) and use it to solve ODEs
where x = 0 is a regular singular point.

4. Define the Gamma function and show how it generalizes the factorial. Be
able to compute the Gamma function at any multiple of 1

2 .

You’ll find extra practice problems at the end of this chapter. You can use
these to gain practice with the ideas. Handwritten solutions are available online.
Click for solutions.

8.1 MacLaurin Series

As we proceed in this unit, we’ll be looking for patterns. When you are looking
for patterns, one key rule is to avoid simplifying. Instead of writing 2 ·3 = 6, just
leave it as 2 · 3. If notice a pattern, like 2 · 3 · 4 · 5, then write 5! instead of 120.
If you will resist the urge to simplify, you’ll find a lot of patterns immediately
pop out.

Problem 8.1 Consider the function f(x) = ex. In this problem we would
like to approximate f(x) using various polynomials. We’d like to make sure that
the function and its derivatives match the polynomial and its derivatives.

1. Let’s approximate f(x) using a 4th degree polynomial. Write the polyno-
mial as

P4(x) = a0 + a1x
1 + a2x

2 + a3x
3 + a4x

4,

where the coefficients a0, a1, . . . , a4 are unknown (we’ll discover them in a
bit). Compute the first 4 derivatives of P4(x) and the first 4 derivatives of
f(x). As there are 5 unknowns, we need 5 equations. Let’s require that f
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and P4, together with their derivatives, match at x = 0. This gives us the
5 equations

f(0) = P4(0),

f ′(0) = P ′4(0),

f ′′(0) = P ′′4 (0),

f ′′′(0) = P ′′′4 (0), and

f ′′′′(0) = P ′′′′4 (0).

Use these equations to solve for the unknown constants.

2. If you wanted a 7th degree polynomial, what should the coefficients a5,
a6, and a7 equal?

In this chapter, our goal is to solve ODEs where the coefficients are no
longer constant. We’ll learn how to solve a mass-spring problem where the mass
is changing, the spring constant errodes over time, or the friction coefficient
increases as we tighten a dashpot. We’ll also gain the key ideas need to deal
with rocket problems where the mass decreases because fuel burns up. To solve
these problems, we’re going to start approximating functions with polynomials.
We’ll be using really large polynomials. We’ll then solving the problems using
these polynomials. The only catch is that we’ll start using polynomials that are
arbitrarily large. These polynomials are called Taylor polynomials. When we
consider an infinitely long polynomial, we call it a Taylor series, or MacLaurin
series. We’ll get a formal definition in a bit.

Problem 8.2 We already know the solution to the ODE y′− y = 0 (see part
1). Let’s find this solution using a series approach. Suppose we write

y = a0 + a1x
1 + a2x

2 + a3x
3 + a4x

4 + a5x
5 + · · · ,

where the polynomial continues on for as long as we want (why not forever).
We’ll use this polynomial to find a solution.

1. Solve the ODE y′−y = 0 by any method you would like. The characteristic
equation might make this really fast.

2. Now consider the series (infinitely long polynomial) above. Compute y′

by computing the derivative (so y′ = 0 + a1 + 2a2x+ · · · ). Write out the
first 7 terms or so.

3. Now subtract y from y′. You can combine the two infinite sums by adding
coefficients that are multiplied by the same powers of x. You’ll get an
infinitely long sum of the form

(a1 − a0) + (2a2 − a1)x+ (?)x2 + (?)x3 + · · · .

Carry this out 7 terms. What pattern do you see?

4. Because y′− y = 0, and 0 = 0 + 0x+ 0x2 + 0x3 + · · · , you should now have
an infinitely large system of equations by equating coefficients. The first
two equations are a1 − a0 = 0 and 2a2 − a1 = 0. If you let a0 = c, then
solve for a1, a2, a3, and so on in terms of c. What is an in terms of c?

The last two problems dealt with the function ex. Let’s now turn our
attention to cosx and sinx.
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Problem 8.3 Let f(x) = cosx.

1. Find a 6th degree polynomial to approximate cosine. So let

P (x) = a0 + a1x
1 + a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6.

Now require that f and P have the same values at x = 0, and that the
first 6 derivatives of both f and P have the same values at x = 0. You
might want to organize your work in table (keep track of f , its first 6
derivatives, and their values at x = 0, as well as P , its first 6 derivatives,
and their values at x = 0). What pattern do you see?

2. Guess what the 20th degree polynomial would be.

3. If x = 2, use a calculator to compute cos(2) as well as P (2) for your 6th
degree polynomial. You should find that they are quite close.

Problem 8.4 We know the solution to the IVP y′′ + y = 0, y(0) = c,
y′(0) = d is y(t) = c cos(t) + d sin(t). Suppose that

y = a0 + a1x
1 + a2x

2 + a3x
3 + a4x

4 + a5x
5 + · · · .

1. Compute both y′ and y′′ by taking the derivative, term-by-term, of the
infinitely long series. REMEMBER, DO NOT SIMPLIFY. So you should
have something like

y′ = a1 + 2a2x+ · · · and y′′ = 2 · 1a2 + 3 · 2a3x+ · · · .

Continue this out 7 terms.

2. We want to solve y′′ + y = 0, so add together y′′ and y. Group together
terms that are multiplied by the same power of x, so your answer will look
something like

y′′ + y = (2 · 1a2 + a0) + (3 · 2a3 + a1)x+ (?)x2 + (?)x3 · · · .

Carry this out 7 terms.

3. If y(0) = c, then what is a0? If y′(0) = d, then what is a1?

4. Write a2, a3, a4, and so on, in terms of c and d. Can you guess the Taylor
series for sinx?

Problem 8.5: MacLaurin Series Suppose we write f(x) as the series

f(x) = a0 + a1x
1 + a2x

2 + a3x
3 + a4x

4 + a5x
5 + · · · .

1. Compute the first 4 derivatives of f and evaluate them at 0. What pattern
do you see? State the nth derivative of f evaluated at x = 0, which we
write as f (n)(0).

2. Solve for the coefficient an in terms of the nth derivative of f .

3. Let f(x) = sinx. Compute the first 8 derivatives of sinx and evaluate
each at x = 0. Then use the pattern you see to state what an equals for
each n if we write

sinx = a0 + a1x
1 + a2x

2 + a3x
3 + a4x

4 + a5x
5 + · · · .

Carry out your sum until you hit x9. If you continue forever, we call this
infinite polynomial the MacLaurin series of sin(x).
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Based on your results to the previous problem, we make the following
definitions.

Definition 8.1: MacLaurin Series. Let f(x) be a function. We define the
MacLaurin series of f(x) to be the infinite series

a0 + a1x
1 + a2x

2 + a3x
3 + a4x

4 + a5x
5 + · · · =

∞∑
n=0

anx
n

where an =
f (n)(0)

n!
. We use the notation f (n)(x) to denote the nth derivative.

Note that 0! = 1, and that f (0)(x) is the 0th derivative (so original function).
With this notation, we could write the MacLaurin series as

f(0)+f ′(0)x1+
f ′′(0)

2!
x2+

f ′′′′(0)

3!
x3+

f (4)(0)

4!
x4+

f (5)(0)

5!
x5+· · · =

∞∑
n=0

f (n)(0)

n!
xn.

Definition 8.2: Power Series. A power series is an expression of the form

a0 + a1x
1 + a2x

2 + a3x
3 + a4x

4 + a5x
5 + · · · =

∞∑
n=0

anx
n,

where an is any real number. It’s a power series because we create an infinite
series using powers of x.

A MacLaurin series is a power series. We’ll often start with a power series,
and then look for the function f(x) whose MacLaurin series is the power series
we started with.

The MacLaurin series of a function depends on the value of the function and
its derivatives at x = 0. Sometimes, you would rather compute the function and
its derivatives at another spot. We won’t have much use for doing this in our
course, but for completeness, you should see the full definition of a Taylor series
centered at x = c.

Definition 8.3: Taylor Series centered at x = c. Let f(x) be a function.
We define the Taylor series of f(x) centered at x = c to be the infinite series

a0 + a1(x− c)1 + a2(x− c)2 + a3(x− c)3 + a(x− c)x4 + · · · =
∞∑
n=0

an(x− c)n

where an =
f (n)(c)

n!
. The MacLaurin series is the Taylor series centered at x = 0.

