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Chapter 1

Review

This section covers the following ideas.

1. Graph basic functions by hand. Compute derivatives and integrals, in
particular using the product rule, quotient rule, chain rule, integration by
u-substitution, and integration by parts (the tabular method is useful for
simplifying notation). Explain how to find a Laplace transform.

2. Explain how to verify a function is a solution to an ODE, and illustrate
how to solve separable ODEs.

3. Explain how to use the language of functions in high dimensions and how
to compute derivatives using a matrix. Illustrate the chain rule in high
dimensions with matrix multiplication.

4. Graph the gradient of a function together with several level curves to
illustrate that the gradient is normal to level curves.

5. Explain how to test if a differential form is exact (a vector field is conser-
vative) and how to find a potential.

1.1 Basics

You should understand how to graph by hand basic functions. If you have
not spent much time graphing functions by hand, then please spend some time
graphing the following functions:

x2, x3, x4,
1

x
, sinx, cosx, tanx, arctanx, lnx, ex, e−x

You should also practice shifting and rescaling function. For example the graph
(x− h)2

a2
+

(y − k)2

b2
= 1 is an ellipse shifted from the origin h units right and

k units up. The graph of y = 2 sinx is formed by doubling the amplitude. The
graph of y = sin(2x) if formed by halving the period. I suggest that you spend
time graphing y = A sin(B(x − C)) + D for various values of A,B,C,D (for
homework), and describe how each constant changes the shape of the function
(the period is 2π

B , amplitude is A, and the origin is moved from (0, 0) to (C,D)).

1.1.1 Derivatives

You should know all the derivatives of the basic functions listed in the previous
section. In addition, you should know derivatives of the remaining trigonometric

1



CHAPTER 1. REVIEW 2

functions and trigonometric inverse functions (such as arccos(x)), as well as
rules regarding exponents ax and logarithms loga x of any base. The following
rules are crucial as well.

1. Power rule (xn)′ = nxn−1

2. Sum and difference rule (f ± g)′ = f ′ ± g′

3. Product and quotient rule (fg)′ = fg′ + f ′g

4. Chain rule (arguably the most important) (f ◦ g)′ = f ′(g(x)) · g′(x)

Be able to use the chain rule to do implicit differentiation.

Example 1.1. To find the derivative of arcsin(x), first rewrite the expression
as x = sin y. Then differentiate both sides implicitly with respect to x, giving
1 = cos(y)y′ (where the chain rule is used to get y′). Solving for y′ gives
y′ = 1

cos(y) . The expression x = sin y means that y is the central angle of a

triangle with x as the opposite edge and 1 as the hypotenuse. This makes the
adjacent edge

√
1− x2. Hence y′ = 1

cos y = 1√
1−x2

.

1.1.2 Integrals

You should be able to integrate all the functions listed in the derivative section.
In addition you should know the following integration techniques

• u- substitution - The key is to pick the right u, solve for dx, and then
compute the simpler integral.

Example 1.2. To solve
∫
e3xdx, first notice that we know how to inte-

grate eu, so let u = 3x. Then du = 3dx, or dx = du
3 . Substitution yields∫

e3xdx =
∫
eu du3 = 1

3e
u + C = 1

3e
3x + C.

• Integration by parts - Recall the formula
∫
udv = uv −

∫
vdu. It is

essentially the product rule (you can see that by differentiating both sides
giving udv = d(uv)− vdu).

Example 1.3. To compute
∫
x sin(2x)dx, we first pick for u a function

which simplifies upon differentiation, and for dv the rest of the inte-
grand. The choice u = x, dv = sin 2xdx will do. This gives du = 1dx
and v = − cos 2x

2 . Integration by parts gives
∫
x sin(2x)dx = −x cos 2x

2 −∫
− cos 2x

2 dx = −x cos 2x
2 + sin 2x

4 .

Integration by parts is needed to find the following integrals:
∫
xexdx,∫

x2 sinxdx,
∫
ex sinx, and

∫
lnx. The Laplace Transform section will

give you lots of practice with this.

There are other methods of integration, but we will only need to focus
on integration by substitution and integration by parts. The following two
sections illustrate the tabular method which is an organizational tool to help
with integration by parts, and the Laplace transform which is one of the key
tools used by engineers to solve ODEs.

The tabular method

The tabular method is an organizational tool which simplifies integration by
parts. This method gives you a convenient way to sort the information from
multiple integration by parts into a simple table, so that you can find the
integral without much work.
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Example 1.4. I’ll illustrate this method with the same example as above,
where f(x) = x sin(2x). Create a table with two sides. On the left side place
a factor from your integral which will get simpler with differentiation. In this
case we place x on the left because after 2 derivatives it will become zero. On
the right side place the rest of the integrand, which is sin(2x) in our example.
Differentiate the left hand side one or more times. Stop differentiation when

D I

+ x sin(2x)
− 1 − cos(2x)/2
+ 0 − sin(2x)/4

further differentiation will no longer simplify the problem. In this case we
differentiated twice because we obtained 0. Now integrate the right side the
same number of times. Multiply every other term on the left side by −1,
starting with the second (this comes because of the minus in integration by
parts, and you can see it in our table as the +,−,+ on the left of the table).
Now multiply each term on the left by the term one row lower on the right
(multiply diagonally down to the right), and sum the products. In our example
we obtain +(x)(− cos(2x)/2)− (1)(− sin(2x)). The solution is found by add to
the last step the integral of the product of the bottom row (if is zero, then this
part can be skipped). In our case, the product of the bottom row is zero, so
our solution is simply

∫
x sin(2x) = +(x)(− cos(2x)/2)− (1)(− sin(2x)).

Example 1.5. As another example let’s compute
∫

lnxdx. Since we don’t
know how to integrate lnx, but we can differentiate it, we’ll place lnx on the
left side. Since there is nothing left in the integrand and lnx = lnx · 1, we
place a 1 on the right side. The derivative of lnx is 1/x. The integral of 1 is
x. Alternate the sign by placing a minus next to 1/x. Now multiply lnx by

D I

+ lnx 1
− 1/x xx to obtain x lnx. The product of the bottom row is − 1

xx = −1 so we add∫
−1dx = −x to obtain

∫
lnxdx = x lnx− x.

Laplace Transforms

The Laplace transform of a function f(t) defined for t ≥ 0 is F (s) = L(f) =∫∞
0
e−stf(t)dt, provided this improper integral exists (in which case we say the

integral converges). Remember that to compute an improper integral you have
to compute limits as the variable approaches infinity. The function f(t) is called
the inverse Laplace transform of F (s), and we write f(t) = L−1(F ). We will use
the Laplace transform throughout the semester to help us solve many problems
related to mechanical systems, electrical networks, and more. For now, we just
need to know how to compute it (as it gives a good way to practice integration
by parts)

If you have forgotten how to compute limits at infinity, then here is a brief

review. We can compute lim
t→∞

1

t
= 0 since 1

t gets really small as t gets large.

The function et approaches ∞ as t → ∞, but it approaches 0 as t → −∞.
This can be seen by looking at the graph of of et which continues to increase
forever as t increases, but has a horizontal asymptote of y = 0 as t → −∞.

We will need to be able to compute limits such as lim
t→∞

te−st = lim
t→∞

t
t

est
. If

you try taking the limits of both the top and bottom separately, you obtain
∞
∞ (provided s > 0). This is called an indeterminant form, and L’Hopital’s
rule says that you can examine such limits by taking the derivative of the top

and the bottom separately and then taking a limit. This gives lim
t→∞

t

e−st
=

lim
t→∞

1

(−s)e−st
=

1

∞
= 0.

Example 1.6. If f(t) = 1, then F (s) =
∫∞

0
e−st1dt = e−st

−s
∣∣∞
0

= 1
s , where the

integral converges provided s > 0.
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Example 1.7. If f(t) = eat, then F (s) =
∫∞

0
e−steatdt =

∫∞
0
e−(s−a)tdt =

e−(s−a)t

−(s−a)

∣∣∞
0

= 1
s−a , where the integral converges provided s > a.