Let’s compute a few more MacLaurin series.

Problem 8.6: MacLaurin series for coshx and sinhx Obtain the first
10 terms of the MacLaurin series for both coshx and sinhx. Do so by using

the formula an =
f (n)(0)

n!
. Write out the two series. What patterns do you see.

Write down a formula for the coefficient an for both coshx and sinhx.

The next problem shows you how to obtain the MacLaurin series for coshx
and sinhx in a different way.

Problem 8.7 Consider the IVP given by y′′ − y = 0, with y(0) = A and
y′(0) = B.
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1. Show, using Laplace transforms, that the solution to this IVP is y(x) =
A coshx+B sinhx.

2. We’ll now obtain the solution using power series. Suppose

y = a0 + a1x
1 + a2x

2 + a3x
3 + a4x

4 + a5x
5 + · · · .

Compute y′ and y′′. Substitute y and y′′ into the ODE y′′ − y = 0, and
group together terms that are multiplied by the same power of x. You
should have something of the form

(2a2 − a0) + (3 · 2a3 − a1)x+ (?)x2 + · · · = 0 + 0x+ 0x2.

3. Use the initial conditions to explain why a0 = A and a1 = B. Then solve
for a2, a3, and so on, in terms of A and B. Keep going until you see a
pattern for an.

4. You now have the solution y. Some of the coefficients depend on A. Some
depend on B. Group together the terms that involve A and the terms
that involve B, and write your solution in the form

y = A(1 +
1

2!
x2 + · · · ) +B(x+

1

3!
x3 + · · · ).

Please carry out each series at least 5 terms.

We have so far developed the following MacLaurin series:

ex = 1 + x+
1

2!
x2 +

1

3!
x3 +

1

4!
x4 +

1

5!
x5 + · · ·

cos(x) = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 +

1

8!
x8 + · · ·

sin(x) = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 +

1

9!
x9 + · · ·

cosh(x) = 1 +
1

2!
x2 +

1

4!
x4 +

1

6!
x6 +

1

8!
x8 + · · ·

sinh(x) = x+
1

3!
x3 +

1

5!
x5 +

1

7!
x7 +

1

9!
x9 + · · · .

Problem 8.8: Euler’s Formula Use the MacLaurin series above to show The equation

eix = cosx+ i sinx

is called Euler’s formula.

that we can express eix in the form

eix = cosx+ i sinx

and that
cosh(ix) = cosx.

Then use the first fact to compute eiπ. What does sinh(ix) equal, if written in
terms of sinx?

We’ll return to Euler’s formula in a minute. Before we do so, let’s examine a
different function.

Problem 8.9 Consider the IVP (x + 1)y′ = 1, y(0) = 0. Is it linear? Is
it homogeneous? Does it have constant coefficients? Solve the ODE first by
using separation of variables. Then solve the ODE using a power series (assume
y = a0 + a1x+ a2x

2 + · · · , compute y′, plug these into the ODE, and then solve
for the unknown constants a0, a1, a2, etc.). From your answer, what are the
first 5 terms in the the MacLaurin series of ln(x+ 1)?



CHAPTER 8. POWER SERIES 138

Problem 8.10 Find a 9th degree polynomial to approximate ln(x+ 1). Do
this by computing the first 9 derivatives of ln(x + 1) or by computing the

first 4 and noticing a pattern when you plug in 0. The formula an = f(n)(0)
n!

will give you the coefficients. Then use your polynomial to estimate ln 1.2,
ln(1− .8) = ln(.2) and ln 2.5. Use a computer to draw ln(x+ 1) and your 9th
degree polynomial. For which values of x do you think the polynomial will do a
poor job approximating ln(x+ 1). Why do you think this? Will increasing the
degree of your approximation ever help you approximate ln 2.5?

Problem 8.11 Let’s solve the IVP (x2 + 1)y′ = 1, y(0) = 0 in two ways.

1. Use the power series method. Let y =

∞∑
n=0

anx
n, compute y′, plug these

into the ODE, collect coefficients of the same powers of x, and then solve
for the unknowns an.

2. Use separation of variables.

Problem 8.12 Solve the ODE y′ + 2xy = 0 by using power series. Your
initial condition will just be y(0) = a0. After you have a solution, look at the
table of known power series and try to match the solution you got to one of our
known power series (you might have to replace x with something). Then use
separation of variables to solve the ODE, and check if you are correct.

In the previous problem, the power series solution results in a series that we
can match with a series we already recognize. We might have to replace x with
x2, but the power series is still quite manageable. Things won’t always be this
nice.

Problem 8.13 Solve the ODE y′′+2xy′+y = 0 by using power series. Your
initial conditions are y(0) = a0 and y′(0) = a1. When you’re done, write your
solution as You won’t find either y1 or y2 on

the list of power series we
recognize.

y(x) = a0(y1(x)) + a1(y2(x))

where y1 and y2 are power series. Just give the first 4 terms of y1 and y2,
together with a rule that would allow us to compute more terms if needed (so
how could I find a10 if I knew a8 and a9, or better yet, how could I find an+2 if
I knew an and an+1).

Problem 8.14 Consider the ODE y′′ + 3xy′ + 2y = 0. Solve this ODE
using power series methods. Write your answer by give the first 6 nonzero
terms of the series, and make sure you state a recurrence relation that will
give more coefficients of the series. Write your answer in the form y(x) =
a0(y1(x)) + a1(y2(x)), so give the first three nonzero terms of y1 and y2.

Problem 8.15 Consider the ODE (1 + x3)y′′ + 3x2y′ + 2xy = 0. Solve this
ODE using power series methods. Write your answer by give the first 6 nonzero
terms of the series. State a recurrence relation that will give more coefficients of
the series. What is a62, the coefficient in front of x62?
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8.2 Special Functions

We’ve seen the power series method work for many problems now where the
coefficients are not constants. Will this method work for every problem with
variable coefficients? No. Why would it fail? Let’s consider a few more power
series problems, and discover why it would fail. For some, the power series
method will work. For others, it will not. By the time we’re done with this
section, we’ll know what to look for. It all has to do with certain coefficients
having a nice power series at x = 0.

Problem 8.16: Legendre Polynomials Consider the ODE Legendre’s ODE is

(1−x2)y′′−2xy′+(n)(n+1)y = 0.

This ODE shows up when solving
Laplace’s equation in spherical
coordinates (studying heat, waves,
gravity, and/or electric/static
potentials). When n is an integer,
one of the solutions will terminate
in a polynomial of degree n.
These polynomials are called
Legendre polynomials.

(1− x2)y′′ − 2xy′ + 20y = 0.

1. Use the power series method to solve this ODE. Give all the coefficients
up to a6. What is a8? What is a20?

2. Write your solution in the form y(x) = a0y1(x) + a1y2(x). If y(0) = 1 and
y′(0) = 0, what is the solution?

3. Modify your work above slightly to solve the IVP (1−x2)y′′−2xy′+12y = 0,
y(0) = 0, y′(0) = 1. Show that the solution is a polynomial.

As in the problem above, sometimes the power series method gives you a
polynomial, because the series stops. In the next problem, the power series
method will fail, but you should find that with a slight modification (multiply
the power series by xλ), you quickly get two solutions that each have only one
term. The entire solution is a linear combination of these two solutions.

Review Suppose that a 2nd order homogeneous ODE has a solution y1(x) =
e−3x. Suppose that another solution is y2(x) = e−2x. State a general solution
to this ODE. See 1.

Problem 8.17: Euler-Cauchy Equation Consider the ODE Any ODE of the form
ax2y′′ + bxy′ + cy = 0, where
a, b, c are constants, is called an
Euler-Cauchy ODE.

2x2y′′ + 5xy′ + y = 0.

1. Let’s first try the power series method, so suppose y =

∞∑
n=0

anx
n. Compute

both derivatives and plug them into the ODE. Use this to explain why
the only solution that the power series method will get you is y = 0.

2. Earlier in the semester we noticed that sometimes to get a solution, we Frobenius suggested that we
multiply a power series by xλ to
get a solution. He also gave
conditions on the ODE that state
when this method is needed, and
when it will succeed.

had to multiply by a power of x. Let’s see if this works with power series
as well. Suppose instead that we assume

y = xλ
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+λ = a0x

λ + a1x
λ+1 + · · · .