Example 1.8. The Laplace transform of t is L(t) = F (s) =
∫∞

0
e−sttdt. Tab-

ular integration by parts gives

D I

+ t e−st

− 1 e−st/(−s)
+ 0 e−st/s2

L(t) =

[
(t)(

1

−s
e−st)− e−st/s2

] ∣∣∣∣∞
0

= lim
t→∞

(
t

−se−st
− 1

s2e−st

)
− (0− 1

s2
)

= (0− 0)− (0− 1

s2
) =

1

s2
,

where the integral converges if s > 0. Similar computations show that L(tn) =
n!
sn+1 , s > 0 for any integer n, where n! = 1 · 2 · 3 · · ·n is the factorial function
which is the product of all positive integers up to and including n. For example,
L(t4) = 4!

s5 = 24
s5 .

Since integration can be done term by term, we have L(af + bg) = aL(f) +
bL(g) for functions f, g and constants a, b. We can use this to find many other
Laplace transforms without having to do any more integration.

Example 1.9. Let’s compute L(4 + 6t− 5e7t). We distribute across each addi-
tion or subtraction sign to obtain 4L(1) + 6L(t)− 5L(e7t), and then using the
results from the examples above we obtain 4

s + 6
s2 − 5 1

s−7 .

Example 1.10. Using the definition of cosh t =
et + e−t

2
and sinh t =

et − e−t

2
,

we can compute

L(cosh 3t) =
1

2
L(e3t + L(e−3t)) =

1

2

(
1

s− 3
+

1

s+ 3

)
=

s

s2 − 32
.

Similarly L(sinh 3t) =
3

s2 − 32
.

1.2 Ordinary Differential Equations

A differential equation is an equation which involves derivatives (of any order)
of some function. For example, the equation y′′+xy′+sin(xy) = xy2 is a differ-
ential equation. An ordinary differential equation (ODE) is a differential
equation involving an unknown function y which depends on only one indepen-
dent variable. The order of an ODE is the order of the highest derivative in
the ODE. A solution to an ODE on an interval (a, b) is a function y(x) which
satisfies the ODE on (a, b).

Example 1.11. The first order ODE y′ = 2x has unknown function y with
independent variable x. A solution on (−∞,∞) is the function y = x2 + C for
any constant C. The solution is found by simply integrating both sides.

To verify that a function is a solution of an ODE, you just have to differen-
tiate the function and then check to see if it satisfies the ODE.

Example 1.12. Let’s verify that the function y = cos(2x)− 3 sin(2x) satisfies
(is a solution to) the 2nd order ODE y′′+4y = 0. We compute y′ = −2 sin(2x)−
6 cos(2x) and y′′ = −4 cos(2x) + 12 sin(2x). We then put these into the ODE
y′′ + 4y = 0 to obtain −4 cos(2x) + 12 sin(2x) + 4(cos(2x) − 3 sin(2x)) = 0.
Simplifying gives 0 = 0, so we have verified that we have a solution.
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Typically a solution to an ODE involves an arbitrary constant C. There is
often an entire family of curves which satisfy a differential equation, and the
constant C just tells us which curve to pick. A general solution of an ODE
is an infinite class of solutions of the ODE. A particular solution is one of
the infinitely many solutions of an ODE. Often an ODE comes with an initial
condition y(x0) = y0 for some values x0 and y0. We can use these initial
conditions to find a particular solution of the ODE. An ODE, together with an
initial condition, is called an initial value problem (IVP).

Example 1.13. The IVP y′ = 2x, y(2) = 1 has general solution y = x2 + C.
Since y = 1 when x = 2, we have 1 = 22 + C which means C = −3. Hence the
solution to our IVP is y = x2 − 3.

The most basic differential equation to solve is one in which you can “sep-
arate” the variables. The idea is to rearrange the equation in the differential
form f(y)dy = g(x)dx, where you separate the x and y terms so that they ap-
pear on different sides of the equation. Integrating each side gives the general
solution.

Example 1.14. Separate the ODE y′ = x2

2y by writing 2y dydx = x2 or 2ydy =

x2dx. Integrating both sides gives a general solution y2 + C1 = x3/3 + C2, or
simply y2 = x3/3 + C (since the difference of two arbitrary constants is just
a constant). Here we can solve for y to obtain y = ±

√
x3/3 + C. Because

we solved for y, we call this an explicit solution to the ODE. The solution
y2 = x3/3 + C is called an implicit solution (where y is given implicitly rather
than explicitly as a function of x).

Example 1.15. Divide the differential equation y′ = ky on both sides by y.
Then multiply both sides by the differential dx to obtain 1

ydy = kdx. Inte-

gration on both sides yields ln |y| = kx + c. Exponentiating both sides gives
|y| = ekx+c = ekxec. Now ec is a positive constant, so we rename that constant
to be C and obtain |y| = cekx. Removing the absolute values on y just multiplies
C by ±1. This shows that the general solution to y′ = ky is y(x) = Cekx.

1.3 General Functions

A function is a set of instructions (a relation) involving two sets (called the
domain and range). A function gives a rule that assigns to each element of the
domain exactly one element in the range. It is customary to write f : D → R
when we want to specify exactly what the domain and range are. Often the
domain and range are subsets of Rn (Euclidean n-space). If n = 2 then R2 is the
coordinate plane. The domain and range do not have to be the same dimension.
In multivariable calculus, you studied function of the form f : Rn → Rm where
n and m were 1, 2, or 3. The following list is provided as a reminder and
summary of much of what you did in multivariable calculus.

1. Functions of the form f : R → R as in f(x) = x2 are studied in first
semester calculus.

2. Functions of the form f : R→ R2 as in ~r(t) = 〈3 cos(t), 2 sin(t)〉 are called
parametric curves. They are plotted in the plane by making a t, x, y table.

3. Functions of the form f : R→ R3 as in ~r(t) = 〈cos(t), sin(t), t〉 are called
space curves. They are plotted in 3D by making a t, x, y, z table.
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4. Functions of the form f : R2 → R as in f(x, y) = 9 − x2 − y2 often
represent surfaces, temperature, or density. We will use them to study
differential equations. We often graph these as surfaces in 3D or use level
curves (contour plots, isotherms (constant temperature), isobars (constant
pressure) ) to describe these surfaces in 2D.

5. Functions of the form f : R3 → R as in f(x, y, z) = x2 + y2 + z2 are used
to describe temperature, density, or other measurable quantities at every
point in space. We graph with 3D level surfaces.

6. Functions of the form f : R2 → R2 or f : R3 → R3 either represent
vector fields or transformations. Think of polar, cylindrical, or spheri-
cal coordinate. Also think of gravity or some other force field, such as
~F (x, y) = 〈−y, x〉 (counterclockwise rotation) or ~F (x, y, z) = 〈x, y, z〉 (ra-

dial outward force). Graphs of planar vector fields ~F (x, y) = 〈M,N〉 are
made by drawing the vector 〈M,N〉 with its base at (x, y).

7. Functions of the form f : R2 → R3 such as ~r(u, v) =
〈
u, v, 9− u2 − v2

〉
are called parametric surfaces. They are crucial to the development of
electromagnetism and describing surfaces in space. We will not use them
much in this class.

8. Functions of the form f : R3 → R2 such as ~F (t, x, y) = 〈f1, f2〉 were
not studied in multivariable calculus. They will be useful as we study
mechanical systems and electrical networks.

1.3.1 General Derivatives

Recall that to compute partial derivatives, we hold all but one variable constant
and then differentiate with respect to that variable. Partial derivatives can be
organized into a matrix Df where each column represents the partial derivative
of f with respect to each variable. This matrix, called the derivative or total
derivative, takes us into our study of linear algebra. Some examples of functions
and their derivatives appear in Table 1.1. When the output dimension is one,
the matrix has only one row and the derivative is often called the gradient of
f , written ∇f .