Compute both derivatives and plug them into the ODE.

1 If the ODE is homogeneous, then the solution is a linear combination of two linearly
independent solutions, namely

y(x) = c1e
−3x + c2e

−2x.

The solutions y1 and y2 are linearly independent, because the only solution to c1e−3x +
c2e−2x = 0 is c1 = c2 = 0. This is because it is impossible to write one of the functions
as a multiple of the other. We obtain solutions by summing together linearly independent
solutions.
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3. Collect the coefficients that correspond to like powers of x. Then look at
the coefficients in front of xλ. You should get that either a0 = 0, or that
a polynomial involving λ equals zero. If we set this polynomial equal to
zero, we call the corresponding equation the indicial equation. Find the
values of λ that solve the indicial equation. You should get two values for
λ. Let’s call the largest value λ1, and the smallest value λ2.

4. Replace each λ with λ1 and then show that an = 0 for every n ≥ 1. Then
repeat with λ = λ2 and show that an = 0 for n ≥ 1.

5. You should now have two solutions to this ODE. Use the superposition You can check your work with
Mathematica, or here’s a link to
WolframAlpha.

principle to state a solution to the ODE. Make sure you check your work
with the link to WolframAlpha, or use Mathematica.

Why did the power series method fail in the previous problem? The answer
lies in a quick computation. If we take the ODE 2x2y′′+ 5xy′+y = 0 and divide
by the leading coefficient of y′′, we obtain

y′′ +
5

2x
y′ +

1

2x2
y = 0.

The coefficients of the ODE, namely
5

2x
and

1

2x2
are now not defined at x = 0,

hence do not have a power series at x = 0. To guarantee that the power series
method will succeed and give the entire general solution, these coefficients must
have a power series at x = 0. Let’s try one more, and then introduce some
vocabulary.

Problem 8.18: Bessel Equation Consider the ODE

x2y′′ + xy′ + (x2 − 9)y = 0.

1. Rewrite the ODE so that the coefficient in front of y′′ is a one. Then state
the other coefficients, and show that they are not analytic at x = 0. [Hint:
See the previous paragraph.]

2. Since the power series method may not give both solutions, let’s multiply
the series by xλ (Frobenius’s idea) and suppose that

y = xλ
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+λ.

Compute both derivatives and plug them into the ODE. Multiply the
coefficients x2, x, and x2 − 9 into the sums, splitting the x2 − 9 product
into two sums.

3. After collecting common coefficients, the equation containing the coeffi-
cients in front of xλ gives you the indicial equation. Show that λ = ±3.
We’ll let λ1 = 3 and λ2 = −3. Frobenius always chose λ1 to be the larger
of these roots.

4. Let λ = 3, and then solve for the other coefficients a1, a2, a3, a4, etc.
State the solution, making sure to list the first 4 nonzero terms.

In the previous problem, we were only able to obtain one solution y1 to the
ODE. Frobenius showed how to obtain another linearly independent solution,
and gave an algorithm for obtaining that solution. If the roots of the indicial

http://www.wolframalpha.com/input/?i=dsolve+2x%5E2+y%27%27+%2B5x+y%27+%2By%3D0
http://www.wolframalpha.com/input/?i=dsolve+2x%5E2+y%27%27+%2B5x+y%27+%2By%3D0
http://www.wolframalpha.com/input/?i=dsolve+2x%5E2+y%27%27+%2B5x+y%27+%2By%3D0
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equation have a difference that is not an integer, then our current method will
give the second solution. However with Bessel’s equation above, we got the
roots to be ±3, which differ by the integer 6. This is why we did not find a
second solution. You are welcome to study this topic more on your own, if and
when you need it.

Let’s end this section with one final problem. In this problem, the difference
between the roots of the indicial equation will not differ by an integer.

Problem 8.19 Consider the ODE

8x2y′′ + 10xy′ + (x− 1)y = 0.

1. Show that x = 0 is a regular singular point of this ODE.

2. State the indicial equation, and obtain the zeros. You should have λ1 = 1/4.
What is λ2?

3. When λ = λ1, obtain the first 3 nonzero terms of the solution, which we’ll The Mathematica technology
introduction will help you check
your work. Just look in the
Special Functions section.

call y1.

4. When λ = λ2, obtain the first 3 nonzero terms of the solution, which we’ll
call y2.

5. State the general solution to this ODE.

There are a lot of special functions that we have not even touched on. You
could spend years studying all the special functions that have already been
discovered and classified. This section gave you an introduction to the techniques
needed to solve these ODEs.

8.2.1 The Gamma Function

We’ll end this chapter with one last special function, the Gamma function Γ(x). The symbol Γ is the uppercase
greek letter Gamma. That’s why
we capitalize the “G” in the
Gamma function.

This function generalizes the factorial. We’ve already learned that the Laplace

transform of tn is L {tn} =
n!

sn+1
. This formula only works if we require n to be

an integer. So what about the Laplace transform of something like
√
t? Once

we’ve defined the Gamma function, we’ll have the formula

L {tn} =
Γ(n+ 1)

sn+1
.

Definition 8.4: The Gamma Function Γ(t). We define the Gamma function
to be

Γ(t) =

∫ ∞
0

xt−1e−xdx.

As x is a dummy variable, we could have also written Γ(t) =
∫∞
0
pt−1e−pdp or

Γ(x) =
∫∞
0
px−1e−pdp.

Problem 8.20 Do the following:

1. Show that Γ(1) = 1. Then show that Γ(2) = 1 and that Γ(3) = 2.

2. Compute Γ(4) and then make a conjecture for Γ(5), Γ(6), and Γ(7). Use
software to check if you are correct.

3. Now show that for any n, we know that Γ(n+ 1) = nΓ(n). Now use this
rule to repeat parts 1 and 2 above.
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The Gamma function is a generalization of the factorial function. In order
to evaluate the gamma function at non integers, we would need to compute the
integral that defines the Gamma function. This is in general a very nontrivial
task. The next problem shows you how to do this.

Problem 8.21: Γ(1/2) =
√
π In this problem we’ll prove that Γ(1/2) =

√
pi.

First, notice that by definition we have

Γ(1/2) =

∫ ∞
0

x−1/2exdx.

1. Let u = x1/2. Use this u-substitution to explain why

Γ(1/2) =

∫ ∞
0

x−1/2e−xdx = 2

∫ ∞
0

e−u
2

du = 2I,

were we let I be the integral I =
∫∞
0
e−u

2

du. If we could compute the
integral for I, we’d be done. There is no way however to compute this
integral exactly, unless we employ higher dimensional tools.

2. Explain why we can write

I2 =

(∫ ∞
0

e−u
2

du

)2

=

∫ ∞
0

e−x
2

dx

∫ ∞
0

e−y
2

dy =

∫ ∞
0

∫ ∞
0

e−(x
2+y2)dxdy.

3. Convert this integral to a double integral in polar coordinates (what is
the Jacobian) and then evaluate the integral. This gives you I2. Solve for
Γ(1/2).

Problem 8.22 We know that Γ(1/2) =
√
π, and we know that Γ(n+ 1) =

nΓ(n). Use this to compute Γ(3/2), Γ(5/2), and Γ(11/2). Then state the
Laplace transform of t9/2. [Hint: You may have to repeatedly apply the rule
Γ(n+ 1) = nΓ(n), as we have 3/2 = 1/2 + 1, and 5/2 = 3/2 + 1, and so on.]
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8.3 Extra Practice Problems

Extra homework for this unit is right here. Make sure you try a few of each type of problem, ASAP. I suggest
that the first night you try one of each type of problem. It’s OK if you get stuck and don’t know what to do,
as long as you decide to learn how to do it and then return to the ones where you got stuck. Eventually do
enough of each type to master the ideas. The only section in Schaum’s with relevant problems is chapter 27.
Handwritten solutions are available online. Click for solutions.

Most engineering textbooks assume you have seen Taylor series and power series before (in math 113),
but many of you have not. If you have your old Math 215 book, you can find many relevant problems and
explanations in the section on the Ratio Test and Taylor Series.

Here are a few key functions and their Taylor series centered at x = 0 (their MacLaurin series).

f(x) MacLaurin Series Radius f(x) MacLaurin Series Radius

ex
∞∑
n=0

1

n!
xn R =∞ 1

1− x

∞∑
n=0

xn R = 1

cos(x)

∞∑
n=0

(−1)n

(2n)!
x2n R =∞ cosh(x)

∞∑
n=0

1

(2n)!
x2n R =∞

sin(x)

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 R =∞ sinh(x)

∞∑
n=0

1

(2n+ 1)!
x2n+1 R =∞

(I) For each of the following, find a Taylor poly-
nomial of degree n centered at x = c of the
function f(x).

1. e4x, n = 3, c = 0

2. cos(x), n = 4, c = π

3. cos(2x), n = 4, c = 0

4. sin( 1
2x), n = 5, c = 0

5. 1
x , n = 3, c = 1

6. lnx, n = 3, c = 1

7. ln(1− x), n = 4, c = 0

8. ln(1 + x), n = 4, c = 0

(II) Find the radius of convergence of each power
series. (IGNORE THESE)

9.

∞∑
n=0

1

3n
xn

10.

∞∑
n=0

(−1)n

4n+1
xn

11.

∞∑
n=0

n

2n
x3n

12.

∞∑
n=0

3n+ 1

n2 + 4
xn

13.

∞∑
n=0

(−4)nn

n2 + 1
x2n

14.

∞∑
n=0

n

2n
x2n

15.

∞∑
n=0

(−1)n

n!
xn

16.

∞∑
n=0

n!

10n
x2n

(III) For each function, find the MacLaurin series.

17. f(x) = ex

18. f(x) = cosx

19. f(x) = sinx

20. f(x) =
1

1− x

21. f(x) =
1

1 + x

22. f(x) = coshx

23. f(x) = sinhx

(IV) Prove the following formulas are true by consid-
ering power series. These formulas will allow us
to eliminate complex numbers in future sections.

24. eix = cosx+ i sinx (called Euler’s formula)

25. cosh(ix) = cosx

26. cos(ix) = coshx

27. sinh(ix) = i sinx

28. sin(ix) = i sinhx

(V) Use MacLaurin series of known functions to
find the MacLaurin series of these functions (by
integrating, differentiating, composing, or mul-
tiplying together two power series).

29. f(x) = x2e3x

30. f(x) = x2

e3x [hint, use negative exponents]

31. f(x) = cos 4x

32. f(x) = x sin(2x)

33. f(x) = x
1+x

34. f(x) = 1
1+x2

https://content.byui.edu/file/664390b8-e9cc-43a4-9f3c-70362f8b9735/1/08-Power-Series-Preparation-Solutions.pdf
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35. f(x) = arctanx [hint, integrate the previous]

36. f(x) = arctan(3x)

(VI) Shift the indices on each sum so that it begins
at n = 0.

37.

6∑
n=3

n+ 2

38.

8∑
n=2

n2

39.

∞∑
n=4

2n

40.

∞∑
n=2

xn

41.

∞∑
n=1

nanx
n

42.

∞∑
n=2

n(n− 1)anx
n−2

(VII) Solve the following ODEs by the power series
method. With some, initial conditions are given
(meaning you know y(0) = a0 and y′(0) = a1).
Identify the function whose MacLaurin series
equals the power series you obtain.

43. y′ = 3y

44. y′ = 2xy

45. y′′ + 4y = 0

46. y′′ − 9y = 0, y(0) = 2, y′(0) = 3

47. y′′ + 4y′ + 3y = 0, y(0) = 1, y′(0) = −1

(VII) Determine whether the given values of x are
ordinary points or singular points of the given
ODE.

48. Chapter 27, problems 26-34 (these are really
quick).

(VIII) Solve the following ODEs by the power series
method. State the recurrence relation used to
generate the terms of your solution, and write
out the first 5 nonzero terms of your solution.

49. Chapter 27, problems 35-47 (or from the worked
problems).

8.4 Extra Practice Solutions

Handwritten solutions are available online. Click for solutions.

8.5 Special Functions

Here are some extra practice problems related to the Frobenius method and other special functions. Section
numbers correspond to problems from Schaum’s Outlines Differential Equations by Richard Bronson.

Concept Relevant Problems

Frobenius Method* 28:1-4, 5-10, 12,14,16,18-20

Legendre Polynomials 27:11-13; 29:4,6,8,11,12,15

Bessel Functions 30:9,11,12,26, 27,

Gamma Functions 30:1-8, 24, 25

Substitutions 28:22-23, 34-38; 30:30,31

Click here for some handwritten solutions to many of the problems above.

https://content.byui.edu/file/664390b8-e9cc-43a4-9f3c-70362f8b9735/1/08-Power-Series-Preparation-Solutions.pdf
https://content.byui.edu/file/664390b8-e9cc-43a4-9f3c-70362f8b9735/1/09-Special-Functions-Preparation-Solutions.pdf


Chapter 9

Systems of ODEs

This chapter covers the following ideas. When you create your lesson plan, it
should contain examples which illustrate these key ideas. Before you take the
quiz on this unit, meet with another student out of class and teach each other
from the examples on your lesson plan.

1. Convert higher order ODEs to first order linear systems.

2. Solve systems of first order ODEs using eigenvalues and eigenvectors.

3. Find the matrix exponential of a square matrix, and use it to solve linear
homogeneous and nonhomogeneous ODEs.

4. Give applications of systems of ODEs. In particular be able to setup
systems of ODE related to dilution, electricity, and springs (use the
computer to solve complex systems).

5. Explain how to use eigenvalues and eigenvectors to diagonalize matrices.
When not possible, use generalized eigenvectors to find Jordan canonical
form.

9.1 Bringing it all together

As you work on the problems in this section, you’ll want to have a computer
algebra system near by. I’ll put some links to Sage worksheets in the problem set,
but I strongly suggest you download the Mathematica Technology Introduction.

Our goal in this chapter is to learn how to solve systems of differential
equations. We have already discussed most of the ideas in this chapter (in
some context), but we have never brought all these ideas together. In this
chapter, we’ll try to connect everything we have done up to now. By the time
we end this chapter, we’ll have a tool that will solve almost every problem we
have encountered. We’ll see how vector fields, parametric curves, eigenvalues,
eigenvectors, potentials, and power series all combine together to give a beautiful
and elegant solution technique to solving ODEs.

Problem 9.1 Consider the IVP y′′ + 3y′ + 2y = 0, y(0) = 5, y′(0) = 0. This
solution to this ODE will give the position of a mass spring system where m = 1
kg, c = 3 kg/s, k = 2 kg/s2, where the object was lifted upwards 5 cm and then
let loose.

1. This is a homogeneous ODE. Find the characteristic equation, obtain a
general solution, and then use the initial conditions to show that y(t) =
10e−t − 5e−2t.

145

https://content.byui.edu/file/664390b8-e9cc-43a4-9f3c-70362f8b9735/1/_zips/316-Tech-Introduction.zip
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2. Since we know y(t) = 10e−t − 5e−2t, we also know y′ = −10e−t + 10e−2t.
Write this solution as a linear combination of vectors in the form[

y
y′

]
=

[
?
?

]
e−t +

[
?
?

]
e−2t.

3. Let y(t) be the position and v(t) be the velocity. This means that y′(t) =
v(t), and that v′(t) + 3v(t) + 2y(t) = 0 or v′(t) = −2y(t)− 3v(t). We now
have the system of ODEs y′(t) = v(t) and v′(t) = −2y(t)− 3v(t). We can
write this as the matrix equation[

y′

v′

]
=

[
0 1
−2 −3

] [
y
v

]
.

Find the eigenvalues λ1 and λ2 of the coefficient matrix A =

[
0 1
−2 −3

]
.

Then for each eigenvalue, find a corresponding eigenvector. How are the
eigenvalues and eigenvectors related to the solution in part 2?

Problem 9.2 Consider again the IVP y′′+ 3y′+ 2y = 0, y(0) = 5, y′(0) = 0.
We already know that y = 10e−t − 5e−2t and v = −10e−t + 10e−2t. In this
problem, you’ll be constructing various graphs to visualize this solution. Use
the links below to have technology do almost all of the graphing for you. Make
sure you either (1) print your plots or (2) copy them down on paper.