In multivariate calculus, we focused our time on learning to graph and an-
alyze each of these types of functions. As a review, I suggest that you practice
drawing each of these types of functions, and remembering how to take their
derivatives.

1.3.2 The General Chain Rule

The chain rule in multivariable calculus is easy to remember if you understand
matrix multiplication. To multiply matrices A and B, the ijth entry of the
matrix is found by dotting the ith row of A by the jth column of B.

Example 1.16. The product of a row matrix and a column matrix is simply
the dot product of two vectors. Notice that the number of columns of the first
matrix must match the number of rows of the second matrix.[

1 2
] [5

6

]
= 〈1, 2〉 · 〈5, 6〉 = 1 · 5 + 2 · 6 = 17

Example 1.17. For larger matrices, the new matrix is found by dotting each
row with each column. The number of the row and the number of the column
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Function Derivative

f(x) = x2 Df(x) = [2x]

~r(t) = 〈3 cos(t), 2 sin(t)〉 D~r(t) =

[
−3 sin t
2 cos t

]

~r(t) = 〈cos(t), sin(t), t〉 D~r(t) =

− sin t
cos t

1


f(x, y) = 9− x2 − y2 Df(x, y) = ∇f(x, y) = [−2x −2y]

f(x, y, z) = x2 + y + xz2 Df(x, y, z) = ∇f(x, y, z) =
[
2x+ z2 1 2xz

]
~F (x, y) = 〈−y, x〉 D~F (x, y) =

[
0 −1
1 0

]

~F (r, θ, z) = 〈r cos θ, r sin θ, z〉 D~F (r, θ, z) =

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1


~r(u, v) =

〈
u, v, 9− u2 − v2

〉
D~r(u, v) =

 1 0
0 1
−2u −2v



Table 1.1: The table above shows the (matrix) derivative of various functions.
Each column of the matrix corresponds a partial derivative of the function.
When the output of a function is a vector, partial derivatives are vectors which
are placed in columns of the matrix. The order of the columns matches the
order in which you list the variables.

is the location of the dot product in the new matrix.

[
1 2
3 4

] [
5 0
6 1

]
=


[
1 2

] [5
6

] [
1 2

] [0
1

]
[
3 4

] [5
6

] [
3 4

] [0
1

]
 =

[
5 + 12 0 + 2
15 + 24 0 + 4

]
=

[
17 2
39 4

]
.

The chain rule in first semester calculus is (f ◦g)′(x) = f ′(g(x))g′(x). Often
we remember “the derivative of the outside function times the derivative of the
inside function.” In multivariable calculus, often the formula df

dt = fxxt + fyyt
is given for a function f(x, y), where x and y depend on t (so that r(t) =
〈x(t), y(t)〉 is a curve traced out in the plane as t increases). Written in matrix
form, the chain rule is

df

dt
=
[
fx fy

] [xt
yt

]
= Df ·Dr,

which is the (matrix) product of the derivatives, just as it was in first semester
calculus.

Example 1.18. Let f(x, y, z) = x2 + 3y + 5z where x = u+ v, y = u− v, and
z = uv. The equations for x, y, and z describe a parametric surface ~r(u, v) =
〈x, y, z〉 = 〈u+ v, u− v, uv〉. The function f ◦ ~r(u, v) describes how f changes
as u or v changes. Hence we can ask what is fu and fv. To find them, we use the
chain rule and multiply the derivatives of f and ~r together. The derivatives of
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f and ~r are Df(x, y, z) =
[
2x 3 5

]
and D~r(u, v) =

1 1
1 −1
v u

. The product

is

D(f ◦ r)(u, v) = DfDr

=
[
2x 3 5

] 1 1
1 −1
v u


=
[
(2x)(1) + (3)(1) + 5(v) (2x)(1) + (3)(−1) + 5(u)

]
=
[
2(u+ v) + 3 + 5v 2(u+ v)− 3 + 5u

]
=
[
fu fv

]

This gives the partial derivatives as fu =
∂f

∂u
= 2(u + v) + 3 + 5v and fv =

∂f

∂v
= 2(u+ v)− 3 + 5u. The chain rule is simply matrix multiplication of the

derivatives of each function.

The chain rule proves the following key fact which we need as we study
differential equations: level curves of a function are orthogonal to the gradient.
If ~r(t) is a level curve of f (meaning f ◦ ~r(t) = c for some constant c) then
D(f ◦r)(t) = 0 since the value never changes, and by the chain rule D(f ◦r)(t) =
DfDr = ∇f · r′(t). Combining these two facts gives ∇f · r′(t) = 0. Since the
dot product of these two vectors is zero, the vectors must be orthogonal. Hence
the gradient of f will be normal to the level curve.

1.4 Gradient Fields, Potentials, Exact Differen-
tial Forms

When the output dimension of a function is one, f : Rn → R1, the derivative
is called the gradient, and written in vector form as ∇f = 〈fx, fy, fz〉. If a

vector field ~F = 〈M,N〉 (or in 3D ~F = 〈M,N,P 〉) is the gradient of some some

function f (so that ∇f = F ), then we say that the vector field ~F is a gradient
field (or conservative vector field), and the function f is called a potential for
~F .

Example 1.19. The gradient of f(x, y) = 9 − x2 − y2 is ∇f = 〈−2x,−2y〉.
This is a vector field ~F = 〈−2x,−2y〉. So a potential for ~F = 〈−2x,−2y〉 is
f = 9− x2 − y2, but another is just f = −x2 − y2.

How do we undo the differentiation process to find a potential? The point
to this section is to review how to recognize when a vector has a potential (is a
conservative vector field), and also how to find a potential.

There is a test you can use to determine if a potential exists (it is often

called the test for a conservative vector field). If ~F is a gradient field, then
~F = 〈fx, fy, fz〉 for some f . Since mixed partials must be equal (meaning
fxy = fyx, fxz = fzx, and fyz = fzy), we can check to see if a vector field has
a potential by checking if all three of the equations My = Nx,Mz = Px, and
Nz = Py hold. If one of these partial derivative pairs does not agree, then the
vector field cannot be a gradient field. If these sets of partial derivatives do
agree, then under reasonable conditions the vector field has a potential.
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Example 1.20. Consider the vector field
〈
x+ yz, y + xz + z2, xy + 2yz + z2

〉
.

We compute
〈x+ yz , y + xz + z2 , xy + 2yz + z2

〉
My = z Nx = z Px = y
Mz = y Nz = x+ 2z Py = x+ 2z

and hence we know this vector field has a potential because My = Nx,Mz = Px,
and Nz = Py. We’ll show how to find a potential in a moment.

The vocabulary of vector fields parallels the vocabulary of differential forms.
A differential form is an expression of the form Mdx+Ndy+Pdz (very similar
to 〈M,N,P 〉). The differential of a function f is the expression df = fxdx +
fydy + fzdz (similar to the gradient). If a differential form is the differential A differential form is exact

precisely when the corresponding
vector field is a gradient field.

of a function f , then the differential form is said to be exact (similar to saying
a vector field is a gradient field). Again, the function f is called a potential
for the differential form. Notice that Mdx+Ndy + Pdz is exact if and only if
~F = 〈M,N,P 〉 is a gradient field. We will be using the language of differential
forms throughout the semester.

Example 1.21. The differential form xdx + zdy + ydz is exact because the
differential of x2/2 + yz is d(x2/2 + yz) = xdx+ zdy + ydz.

Example 1.22. The differential form −ydx+xdy is not exact because My = −1
does not equal Nx = 1.