1. Construct of graph of y verses t. On the same axes construct a graph of v Please check your answer with
technology. You can use either
Sage or Mathematica. Click on
this link to get some example code
that will help you with this
problem. You should use this code
to check your answer with all the
problems in this chapter.

versus t. You should have two graphs that show you position and velocity
at any time t.

2. Now construct a graph of v versus y. We call this a velocity-position graph
(the time variable is removed). Please use technology to do this (see the
margin). You just need to graph the parametric curve ~r(t) = (y(t), v(t)).
You’ll need to a parametric plotter.

3. The matrix A represents a vector field ~F (y, v) = (0y + v,−2y − 3v).
Construct a graph of this vector field in the yv plane. Put your vector
field plot and your velocity-position plot on the same set of axes. Write
a sentence that explains what the vector field plot tells us about the
velocity-position plot.

4. Change the initial conditions to y(0) = 0 and v(0) = 5. On top of your Just change the initial conditions
in either Sage worksheet or
Mathematica notebook, and
reevaluate.

vector field plot, draw what you think the solution should look like in the
velocity-position plot. Then use software to solve the ODE, and plot your
solution. Use the Sage links at the beginning of this problem to accomplish
this.

5. Change the initial conditions to y(0) = 5 and v(0) = −5. On top of your
vector field plot, draw what you think the solution should look like in the
velocity-position plot. Explain why the solution must follow a straight
line in the velocity-position plane? [Hint: What are the eigenvalues,
eigenvectors?] Then state another set of initial conditions where the
solution will be a straight line towards the origin.

We’ll revisit the last two problems as part of every other solution we find.
The next problem is a repeat of something we already solved in chapter 2.

http://bmw.byuimath.com/dokuwiki/doku.php?id=systems_of_odes_grapher
http://bmw.byuimath.com/dokuwiki/doku.php?id=systems_of_odes_grapher
http://bmw.byuimath.com/dokuwiki/doku.php?id=systems_of_odes_grapher
http://bmw.byuimath.com/dokuwiki/doku.php?id=systems_of_odes_grapher
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Problem 9.3 Imagine for a moment that you have two tanks. The first tank
contains 6 lbs of salt in 10 gallons of water. The second tank contains no salt
in 20 gallons of water. Each tank has an inlet valve, and an outlet value. We
attach hoses to the tanks, and have a pump transfer 2 gallon/minute of solution
from tank 1 to tank 2, and vice versa from tank 2 to tank 1. So as time elapses,
there are always 10 gallons in tank 1 and 20 gallons in tank 2. Our goal is to
find the amount of salt in each tank at any time t.

1. We know there are initially 6 lbs of salt in tank 1, and no salt in tank 2. If
we allow the pumps to transfer salt for enough time, explain why the salt
content in tank 1 will drop to 2 lb, and the salt content in tank 2 should
increase to 4 lbs.

2. Let y1(t) and y2(t) be the lbs of salt in tanks 1 and 2, respectively. Explain
why

y′1 = − 2

10
y1 +

2

20
y2.

Then obtain a similar equation for y′2. Write your ODEs in the form(
y′1
y′2

)
=

[
−2/10 2/20

? ?

](
y1
y2

)
3. Draw the vector field represented by the coefficient matrix. Sketch the

solution (y1(t), y2(t)) to your IVP (start at the point (6, 0) and follow the
field until the vectors no longer tell you to move). Show that you should
stop at (2, 4).

4. Compute the eigenvalues and eigenvectors of the matrix A, and use them Don’t forget that you can check
your work with technology. Please
follow this link.

to write a general solution to this system of ODEs. Your solution should
involve arbitrary constants c1 and c2.

5. Use the initial conditions y1(0) = 6 and y2(0) = 0 to solve for c1 and c2.

Problem 9.4 Consider the linear system of ODEs given by y′1 = 2y1 + y2
and y′2 = 3y1 + 4y2. Let ~y = (y1, y2). We can write this ODE in the form

d~y
dt = A~y, where ~y = (y1, y2) and A =

[
2 1
3 4

]
.

1. Find the eigenvalues and eigenvectors of the coefficient matrix A. Use
them to state the general solution to this ODE. You can write your answer
in the form

~y = c1

(
∗
∗

)
eλ1t + c2

(
∗
∗

)
eλ2t.

2. Find a 2 by 2 matrix Q so that we can write this solution in the form If you are struggling with this one,

then think of Q as

[
a b
c d

]
and

then expand the product[
a b
c d

] [
eλ1t 0

0 eλ2t

] [
c1
c2

]
. You’ll

then know what Q must equal.

~y = Q

[
eλ1t 0

0 eλ2t

] [
c1
c2

]
= QD~c,

where we let D =

[
eλ1t 0

0 eλ2t

]
and ~c =

[
c1
c2

]
.

3. We now have ~y = QD~c. When we let t = 0, explain why D equals
the identity matrix. This means that ~y(0) = Q~c. Solving for ~c gives us

~c = Q−1~y(0). Compute the inverse of ~Q.

http://bmw.byuimath.com/dokuwiki/doku.php?id=systems_of_odes_grapher
http://bmw.byuimath.com/dokuwiki/doku.php?id=systems_of_odes_grapher
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4. Since we know ~y = QD~c and ~c = Q−1~y(0), this means

~y = QDQ−1~y(0).

You have found Q, D, and Q−1. Compute the matrix product QDQ−1.

In class, we’ll use your answer to give the solution to this system of ODEs
if y1(0) = a and y2(0) = b. Feel free to state the answer using your matrix
product QDQ−1.

Do you notice that in the problem above, we solved the linear system of
ODEs in the form ~y′ = A~y with initial conditions ~y(0) by just writing

~y = QDQ−1~y(0).

The columns of Q were the eigenvectors. The nonzero entries of the diagonal
matrix D contain eλt where λ is an eigenvalue. Does this pattern work in other
places?

Problem 9.5 Solve the system of ODEs ~y′ = A~y where A =

[
6 2
2 3

]
. Do

so by stating Q, D, and Q−1, and then perform the matrix product QDQ−1.
Finally, if we assume ~y(0) = (a, b), then give the solution to this system of
IVPs by stating what y1(t) equals, and what y2(t) equals (hint, multiply out
QDQ−1~y(0) ). Please use technology to perform as much of the computations
as you want. Just be prepared to tell us how you got each part.

Does the pattern above continue to work if we increase the size of the matrix?

Problem 9.6 Solve the system of ODEs ~y′ = A~y where A =

2 1 1
1 2 0
0 0 4

.

Do so by stating Q, D, and Q−1, and then perform the matrix product QDQ−1.
Finally, if we assume ~y(0) = (a, b, c), then give the solution to this system of
IVPs by stating what y1(t) equals, what y2(t) equals, and what y3(t) equals.
Please use technology to perform as much of the computations as you want.
Just be prepared to tell us how you got each part.

9.2 The Matrix Exponential

In the previous section, we saw that if ~y′ = A~y, then the solution is ~y = QDQ−1~c,
where the initial conditions give us ~c = ~y(0) because D is the identity matrix
when t = 0. In the first week of class, we solved the differential equation y′ = ay,
and obtained the solution y = eatc where c = y(0). In this section, we’ll show
that if we replace the constant a with a matrix of constants A, then the solution
is still ~y = eAt~c. To do this, we have to go back to power series.

Definition 9.1: The Matrix Exponential. We showed in the power series
chapter that

ex = 1 + x+
1

2!
x2 +

1

3!
x3 +

1

4!
x4 +

1

5!
x5 + · · · .

We define the matrix exponential of A to be the series

eA = I +A+
1

2!
A2 +

1

3!
A3 +

1

4!
A4 +

1

5!
A5 + · · · .

The matrix I is the identity matrix.
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Problem 9.7 Use the definition above to complete the following:

1. We know that e0 = 1. If A = O =

[
0 0
0 0

]
, then compute eA. Check your answer with software.

2. If A = I =

[
1 0
0 1

]
, show that eA =

[
e1 0
0 e1

]
.

3. If A =

2 0 0
0 3 0
0 0 5

, then compute eA. Make sure you show how you get

your answer from the definition.

4. If At =

2t 0 0
0 3t 0
0 0 5t

, then compute eAt. You are welcome to just state

an answer here.

When a matrix is diagonal, it’s matrix exponential is simple to compute.
Our main goal is to learn how to compute the matrix exponential of all matrices.
Let’s look at another type of matrix where it’s easy to compute the matrix
exponential.

Problem 9.8: Nilpotent Matrices Use the definition of the matrix expo- Check your answer with software.

nential to compute the following. We say that a matrix A is
nilpotent if An is the zero matrix
for some n. It’s easy to compute
the matrix exponential of a
nilpotent matrix, because the
infinite series stops, and then we
just have to add up finitely many
terms.

1. Let A =

[
0 t
0 0

]
and then compute (A)2 and (A)3. Use this to state the

matrix exponential of A. (You should get

[
1 t
0 1

]
.)

2. Let A =

0 t 0
0 0 t
0 0 0

 and then compute (A)2 and (A)3. Use this to state

the matrix exponential of A. Check your answer with technology by
following this link.

3. Let A =


0 t 0 0
0 0 t 0
0 0 0 t
0 0 0 0

. Give the matrix exponential of A. You are

welcome to guess your answer by following any pattern you saw above.

4. Let A =


0 t 0 0 0
0 0 t 0 0
0 0 0 t 0
0 0 0 0 t
0 0 0 0 0

. Guess the matrix exponential of A. Check

your answer with technology.

With real numbers, we have the exponential rule ea+b = ea · eb. The
exponential of a sum is the same as the product of an exponential. Does this
rule work with matrices as well? Let’s try it and see.

Problem 9.9 Let’s write At =

[
2 1
0 2

]
t =

[
2t t
0 2t

]
=

[
2t 0
0 2t

]
+

[
0 t
0 0

]
=

Bt+ Ct, where B =

[
2 0
0 2

]
and C =

[
0 1
0 0

]
.

http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
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1. Use software to compute the matrix exponential of At. Follow this link. Please use this
calculator to check your answers
on the other parts of this problem,
but only after you first do them
by hand.

2. State the matrix exponentials of both Bt and Ct (use the patterns devel-
oped from the previous problems). We know that At = Bt+ Ct, so how
should we combine eBt and eCt to get the matrix exponential of At?

3. Without software, state the matrix exponential of


3t t 0 0
0 3t t 0
0 0 3t t
0 0 0 3t

 .

Problem 9.10 Suppose we know that A = QDQ−1 where D is a diagonal
matrix. In this problem, we’ll compute the matrix exponential of A.

1. Explain why A3 = (QDQ−1)(QDQ−1)(QDQ−1) = QD3Q−1. Explain
why the product simplified so nicely.

2. Explain why Ak = QDkQ−1.

3. We know that eA = I + A + 1
2!A

2 + 1
3!A

3 + · · · . If we replace Ak with
QDkQ−1, then explain why we know eA = QeDQ−1.

4. The matrix A =

[
2 1
1 2

]
has an eigenvalue 3 with corresponding eigenvector Check your answer with software.

(1, 1), and has an eigenvalue 1 with corresponding eigenvector (1,−1).
Compute the matrix exponential of A using the formula eA = QeDQ−1.

If we know how to compute the matrix exponential of a diagonal matrix
D and A = QDQ−1, then the previous problem showed us that exp(A) =
Q exp(D)Q−1. We also saw that multiplication by t doesn’t affect this result, so
we have

exp(At) = Q exp(Dt)Q−1.

This is the key tool we’ll use to solve systems of ODEs.

Problem 9.11 Complete each of the parts below.

1. Consider the first order differential equation dy
dt = ay. Solve this ODE

using separation of variables and show that y = eatc. If y(0) = P , then
what does c equal?

2. Consider the system of ODEs y′1 = 2y1 + y2 and y′2 = y1 + 2y2, which we

can write in the form

[
y′1
y′2

]
=

[
2 1
1 2

] [
y1
y2

]
or d~y

dt = A~y. Use eigenvalues and

eigenvectors and the process right before Problem 9.5 to give a solution to
this ODE.

3. Compute the matrix exponential of At (or explain where you already Check your answer with software.

computed it). Show that a solution to this ODE is ~y = eAt~c.

4. What is y1(t)?

Problem 9.12 Consider the system of ODEs
d~y

dt
= A~y given byy1y2

y3

′ =

2 1 0
1 2 0
0 0 3

y1y2
y3

 .

http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
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1. For the coefficient matrix above, state Q and D. You should have a
repeated eigenvalue, but you should also find two linearly independent
eigenvectors corresponding to this eigenvalue.

2. Compute eAt, and state a general solution ~y(t). Check your answer with software.

3. If y1(0) = 1, y2(0) = −2, y3(0) = 2, then state y1(t), y2(t), and y3(t).

We now have the tools needed to solve every constant coefficient linear system
of ODEs, whether homogeneous or not. They key to solving these problems is
a formula we already developed earlier in the semester. If you have forgotten
how to find an integrating factor, you may want to review some problems from
chapter 2. Then tackle this problem.

Problem 9.13 Consider the first order ODE y′ − ay = f(t). Find an
appropriate integrating factor, and then show that a general solution to this
ODE is

y(t) = eatc+ eat
∫
e−atf(t)dt,

where c is an arbitrary constant.
If the ODE is homogeneous with f(t) = 0, show that c = y(0).

The solutions above provides a theoretical way to solve every first order
linear constant coefficient ODE. If we replace y, c, and f with vectors, and we

replace a with a matrix, then the solution to
d~y

dt
= A~y(t) + ~f(t) is simply

~y(t) = eAt~c+ eAt
∫
e−At ~f(t)dt.

This equation solves just about every linear ODE we’ve encountered all semester, It’s possible to rework through the
details of the problem above to
show this is the solution. I’ll leave
those details to you. Solving that
problem was one of my most
exciting discoveries in the last 10
years of teaching. It’s amazing.

and more. To use this solution, the system must have constant coefficients, but
the function f only has to be integrable after multiplying by e−At. This greatly
extends our ability to solve non homogeneous ODEs.

Let’s use this solution technique on the following problem.

Problem 9.14 Consider the linear system of ODEs

d~y

dt
=

[
2 3
1 4

]
~y +

[
0
5t

]
,

with initial conditions y1(0) = 4, y2(0) = 0.

1. Use a computer to give the eigenvalues and an eigenvector for each eigen-
value. State Q and D so that AQ = QD where D is a diagonal matrix.

2. State eDt. The perform the matrix product eAt = QeDtQ−1? Check your answer with software.

3. Compute the inverse of eAt and show it is the same as replacing t with −t.

4. Compute by hand the integral
∫
e−At ~f(t)dt, and then with a computer

give the product eAt
∫
e−At ~f(t)dt. Matrix multiplication can be tedious,

so please use software to automate it.

5. Show how to use the initial conditions to find ~c in ~y(t) = eAt~c+eAt
∫
e−At ~f(t)dt.

http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
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If we can find matrices Q and D so that AQ = QD where D is diagonal,
then we can always find the matrix exponential of A. We can use this to solve
any related differential equations. What if we can’t find Q and D?

Problem 9.15 Consider the matrix At =


2t t 0 0 0
0 2t 0 0 0
0 0 2t t 0
0 0 0 2t t
0 0 0 0 2t

. There is

supposed to be a zero instead of a t in the second row. That was done on
purpose.

1. Write At as the sum At = Bt+ Ct, where Bt is a diagonal matrix, and
Ct contains nonzero terms above the diagonal.

2. Compute the matrix exponential of both Bt and Ct. Then compute their Check your answer with software.

product to get eAt.

3. Guess the matrix exponential of



3t t 0 0 0 0 0 0 0 0
0 3t t 0 0 0 0 0 0 0
0 0 3t t 0 0 0 0 0 0
0 0 0 3t 0 0 0 0 0 0
0 0 0 0 3t t 0 0 0 0
0 0 0 0 0 3t 0 0 0 0
0 0 0 0 0 0 4t 0 0 0
0 0 0 0 0 0 0 4t t 0
0 0 0 0 0 0 0 0 4t t
0 0 0 0 0 0 0 0 0 4t


Check your answer with software.