1.4.1 How do you find a potential?

Consider the function f = x2/2 + xyz+ y2/2 + yz2 + z3/3 + 25. Its differential
is df = (x + yz)dx + (y + xz + z2)dy + (xy + 2yz + z2)dz. If we erase f and
just keep the differential form (x+ yz)dx+ (y+xz+ z2)dy+ (xy+ 2yz+ z2)dz,
can we recover f? The first component x+ yz should equal fx, so integrate it
with respect to x. Similarly, integrate the second component y + xz + z2 with
respect to y and the third component xy + 2yz + z2 wit respect to z. These
three integrals are∫

(x+ yz)dx

∫
(y + xz + z2)dy

∫
(xy + 2yz + z2)dz

=
x2

2
+ xyz =

y2

2
+ xyz + yz2 = xyz + yz2 +

z3

3
.

Notice that each integral contains an xyz term, and the last two integrals both
have a yz2 term. The reason xyz appears in each integral is that it has all three
variables in it, and so its partial derivative with respect to all three variables
is not zero. The yz2 does not appear in the first integral because it has no
x in it, and hence its partial derivative with respect to x is zero. A potential
for f is now obtained by adding together the three integrals, but realizing
that you do not need to replicate the repeated terms. A potential is hence
f(x, y, z) = x2/2+xyz+y2/2+yz2 +z3/3. We did not recover the 25 from the
original function. A potential is not unique; if a potential f exists then f + C
is a potential for any constant C.

Example 1.23. Consider the vector field ~F =
〈
2xy + x, x2 − 3z,−3y + z2

〉
.

Since My = 2x = Nx,Mz = 0 = Px, and Nz = −3 = Py, the field ~F has a
potential. Integrate all three functions simultaneously, ignoring the constants,
to get

∫
Mdx = x2y + x2/2,

∫
Ndy = x2y + −3yz, and

∫
Pdz = −3yz + z3/3.

Since x2y and −3yz appear in multiple integrals, we include them once in the
sum to obtain for a potential f = x2y + x2/2− 3yz + z3/3.
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Example 1.24. Consider the vector field

~F (x, y, z) =

〈
xy + yz + 1,

1

2
x2 + xz − 3z, xy − 3y

〉
.

The test for a conservative vector fields shows My = x + z = Nx,Mz = y =

Px, Nz = x − 3 = Py, which means ~F is conservative. A potential is found by
integrating∫

xy + yz + 1dx

∫
1

2
x2 + xz − 3zdy

∫
xy − 3ydz

=
1

2
x2y + xyz + x =

1

2
x2y + xyz − 3yz = xyz − 3yz.

The term xyz appears in all three, 1
2x

2y appears in the first and second, and
−3yz appears in the last two. A potential is found by summing the terms
(ignoring repeats) to obtain f(x, y, z) = 1

2x
2y + xyz + x− 3yz.
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1.5 Preparation

This chapter covers the following ideas. When you create your lesson plan, it should contain examples which
illustrate these key ideas. Before you take the quiz on this unit, meet with another student out of class and
teach each other from the examples on your lesson plan.

1. Graph basic functions by hand. Compute derivatives and integrals, in particular using the product
rule, quotient rule, chain rule, integration by u-substitution, and integration by parts (the tabular
method is useful for simplifying notation). Explain how to find a Laplace transform.

2. Explain how to verify a function is a solution to an ODE, and illustrate how to solve separable ODEs.

3. Explain how to use the language of functions in high dimensions and how to compute derivatives using
a matrix. Illustrate the chain rule in high dimensions with matrix multiplication.

4. Graph the gradient of a function together with several level curves to illustrate that the gradient is
normal to level curves.

5. Explain how to test if a differential form is exact (a vector field is conservative) and how to find a
potential.

Most days of class we will present in groups some material you have prepared, or work problems similar
to the preparation problems below. Typically there will be 4 problems for each day. Each member of the
group should prepare one of these problems and then in class you will have the opportunity to teach your
group what you have learned as you work through problems. You will occasionally select a problem which is
entirely new to you, which you have never seen modeled before. If this occurs, you should look for examples
similar to this problem in the text, and follow those examples to learn how to do this problem. You will be
exercising your faith to then go and teach the class something you have never before seen modeled, and your
confidence will grow. These problems will normally be the 4th one listed on the preparation problems, so I
suggest that as a group you alternate who takes this problem so that you all get a chance to grow. As time
permits, I will post hand written solutions to these problems on the course website.

Here are the preparation problems for this unit. Problems that come from Schaum’s Outlines are preceded
by a chapter number. The problems that start with an H are located just below this list. Realize that
sometimes the method of solving the problem in Schaum’s Outlines will differ from how we solve the problem
in class.

Preparation Problems (click for handwritten solutions)

Day 1 21.5, 21.29, 4.2, 4.8

Day 2 1.2, 1.7, H.1c, H.2b

Day 3 H.3c, H.4a, H.5b, H.4c

Aside from learning the terms “Laplace Transforms” and “Separable ODEs” (both of which only require
that you practice your integration), this unit contains material which is review material. The amount and
type of reviewing that we each needs to do will be unique. Remember that your homework assignment is to
do enough of each type of problem to master the material we are learning (with a minimum of 7 problems
per day of class). Pick problems that will help you develop your skills. The following problems relate to
what we are studying in class. Section numbers correspond to problems from Schaum’s Outlines Differential
Equations by Rob Bronson. The suggested problems are a minimum set of problems to attempt.

https://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/01-Review-Preparation-Solutions.pdf
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Concept Sec. Suggestions Relevant Problems

Laplace Transforms 21 5,29,38,63 1-6,10,13,27-32,36-38,43,,45,47,48,50,53,63-65

Vocabulary of ODEs 1 2,6,7,26,29,40 1-13,14-54

Separable ODEs 4 2,5,8,26,34,40,43 1-8,23-45 (get lots of practice with integration)

Derivatives and the Chain Rule here 1ace,2abd 1,2

Gradients and Level Curves here 3ace 3

Finding potentials here 4ac, 5bf 4,5

1.6 Problems

1. For each function, graph the function and find its derivative (as a matrix). This reviews the types of
functions you encountered in multivariable calculus. (The Mathematica code online has examples of
all of these).

(a) ~r(t) = 〈3 cos t, 2 sin t〉 , 0 ≤ t ≤ 3π/2

(b) ~r(t) = 〈4 cos t, 3 sin t, 2t〉 , 0 ≤ t ≤ 2π

(c) f(x, y) = 4− x2 − y2, x2 + y2 ≤ 4 (draw both the surface and several level curves)

(d) f(x, y, z) = x2 + y2 + z2 (draw several level surfaces)

(e) ~F (x, y) = 〈−y, x〉 for −3 ≤ x ≤ 3 −3 ≤ y ≤ 3

(f) ~F (x, y, z) = 〈−x,−y,−z〉 for −2 ≤ x ≤ 2,−2 ≤ y ≤ 2,−2 ≤ z ≤ 2

(g) ~r(u, v) = 〈u cos v, u sin v, u〉 for 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π.

2. Use the chain rule with matrix multiplication to find the following derivatives.

(a) Find df
dt if f(x, y) = x2y and x = cos t, y = sin t.

(b) Find fu and fv if f(x, y) = 3x− 4y and x = 2u− v, y = 6uv.

(c) Find fr and fθ if f(x, y) = 9− x2 − y2 and x = r cos θ, y = r sin θ.

(d) Find ~ru and ~rv if ~r(x, y) =
〈
x, y, x2 − y

〉
and x = 2u− v, y = 6uv.

(e) Find ~Fr and ~Fθ if ~F (x, y) = 〈−y, x〉 and x = r cos θ, y = r sin θ.

(f) Find fr, fθ, and fz if ~f(x, y, z) = x2 + 4yz and x = r cos θ, y = r sin θ, z = z (cylindrical coordi-
nates).

3. For each of the following functions, construct a graph which contains both the gradient and several
level curves (Try using the code in Mathematica to help you check your work).

(a) f(x, y) = x+ 2y

(b) f(x, y) = −x+ 2y

(c) f(x, y) = x2 + y

(d) f(x, y) = x2 − y
(e) f(x, y) = x+ y2

(f) f(x, y) = x− y2

4. For each of the following vector fields, use the test for a conservative vector field to determine if the
vector field has a potential. If it has a potential, then find a potential.

(a) ~F (x, y) = 〈4x+ 5y, 5x+ 6y〉
(b) ~F (x, y) = 〈2x− y, x+ 2y〉

(c) ~F (x, y) =
〈
e3x + e2y, 2xe2y − 1

1+y2

〉
(d) ~F (x, y) = 〈4x+ 5y, 5x+ 6y〉

(e) ~F (x, y, z) = 〈x+ y + z, x+ y + z, x+ y + z〉

(f) ~F (x, y, z) = 〈3y + yz, 3x+ xz + 2y + 5z, zy + 5y〉
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5. For each of the following differential forms, test to see if the differential form is exact. If it is exact,
find a function whose differential is the differential form.

(a) (4x+ 5y)dx+ (5x+ 6y)dy

(b) (2x− y)dx+ (x+ 2y)dy

(c) (e3x + e2y)dx+ (2xe2y − 1
1+y2 )dy

(d) (4x+ 5y)dx+ (5x+ 6y)dy

(e) (x+ y + z)dx+ (x+ y + z)dy + (x+ y + z)dz

(f) (x+ 3y + yz)dx+ (3x+ xz + 2y + 5z)dy + (zy + 5y + 4z)dz

1.7 Solutions

The solutions to problems from Schaum’s Outlines are self contained. Hand written solutions to all these
problems are available online. Click for the solutions

https://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/01-Review-Preparation-Solutions.pdf


Chapter 2

Linear Algebra Arithmetic

This chapter covers the following ideas.

1. Be able to use and understand matrix and vector notation, addition, scalar
multiplication, the dot product, matrix multiplication, and matrix trans-
posing.

2. Use Gaussian elimination to solve systems of linear equations. Define and
use the words homogeneous, nonhomogeneous, row echelon form, and
reduced row echelon form.

3. Find the rank of a matrix. Determine if a collection of vectors is linearly
independent. If linearly dependent, be able to write vectors as linear
combinations of the preceding vectors.

4. For square matrices, compute determinants, inverses, eigenvalues, and
eigenvectors.

5. Illustrate with examples how a nonzero determinant is equivalent to hav-
ing independent columns, an inverse, and nonzero eigenvalues. Similarly
a zero determinant is equivalent to having dependent columns, no inverse,
and a zero eigenvalue.

The next unit will focus on applications of these ideas. The main goal of this
unit is to familiarize yourself with the arithmetic involved in linear algebra.

2.1 Basic Notation

Most of linear algebra centers around understanding matrices and vectors. The
first chapter of this text contains a brief introduction to the arithmetic involved
with matrices and vectors. The second chapter will show you many of the uses
of the ideas we are learning. You will be given motivation for all of the ideas
learned here, as well as real world applications of these ideas, before the end of
the second chapter. For now, I want you become familiar with the arithmetic
of linear algebra so that we can discuss how all of the ideas in this chapter show
up throughout the course.

2.1.1 Matrices

A matrix of size m by n has m rows and n columns. We normally write Matrix size is
row by column.

14
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matrices using capital letters, and use the notation

A =


a11 · · · a1n

a21 · · · a2n

...
. . .

...
am1 · · · amn

 = [ajk],

where ajk is the entry in the jth row, kth column.
We say two matrices A and B are equal if ajk = bjk for all j and k. We

add and subtract matrices of the same size entry wise, and perform scalar
multiplication cA by multiplying every entry in the matrix by the scalar c. If the
number of rows and columns are equal, then we say the matrix is square. The
main diagonal of a square (n×n) matrix consists of the entries a11, a22, . . . , ann,
and the trace is the sum of the entries on the main diagonal (

∑
ajj).

Example 2.1. If A =

[
1 3
0 2

]
and B =

[
3 −1
0 4

]
, then

A− 2B =

[
1− 2 · 3 3− 2 · (−1)
0− 2 · 0 2− 2 · 4

]
=

[
−5 5
0 −6

]
.

The main diagonal of B consists of the entries b11 = 3 and b22 = 4, which means
the trace of B is 3 + 4 = 7 (the sum of the entries on the main diagonal).

The transpose of a matrix A = [ajk] is a new matrix AT = [akj ] formed by transpose

interchaning the rows and columns.

Example 2.2. The transpose of A is illustrated below.

A =

[
0 1 −1
1 0 2

]
AT =

 0 1
1 0
−1 2

 .

2.1.2 Vectors

Vectors represent a magnitude in a given direction. We can use vectors to
model forces, acceleration, velocity, probabilities, electronic data, and more.
We can use matrices to represent vectors. A row vector is a 1 × n matrix. A
column vector is an m×1 matrix. Textbooks often write vectors using bold face
font. By hand (and in this book) we add an arrow above them. The notation
v = ~v = 〈v1, v2, v3〉 can represent either row or column vectors. Many different
ways to represent vectors are used throughout different books. In particular,
we can represent the vector 〈2, 3〉 in any of the following forms

〈2, 3〉 = 2i + 3j = (2, 3) =
[
2 3

]
=

[
2
3

]
=
(
2 3

)
=

(
2
3

)
The notation (2, 3) has other meanings as well (like a point in the plane, or
an open interval), and so when you use the notation (2, 3), it should be clear
from the context that you working with a vector. To draw a vector 〈v1, v2〉, one

Both vectors represent 〈2,−3〉,
regardless of where we start.

option is to draw an arrow from the origin (the tail) to the point (v1, v2) (the
head). However, the tail does not have to be placed at the origin.

The principles of addition and subtraction of matrices apply to vectors
(which can be though of as row or column matrices). For example 〈1, 3〉 −
2 〈−1, 2〉+ 〈4, 0〉 = 〈1− 2(−1) + 4, 3− 2(2) + 0〉 = 〈7,−1〉. We will often write
vectors using column notation as in[

1
3

]
− 2

[
−1
2

]
+

[
4
0

]
=

[
1− 2(−1) + 4
3− 2(2) + 0

]
=

[
7
−1

]
.
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Vector addition is performed geometrically by placing the tail of the second Vector Addition

~u

~v

~v

~u+ ~v

Scalar Multiplication

~u

2~u

− 1
2
~u

Vector Subtraction

~u

~v

−~v

~u− ~v

~u− ~v

vector at the head of the first. The resultant vector is the vector which starts
at the tail of the first and ends at the head of the second. This is called the
parallelogram law of addition. The sum 〈1, 2〉 + 〈3, 1〉 = 〈4, 3〉 is illustrated to
the right.

Scalar multiplication c~u (c is a scalar and ~u is a vector) is equivalent to
stretching (scaling) a vector by the scalar. The product 2~u doubles the length
of the vector. If the scalar is negative then the vector turns around to point in
the opposite direction. So the product − 1

2~u is a vector half as long as ~u, and
pointing in the opposite direction (as illustrated on the right).

To subtract to vectors ~u−~v, we use scalar multiplication and vector addition.
We write ~u − ~v = ~u + (−~v), which means we turn ~v around and then add it
to ~u. The same parallelogram law of addition applies geometrically, however
the result ~u − ~v can be seen as the vector connecting the heads of the two
vectors when their tails are both placed on the same spot, with the direction
pointing towards the head of ~u. When I see a vector difference ~u − ~v, I like
to think “head minus tail” to help remind me that the head of ~u − ~v is at the
tip of ~u whereas the tail of the difference is at the head of ~v. The difference
〈1, 2〉 − 〈3, 1〉 = 〈−2, 1〉 is illustrated to the right.