We can now compute the matrix exponential of any matrix that is either
diagonal, or has nonzero entries above the diagonal. We’ll soon see that this
means we can compute the matrix exponential of every matrix. The key is to
first find the correct form. Let’s apply what we just learned to solve an ODE
that has a nonzero term above the diagonal.

Problem 9.16 Consider the linear system of ODEs given by

y′1 = −3y1 + y2 + 3 and y′2 = −3y2 + 6,

with initial conditions y1(0) = 1 and y2(0) = 0.

1. Write this linear system in the form d~y
dt = A~y + ~f(t). [Hint: The vector ~f

should be constant.]

2. What are the eigenvalues of A? You should get a repeated root.

3. This matrix is already in the form of the sum of a diagonal and a nilpotent Check your answer with software.

matrix. You don’t need eigenvectors to compute the matrix exponential.
Compute eAt and then replace t with −t to obtain e−At.

4. Compute by hand
∫
e−At ~f(t)dt, and then with a computer give the Check your answer with software.

product eAt
∫
e−At ~f(t)dt.

5. We know the general solution is ~y(t) = eAt~c+ eAt
∫
e−At ~f(t)dt. Use the

initial conditions to find ~c. Show us what matrix you are row reducing.

http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
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6. You should have y2(t) = 2− 2e−3t. What is y1(t)?

Let’s focus on some application problems. You don’t have to be able to
compute the matrix exponential problems to solve these problems, so if you got
stuck above, please do these.

Problem 9.17 Suppose we have three large tanks containing various amounts
of salt. The tanks have volumes V1 = 30 gal, V2 = 20 gal, and V3 = 50 gal. We don’t have to use salt. This

could represent 3 different
countries and products they wish
to import/export. It could be
sewage at a waste transfer station.
We might consider three countries
and the spreading of a virus. We
could look at three cities and the
flow of traffic. The applications
are endless.

• An inlet valve pumps 5 gallons of water into tank 1 each minute. The
water coming in contains 3 lbs of salt per gallon. This water is being
added to the system from some external source.

• Tank 1 has an outlet value that pumps 9 gallons per minute out to tank 2.
Tank 1 has an inlet value that receives 3 gallons per minute from tank 2,
and 1 gallon per minute from tank 3. In all, this mean that tank 1 has 9
gallons coming in per minute, and 9 gallons going out per minute.

• Tank 2 receives 9 gallons per minute from tank 1. Of those 9 gallons, it
sends 3 gallons per minute to tank 1 and 4 gallons per minute to tank 2.
The other 2 gallons per minute leak out the top (through a crack).

• Tank 3 receives 4 gallons per minute from tank 2. It sends 1 gallon per
minute back to tank 1, and then the remaining 3 gallons per minute are
sent out a hose to some external spot.

Assume the initial salt content is zero in each tank. As time moves on, the salt
that is added to tank 1 will eventually reach the other tanks. After t minutes,
how much salt will be in each tank?

1. Let y1, y2, and y3 be the lbs of salt in each tank after t minutes. We know
that y′1 = 5(3)− 9

30y1 + 3
20y2 + 1

50y3. Obtain similar ODEs for y′2 and y′3.

2. Write this tank mixing problem as a linear system of ODEs in the form
d~y
dt = A~y + ~f(t). You should have a 3 by 3 matrix A. You should be able

to explain why ~f(t) = (15, 0, 0).

3. Use software to solve the system. State the eigenvalues, eigenvectors, Q, Here’s a link to Sage.

D, eAt, and
∫
e−Atf(t)dt, as well as the solution ~y = (y1(t), y2(t), y3(t)).

See the software link on the right.

4. Let t → ∞. What will be the salt content in each tank in the long run.
Could you have explained this without doing any differential equations?

Problem 9.18 Consider the following mechanical system. Attach a spring
to the top of the ceiling. Add an object with mass m1 to the bottom of the
spring. We’ll assume the spring’s mass is negligible and the spring constant
is k1. To the bottom of the first mass, we attach a second spring, and hang
another object to the end of the second spring. The second object has mass
m2. The second spring has negligible mass, with spring constant k2. We’ll let
y1(t) and y2(t) represent the position of the masses relative to their equilibrium
positions, so if y1(t) = 3, then we’d be 3 cm above the equilibrium point.

Suppose we displace the objects from equilibrium, and let them go. This
means we have the initial conditions y1(0) = a, y2(0) = b, y′1(0) = 0, and
y′2(0) = 0. Our goal is to predict the future, namely give the position of both
springs at time t. The key is to study the forces acting on each spring.

http://bmw.byuimath.com/dokuwiki/doku.php?id=matrix_exponential_calculator
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• If we focus on the first mass, then the forces acting on this mass are the
spring force above it (we’ll call this F1), and the spring force below it
(we’ll call this F2).

• The force from the spring above the first mass depends on how much y1
has moved. If the first mass has moved up y1 units, then the force acts
downwards, and we can use Hooke’s law to state that F1 = −k1y1.

• The force from the spring below the first mass depends on both where y1
and y2 are located. If both moved up the same amount from equilibrium,
then F2 = 0. If they have moved at different amounts, then their difference
y2 − y1 will either result in a contraction or expansion of the spring, and
then the force is not zero.

1. Is the force from the second spring equal to F2 = −k2(y2 − y − 1) or
F2 = +k2(y2 − y − 1). In other words, if we know y2 − y1 > 0 then is
the spring compressed or elongated, and does this result in an upwards or
downwards force? Please explain.

2. We now have an equation m1y
′′
1 = −k1y1 ± k2(y2 − y1) (you determined

the correct sign in part 1). Obtain a similar equation for my′′2 (this one
should be simpler, as the only spring force acting on m2 comes from the
lower spring).

3. Let v1 = y′1 and v2 = y′2. This allows us to replace y′′1 with v′1, and y′′2
with v′2, and then we have a system of first order linear ODEs, namely

y′1 = v1, y
′
2 = v2, v

′
1 = − k1

m1
y1 ±

k2
m1

(y2 − y1), v′2 = ...

Write this system in the matrix form
y1
y2
v1
v2


′

=


0 0 1 0
? ? ? ?
? ? ? ?
? ? ? ?



y1
y2
v1
v2

 .

4. As a challenge (optional), how would you change your matrix if each mass
were attached to a dashpot with coefficients of friction c1 and c2? This
would add the forces −c1y′1 and −c2y′2 to the system.

Our last application involves modeling the current in an electrical system
with two loops. A similar computation will work with any number of loops,
though the number of loops causes the size of the system to increase quite
rapidly. Remember that Kirchoff’s current law states that at each node, the
current in equals the current out. In addition, Kirchoff’s voltage laws states
that along each loop, the voltage supplied equals the voltage suppressed. Each
resistor contributes a voltage drop of RI ohms, each capacitor a drop of 1

C

∫
Idt

farads, and each inductor a voltage drop of LI ′ Henrys.

Problem 9.19 Consider the electrical network on the right. Kirchoff’s

E R2

R1

R3

L C

I1 I2

I3

current law states that I1 = I2 + I3. On the left loop, Kirchoff’s voltage law
states that E = R1I1 +R2I2 + LI ′1. On the right loop, Kirchoff’s voltage law
states that 0 = I3R3 + 1

C

∫
I3dt−R2I2. This gives us the three equations

I1 = I2 + I3, E = R1I1 +R2I2 + LI ′1, 0 = I3R3 +
1

C

∫
I3dt−R2I2.
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1. Differentiate both sides of the first and last equations so that all your
equations are differential equations. The first equation becomes I ′1 = I ′2+I ′3.
What does the last equation become?

2. Solve your system of 3 ODEs for I ′1, I
′
2, and I ′3. You should be able to

write each of these three in terms of I1, I2, I3, E, and the resistances.

3. Write the system of ODEs from the first part in the matrix form
d~I

dt
=

A~I + ~f(t), i.e. in the formI1I2
I3

′ =

? ? ?
? ? ?
? ? ?

I1I2
I3

+

?
?
?

 .