2.1.3 Magnitude and the Dot Product

The length of a vector is found using the Pythagorean theorem: c2 = a2 + b2.
The magnitude (or length) of the vector 〈2, 3〉 is simply the hypotenuse of a
triangle with side lengths 2 and 3, hence | 〈2, 3〉 | =

√
22 + 32 =

√
13. We

denote magnitude with absolute value symbols, and compute for ~u = (u1, u2)
the magnitude as |~u| =

√
u2

1 + u2
2. In higher dimensions we extend this as

|~u| =
√
u2

1 + u2
2 + u2

3 + · · ·u2
n =

√√√√ n∑
i=1

u2
i .

A unit vector is a vector with length 1. In many books unit vectors are A unit vector û has length |~u| = 1

written with a hat above them, as û. Any vector that is not a unit vector
can be rewritten as a scalar times a unit vector, by dividing the vector by its
magnitude. This allows us to write any vector as a magnitude times a direction
(unit vector).

Example 2.3. The length of ~u = 〈2, 1,−3〉 is
√

22 + 12 + (−3)2 =
√

4 + 1 + 9 =
√

14. A unit vector in the direction of ~u is
1√
14
〈2, 1,−3〉 =

〈
2√
14
,

1√
14
,
−3√
14

〉
.

We can rewrite ~u as a magnitude times a direction by writing Every vector can be rewritten as
a magnitude times direction (unit
vector).

~u = |~u| ~u
|~u|

=
√

14

〈
2√
14
,

1√
14
,
−3√

14

〉
.

The dot product of two vectors ~u = 〈u1, u2, . . . , un〉 and ~v = 〈v1, v2, . . . , vn〉
is the scalar ~u · ~v = u1v1 + u2v2 + · · · + unvn =

∑
uivi. Just multiply corre-

sponding components and then add the products.

Example 2.4. The dot product of
[
1 3 −2

]
and

[
2 −1 4

]
is[

1 3 −2
]
·
[
2 −1 4

]
= (1)(2) + (3)(−1) + (−2)(4) = −9.

We use the dot product to find lengths and angles in all dimensions. We
will also use it multiply matrices. The rest of this section explains how to use
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the dot product to find lengths and angles, and is included for completeness.
We will revisit the dot product more in later chapters. Notice that if ~u =
〈u1, u2, . . . , un〉, then we can find the length of a vector using the dot product
since The dot product finds length:

~u · ~u = |~u|2~u · ~u = u2
1 + u2

2 + u2
3 + · · ·u2

n =

n∑
i=1

u2
i = |~u|2.

If θ is the angle between 2 vectors ~u and ~v, then we can find the angle between
these two vectors using The dot product finds angles:

~u · ~v = |~u||~v| cos θ~u · ~v = |~u||~v| cos θ.

This follows from the law of cosines c2 = a2 + b2 − 2ab cos θ, where a = |~u|,
b = |~v|, and c = |~u− ~v|. Because the dot product is equal to the square of the Law of Cosines

c2 = a2 + b2 − 2ab cos θ

a = |~u|

b = |~v|

c = |~u− ~v|

θ

magnitude, we have

(~u− ~v) · (~u− ~v) = ~u · ~u+ ~v · ~v − 2|~u||~v| cos θ.

Distributing on the left gives

~u · ~u− 2~u · ~v + ~v · ~v = ~u · ~u+ ~v · ~v − 2|~u||~v| cos θ.

Now cancel the common terms on both sides and divide by 2 to obtain our
formula ~u · ~v = |~u||~v| cos θ. This formula geometrically explains how to connect
the dot product to angles in both 2 and 3 dimensions. In higher dimensions we
can now define the angle between two vectors using this formula.

If two vectors meet at a 90 degree angle, then cos 90◦ = 0. This means that
~u · ~v = |~u||~v|0 = 0, so the dot product is zero. Similarly, if the dot product is
zero then 0 = ~u · ~v = |~u||~v| cos θ, so either one of the vectors has zero length,
or the angle between them is zero. We say that ~u and ~v are orthogonal if their
dot product is zero. Two lines are perpendicular when the angle between then orthogonal = dot product is zero

is 90 degrees. Two vectors are orthogonal when either the angle between them
is zero, or one of the vectors is the zero vector.

2.2 Multiplying Matrices

2.2.1 Linear Combinations

The simplest vectors in 2D are a one unit increment in either the x or y direction,
and we write these vectors in any of the equivalent forms i =~i = 〈1, 0〉 = (1, 0)
and j = ~j = 〈0, 1〉 = (0, 1). We call these the standard basis vectors in 2D. In
3D we include the vector k = ~j = 〈0, 0, 1〉 as well as add a zero to both~i and ~j to
obtain the standard basis vectors. A similar idea is used in higher dimensions. The standard basis vectors in 3D

i =~i = 〈1, 0, 0〉 = (1, 0, 0)

j = ~j = 〈0, 1, 0〉 = (0, 1, 0)

k = ~k = 〈0, 0, 1〉 = (0, 0, 1)

The word basis suggests that we can base other vectors on these basis vectors,
and we typically write other vectors in terms of these standard basis vectors.
Using only scalar multiplication and vector addition, we can obtain the other
vectors in 2D from the standard basis vectors. For example we can write

〈a, b〉 = a 〈1, 0〉+ b 〈0, 1〉 = a~i+ b~j.

The entries of a row or column vector are called the coordinates of the vector
relative to the standard basis, or just the components of the vector. Notice that
we scaled the vectors~i and ~j, and then summed the results. This is an example
of a linear combination.

A linear combination of vectors ~v1, ~v2, . . . , ~vn is an expression of the form
c1~v1 + c2~v2 + . . .+ cn~vn, where ci is a constant for each i. A linear combination
of vectors is simply a sum of scalar multiples of the vectors. We start with
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some vectors, stretch each one by some scalar, and then sum the result. Much
of what we will do this semester (and in many courses to come) relates directly
to understanding linear combinations.

Example 2.5. Let’s look at a physical application of linear combinations that
you use every day when you drive. When you place your foot on the accelerator
of your car, the car exerts a force ~F1 pushing you forward. When you turn the
steering wheel left, the car exerts a force ~F2 pushing you left. The total force
acting on you is the vector sum of these forces, or a linear combination ~Ftotal =
~F1 + ~F2. If ~T represents a unit vector pointing forward, and ~N represents a unit
vector pointing left, then we can write the total force as the linear combination

~Ftotal = |~F1|~T + |~F2| ~N.

To understand motion, we can now focus on finding just the tangential force
~T and normal force ~N , and then we can obtain other forces by just looking at
linear combinations of these two.

2.2.2 Matrix Multiplication

One of the key applications of linear combinations we will make throughout the
semester is matrix multiplication. Let’s introduce the idea with an example.

Example 2.6. Consider the three vectors

1
0
1

,

 0
2
−3

, and

2
1
1

. Let’s multiply

the first vector by 2, the second by -1, and the third by 4, and then sum the
result. This gives us the linear combination

2

1
0
1

− 1

 0
2
−3

+ 4

2
1
1

 =

10
2
9


We will define matrix multiplication so that multiplying a matrix on the right by
a vector corresponds precisely to creating a linear combination of the columns
of A. We now write the linear combination above in matrix form1 0 2

0 2 1
1 −3 1

 2
−1
4

 =

10
2
9

 .
We define the matrix product A~x (a matrix times a vector) to be the linear Matrix multiplication A~x

combination of columns of A where the components of ~x are the scalars in the
linear combination. For this to make sense, notice that the vector ~x must have
the same number of entries as there are columns in A. Symbolically, let ~vi be

the ith column of A so that A =
[
~a1 ~a2 · · · ~an

]
, and let ~x =


x1

x2

. . .
xn

. Then

the matrix product is the linear combination The product A~x gives us linear
combinations of the columns of A.

A~x =
[
~a1 ~a2 · · · ~an

] 
x1

x2

. . .
xn

 = ~a1x1 + ~a2x2 + · · ·+ ~anxn.

This should look like the dot product. If you think of A as a vector of vectors,
then A~x is just the dot product of A and ~x.
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We can now define the product of two matrices A and B. Let ~bj represent Matrix multiplication AB

the jth column of B (so B =
[
~b1 ~b2 · · · ~bn

]
). The product AB of two

matrices Am×n and Bn×p is a new matrix Cm×p = [cij ] where the jth column

of C is the product A~bj . To summarize, the matrix product AB is a new matrix
whose jth column is a linear combinations of the columns of A using the entries
of the jth column of B to perform the linear combinations. We need some
examples.

Example 2.7. A row matrix times a column matrix is equivalent to the dot
product of the two when treated as vectors.

[
1 2

] [5
6

]
=
[
1 · 5 + 2 · 6

]
=
[
17
]

Example 2.8. In this example the matrix A has 3 rows, so the product should
have three rows. The matrix B has 2 columns so we need to find 2 different
linear combinations giving us 2 columns in the product.1 2

3 4
5 6

[−2 0
1 3

]
=

1
3
5

 (−2) +

2
4
6

 (1)

 1
3
5

 (0) +

2
4
6

 (3)

 =

 0
−2
−4

6
12
18


Example 2.9. Note that AB and BA are usually different.

A =

[
1
2

]
B =

[
3 4

]
AB =

[
3 4
6 8

]
BA = [11]

Even if the product CD is defined, the product DC does not have to be. In
this example D has 3 columns but C has only 2 rows, and hence the product
DC is not defined (as you can’t form a linear combination of 3 vectors with
only 2 constants).

C =

[
1 2
3 4

]
D =

[
0 1 −1
1 0 2

]
CD =

[
2 1 3
4 3 5

]
DC is undefined

The identity matrix is a square matrix which has only 1’s along the diagonal, The identity matrix behaves like
the number 1, in that
AI = IA = A.

and zeros everywhere else. We often use In to mean the n by n identity matrix.
The identity matrix is like the number 1, in that AI = A and IA = A for any
matrix A. If A is a 2 by 3 matrix, then AI3 = A and I2A = A (notice that the
size of the matrix changes based on the order of multiplication. If A is a square
matrix, then AI = IA = A.

2.2.3 Alternate Definitions of Matrix Multiplication

I have introduced matrix multiplication in terms of linear combinations of vec-
tors. My hope is that by doing so you immediately start thinking of linear
combinations whenever you encounter matrix multiplication (as this is what
it was invented to do). There are many alternate ways to think of matrix
multiplication. Here are two additional methods. Table 2.1 illustrates all three.

1. “Row times column approach.” The product AB of two matrices Am×n
and Bn×p is a new matrix Cm×p = [cij ] where cij =

∑n
k=1 aikbkj is the

dot product of the of the ith row of A and the jth column of B. Wikipedia
has an excellent visual illustration of this approach.
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Linear combinations of columns of A using columns of B.1 2
3 4
5 6

[−2 0
1 3

]
=

1
3
5

 (−2) +

2
4
6

 (1)

 1
3
5

 (0) +

2
4
6

 (3)

 =

 0
−2
−4

6
12
18


Rows of A dotted by columns of B.

1 2
3 4
5 6

[−2 0
1 3

]
=



[
1 2

] [−2
1

]
[
3 4

] [−2
1

]
[
5 6

] [−2
1

]
[
1 2

] [0
3

]
[
3 4

] [0
3

]
[
5 6

] [0
3

]

 =

 0
−2
−4

6
12
18



Use rows of A to form linear combinations of rows of B.1 2
3 4
5 6

[−2 0
1 3

]
=

1
[
−2 0

]
+ (2)

[
1 3

]
3
[
−2 0

]
+ (4)

[
1 3

]
5
[
−2 0

]
+ (6)

[
1 3

]
 =

 0
−2
−4

6
12
18


Table 2.1: Three ways to view matrix multiplication.

2. Rephrase everything in terms of rows (instead of columns). We form
linear combinations of rows using rows. The matrix product ~xB (notice
the order is flopped) is a linear combination of the rows of B using the
components of x as the scalars. For the product AB, let ~ai represent the
ith row of A. Then the ith row of AB is the product ~aiB. We’ll use the
column definition because we use the function notation f(x) from calculus,
and later we will use the notation A(~x) instead of (~x)A to describe how
matrices act as functions.

2.3 Linear Systems of Equations

A linear system of equations, such as

2x+ y − z = 2
x− 2y = 3

4y + 2z = 1
,

is a system of equations where each variable in the system appears in its own
term and is multiplied by at most a constant (called a coefficient). Rather than
using x, y, z, we’ll often use x1, x2, x3 which allows us to generalize systems to
higher dimensions. If we let ~vi be a vector whose components are the constants
next to xi, then every linear system can be written in terms of linear combina-
tions, i.e. x1~v1 + x2~v2 + x3~v3 = ~b. Similarly, we can write a linear system in
terms of matrix multiplication A~x = ~b, where the columns of A are the vectors
~v1, ~v2, ~v3. The matrix A is called the coefficient matrix of the linear system of coefficient matrix

equations. Adding the column vector ~b to the right of A gives what we call an
augmented matrix (where often a dashed or solid line is placed in the matrix augmented matrix

to remind us of the equal sign). These four ways of representing a system are
illustrated in Table 2.2
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x1, x2, x3 system linear combination vector equation

2x1 + x2 − x3 = 2
x1 − 2x2 = 3

4x2 + 2x3 = 1
x1

2
1
0

+ x2

 1
−2
4

+ x3

−1
0
2

 =

2
3
1


matrix equation augmented matrix2 1 −1

1 −2 0
0 4 2

x1

x2

x3

 =

2
3
1

 2 1 −1 2
1 −2 0 3
0 4 2 1


Table 2.2: Four equivalent ways to represent a system of equations.

Let’s add some geometry to the discussion. A linear equation in two vari-
ables ax+ by = c graphically represents a line. A linear equation in 3 variables
ax + by + cz = d represents a plane in space. A system of equations with two
variables represents multiple lines in the plane. A solution to such a system
is the intersection of the lines. In our 3D system above, a solution graphically
represents the intersection of three planes. Three planes can intersect in any of
the following ways.

1. One solution - The three planes intersect in a single point.

2. Infinitely many solutions

(a) The three planes all in a line - so there is a line of solutions.

(b) The three equations all represent the same plane - so there is a plane
of solutions.

3. No solution - two of the planes are parallel and never intersect.

When we look at a 2D system of equations, we can have the same three possibil-
ities. The lines may intersect in a single point (one solution), the lines may all A system of equations can have a

unique solution, infinitely many
solutions, or no solution.

represent the same line (infinitely many solutions), or the lines may be parallel
and never intersect (no solution). In 2D and 3D we can geometrically see that
there will always one, infinitely many, or no solutions. With any system of lin-
ear equations regardless of the number of equations and number of unknowns,
this pattern continues. There will always be either a single solution, infinitely
many solutions, or no solution. Systems with solutions are called consistent, consistent system - has a solution

whereas systems without solutions are called inconsistent. For a linear system
A~x = ~b, we say that the system is a homogeneous system if ~b = ~0. If ~b 6= 0, we homogeneous system - A~x = ~0

say the system is nonhomogeneous.