Once you’ve got the system set up, a computer can give the currents instantly
using the solution ~I(t) = eAt~c + eAt

∫
e−At ~f(t)dt. This entire problem is an

algorithm that’s already coded into any electrical network software package.

Let’s end the chapter with one final problem.

Problem 9.20 Consider the linear system of ODEs

d~y

dt
=

[
0 1
−1 −2

]
~y +

[
e−t

0

]
.

1. Show that the coefficient matrix above has a repeated eigenvalue, and only
one corresponding eigenvector.

2. Because there is one eigenvector, we can’t make a matrix Q so that

AQ = QD. However, if we let Q =

[
−1 −1
1 0

]
, then what is J so that

AQ = QJ?

3. Compute the matrix exponential of J , then compute eAt and e−At. You’ll
want to use the ideas from problem 9.9 and 9.15.

4. Compute, by hand,
∫
e−At ~f(t)dt, and then with a computer give the

product eAt
∫
e−At ~f(t)dt.

5. If you let ~c = ~0, then what are y1 and y2. This is what we called yp in the
non homogeneous ODE section.
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9.3 Problems

The accompanying problems will serve as practice problems for this chapter. Handwritten solutions to
most of these problems are available online (click for solutions). You can use the Mathematica technology
introduction to check any answer, as well as give a step-by-step solution to any of the problems. However, on
problems where the system is not diagonalizable, the matrix Q used to obtain Jordan form is not unique (so
your answer may differ a little, until you actually compute the matrix exponential QeJtQ−1 = eAt).

1. Solve the linear ODE y′ = ay(t) + f(t), where
a is a constant and f(t) is any function of t.
You will need an integrating factor, and your
solution will involve the integral of a function.

2. For each system of ODEs, solve the system using
the eigenvalue approach. Find the Wronskian
and compute its determinant to show that your
solutions are linearly independent.

(a) y′1 = 2y1 + 4y2, y
′
2 = 4y1 + 2y2, y1(0) =

1, y2(0) = 4

(b) y′1 = y1 + 2y2, y
′
2 = 3y1, y1(0) = 6, y2(0) =

0

(c) y′1 = y1 + 4y2, y
′
2 = 3y1 + 2y2, y1(0) =

0, y2(0) = 1

(d) y′1 = y2, y
′
2 = −3y1 − 4y2, y1(0) =

1, y2(0) = 2

3. (Jordan Form) For each matrix A, find matrices
Q,Q−1, and J so that Q−1AQ = J is a Jordan
canonical form of A.

(a)

[
1 2
0 3

]
(b)

[
0 1
−1 −2

]

(c)

1 2 2
0 1 2
0 0 1



(d)

1 2 2
0 1 0
0 0 1


(e)

[
0 1
−1 0

]

4. For each of the following matrices A which are
already in Jordan form, find the matrix expo-
nential. Note that if t follows a matrix, that
means you should multiply each entry by t.

(a)

[
2 0
0 3

]
(b)

[
2 0
0 3

]
t

(c)

2 0 0
0 3 0
0 0 4


(d)

2 0 0
0 3 0
0 0 4

t

(e)

[
0 1
0 0

]
t

(f)

[
4 1
0 4

]
t

(g)

0 1 0
0 0 1
0 0 0

t

(h)

5 1 0
0 5 1
0 0 5

t

(i)


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

t

(j)


3 1 0 0 0
0 3 1 0 0
0 0 3 0 0
0 0 0 −2 1
0 0 0 0 −2

t

5. For each of the following matrices, find the ma-
trix exponential. You will have to find the Jor-
dan form.

(a)

[
0 1
−3 4

]
(b)

[
0 1
−6 −5

]
(c)

[
0 1
−1 −2

]
(d)

[
0 1
−4 −4

]

(e)

[
0 1
−1 0

]
(f)

[
0 1
−4 0

]
(g)

[
0 1
0 3

]
(h)

[
2 4
4 2

]
6. Set up an initial value problem in matrix for-

mat for each of the following scenarios (mixing
tank, dilution problems). Solve each one with
the computer.

(a) Tank 1 contains 30 gal, tank 2 contains 40.
Pumps allow 5 gal per minute to flow in
each direction between the two tanks. If
tank 1 initially contains 20lbs of salt, and
tank 2 initially contains 120 lbs of salt, how
much salt will be in each tank at any given
time t. Remember, you are just supposed
to set up the IVP, not actually solve it (the
eigenvalues are not very pretty).

(b) Three tanks each contain 100 gallons of wa-
ter. Tank 1 contains 400lbs of salt mixed
in. Pumps allow 5 gal/min to circulate in
each direction between tank 1 and tank 2.
Another pump allows 4 gallons of water to
circulate each direction between tanks 2
and 3. How much salt is in each tank at
any time t?

https://content.byui.edu/file/664390b8-e9cc-43a4-9f3c-70362f8b9735/1/10-Systems-of-ODEs-Preparation-Solutions.pdf
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(c) Four tanks each contain 30 gallons. Be-
tween each pair of tanks, a set of pumps
allows 1 gallon per minute to circulate in
each direction (so that each tank has a
total of 3 gallons leaving and 3 gallons en-
tering). Tank 1 contains 50lbs of salt, tank
2 contains 80 lbs of salt, tank 3 contains 10
lbs of salt, and tank 4 is pure water. How
much salt is in each tank at time t?

(d) Tank 1 contains 80 gallons of pure water,
and tank 2 contains 50 gallons of pure wa-
ter. Each minute 4 gallons of water con-
taining 3lbs of salt per gallon are added to
tank 1. Pumps allow 6 gallons per minute
of water to flow from tank 1 to tank 2, and
2 gallons of water to flow from tank 2 to
tank 1. A drainage pipe removes 4 gallons
per minute of liquid from tank 2. How
much salt is in each tank at any time t?

7. Convert each of the following high order ODEs
(or systems of ODEs) to a first order linear sys-
tem of ODEs. Which are homogeneous, and
which are nonhomogeneous?

(a) y′′ + 4y′ + 3y = 0

(b) y′′ + 4y′ + 3y = 4t

(c) y′′ + ty′ − 2y = 0

(d) y′′ + ty′ − 2y = cos t

(e) y′′′ + 3y′′ + 3y′ + y = 0

(f) y′′′′ − 4y′′′ + 6y′′ − 4y′ + y = t

(g) y′′1 = 4y′1 + 3y2, y
′
2 = 5y1 − 4y2.

(h) Chapter 17, problems 1-20, in Schaum’s

8. Solve the following homogeneous systems of
ODEs, or higher order ODEs, with the given
initial conditions.

(a) y′1 = 2y1, y
′
2 = 4y2, y1(0) = 5, y2(0) = 6

(b) y′1 = 2y1 + y2, y
′
2 = 2y2, y1(0) =

−1, y2(0) = 3

(c) y′′ + 4y′ + 3y = 0, y(0) = 0, y′(0) = 1

(d) y′′ + 2y′ + y = 0, y(0) = 2, y′(0) = 0

(e) y′1 = 2y1 + y2, y
′
2 = y1 + 2y2, y1(0) =

2, y2(0) = 1

(f) y′1 = y2, y
′
2 = −y1, y1(0) = 1, y2(0) = 2

9. Solve the following nonhomogeneous systems of
ODEs, or higher order ODEs, with the given ini-
tial conditions. Use the computer to solve each
of these problems, by first finding the matrix
exponential and then using using the formula
~y = eAt~c+ eAt

∫
e−At ~f(t)dt. You’ll have to find

the matrix A and function f .

(a) y′1 = 2y1 + t, y′2 = 4y2, y1(0) = 5, y2(0) = 6

(b) y′1 = 2y1 + y2, y
′
2 = 2y2 − 4, y1(0) =

−1, y2(0) = 3

(c) y′′ + 4y′ + 3y = cos 2t, y(0) = 0, y′(0) = 1

(d) y′′ + 2y′ + y = sin t, y(0) = 2, y′(0) = 0

(e) y′1 = 2y1 +y2−2, y′2 = y1 +2y2 +3, y1(0) =
2, y2(0) = 1

(f) y′1 = y2, y
′
2 = −y1 + t, y1(0) = 1, y2(0) = 2

10. Mass-Spring Problems - To be added in the
future.

11. Electrical Network Problems - To be added in
the future.
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