2.3.1 Gaussian Elimination

Gaussian elimination is an efficient algorithm we will use to solve systems of
equations. This is the same algorithm implemented on most computers systems.
The main idea is to eliminate each variable from all but one equation/row
(if possible), using at the following three operations (called elementary row
operations):

1. Multiply an equation (or row of a matrix) by a nonzero constant,

2. Add a nonzero multiple of any equation (or row) to another equation,

3. Interchange two equations (or rows).
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These three operations are the operations learned in college algebra when solv-
ing a system using a method of elimination. Gaussian elimination streamlines
elimination methods to solve generic systems of equations of any size. The
process involves a forward reduction and (optionally) a backward reduction.
The forward reduction creates zeros in the lower left corner of the matrix. The
backward reduction puts zeros in the upper right corner of the matrix. We
eliminate the variables in the lower left corner of the matrix, starting with col-
umn 1, then column 2, and proceed column by column until all variables which
can be eliminated (made zero) have been eliminated. Before formally stating
the algorithm, let’s look at a few examples.

Example 2.10. Let’s start with a system of 2 equations and 2 unknowns. I
will write the augmented matrix representing the system as we proceed. To
solve

x1 − 3x2 = 4
2x1 − 5x2 = 1

[
1 −3 4
2 −5 1

]
we eliminate the 2x1 in the 2nd row by adding -2 times the first row to the
second row.

x1 − 3x2 = 4
x2 = −7

[
1 −3 4
0 1 −7

]
The matrix at the right is said to be in row echelon form. This means that row echelon form

• each nonzero row begins with a 1 (called a leading 1),

• the leading 1 in a row occurs further right than a leading 1 in the row
above, and

• any rows of all zeros appear at the bottom.

The position in the matrix where the leading 1 occurs is called a pivot. The
column containing a pivot is called a pivot column. At this point we can pivot column

use “back-substitution” to get x2 = −7 and x1 = 4 + 3x2 = 4 − 21 = −17.
Alternatively, we can continue the elimination process by eliminating the terms
above each pivot, starting on the right and working backwards. This will result
in a matrix where all the pivot columns contain all zeros except for the pivot.
If we add 3 times the second row to the first row, we obtain.

x1 = −17
x2 = −7

[
1 0 −17
0 1 −7

]
The matrix on the right is said to be in reduced row echelon form (or just
rref). A matrix is in reduced row echelon form if reduced row echelon form - rref

• the matrix is in echelon form, and

• each pivot column contains all zeros except for the pivot (leading one).

You can easily read solutions to systems of equations directly from a matrix
which is in reduced row echelon form.

We can interpret the solution x1 = −17, x2 = −7 in multiple ways. It is
the point (−17,−7) where the two lines x− 3y = 4 and 2x− 5y = 1 intersect.
We also know that the only way to obtain a solution to the vector equation

c1

[
1
2

]
+ c2

[
−3
−5

]
=

[
4
1

]
is to let c1 = −17 and c2 = −7, which shows us that

(4, 1) is a linear combination of the vectors (1, 2) and (−3,−5). In addition, the

only solution to the matrix equation

[
1 −3
2 −5

] [
x1

x2

]
=

[
4
1

]
is

[
x1

x2

]
=

[
−17
−7

]
. Row reduction helps us

understand systems, vector
equations, and matrix equations.Notice that solving this system of equations tells us information about graphical

intersections, linear combination of vectors, and multiplication of matrices.
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Example 2.11. Let’s now solve a nonhomogeneous (meaning the right side is
not zero) system with 3 equations and 3 unknowns:

2x1 + x2 − x3 = 2
x1 − 2x2 = 3

4x2 + 2x3 = 1

2 1 −1 2
1 −2 0 3
0 4 2 1

 .
We’ll encounter some homogeneous systems later on. To simplify the writing,
we’ll just use matrices this time. To keep track of each step, I will write the
row operation next to the row I will replace. Remember that the 3 operations
are (1)multiply a row by a nonzero constant, (2)add a multiple of one row to
another, (3) interchange any two rows. If I write R2 +3R1 next to R2, then this
means I will add 3 times row 1 to row 2. If I write 2R2 −R1 next to R2, then
I have done two row operations, namely I multiplied R2 by 2, and then added
(-1) times R1 to the result (replacing R2 with the sum). The steps below read
left to right, top to bottom. In order to avoid fractions, I wait to divide until
the last step, only putting a 1 in each pivot at the very end.

⇒(1)

2 1 −1 2
1 −2 0 3
0 4 2 1

 2R2 −R1 ⇒(2)

2 1 −1 2
0 −5 1 4
0 4 2 1


5R3 + 4R2

⇒(3)

2 1 −1 2
0 −5 1 4
0 0 14 21


R3/7

⇒(4)

2 1 −1 2
0 −10 2 8
0 0 2 3

 2R1 +R3

R2 −R3

⇒(5)

4 2 0 7
0 −10 0 5
0 0 2 3

 R2/5 ⇒(6)

4 2 0 7
0 −2 0 1
0 0 2 3

 R1 +R2

⇒(7)

4 0 0 8
0 −2 0 1
0 0 2 3

 R1/4
R2/− 2
R3/2

⇒(8)

1 0 0 2
0 1 0 −1/2
0 0 1 3/2


Writing the final matrix in terms of a system, we have the solution x1 = 2, x2 =
−1/2, x3 = 3/2. Remember that this tells us (1) where three planes intersect,

(2) how to write the 4th column ~b in our original augmented matrix as a linear
combination of the columns of the coefficient matrix A, and (3) how to solve

the matrix equation A~x = ~b for ~x.

The following steps describe the Gaussian elimination algorithm that we
used above. Please take a moment to compare what is written below with the
example above. Most of the problems in this unit can be solved using Gaussian
elimination, so we will practice it as we learn a few new ideas.

1. Forward Phase (row echelon form) - The following 4 steps should be re-
peated until you have mentally erased all the rows or all the columns. In
step 1 or 4 you will erase a column and/or row from the matrix.

(a) Consider the first column of your matrix. Start by interchanging Computer algorithms place the
largest (in absolute value)
nonzero entry in the first row.
This reduces potential errors due
to rounding that can occur in
later steps.

rows (if needed) to place a nonzero entry in the first row. If all the
elements in the first column are zero, then ignore that column in
future computations (mentally erase the column) and begin again
with the smaller matrix which is missing this column. If you erase
the last column, then stop.
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(b) Divide the first row (of your possibly smaller matrix) row by its
leading entry so that you have a leading 1. This entry is a pivot,
and the column is a pivot column. [When doing this by hand, it is
often convenient to skip this step and do it at the very end so that
you avoid fractional arithmetic. If you can find a common multiple
of all the terms in this row, then divide by it to reduce the size of
your computations. ]

(c) Use the pivot to eliminate each nonzero entry below the pivot, by
adding a multiple of the top row (of your smaller matrix) to the
nonzero lower row.

(d) Ignore the row and column containing your new pivot and return Ignoring rows and columns is
equivalent to incrementing row
and column counters in a
computer program.

to the first step (mentally cover up or erase the row and column
containing your pivot). If you erase the last row, then stop.

2. Backward Phase (reduced row echelon form - often called Gauss-Jordan
elimination) - At this point each row should have a leading 1, and you
should have all zeros to the left and below each leading 1. If you skipped
step 2 above, then at the end of this phase you should divide each row by
its leading coefficient to make each row have a leading 1.

(a) Starting with the last pivot column. Use the pivot in that column
to eliminate all the nonzero entries above it, by adding multiples of
the row containing the pivot to the nonzero rows above.

(b) Work from right to left, using each pivot to eliminate the nonzero
entries above it. Nothing to the left of the current pivot column
changes. By working right to left, you greatly reduce the number of
computations needed to fully reduce the matrix.

Example 2.12. As a final example, let’s reduce


0 1 1 −2 7
1 3 5 1 6
2 0 4 3 −8
−2 1 −3 0 5

 to

reduced row echelon form (rref). The first step involves swapping 2 rows. We
swap row 1 and row 2 because this places a 1 as the leading entry in row 1.

(1) Get a nonzero entry in upper left (2) Eliminate entries in 1st column

⇒


0 1 1 −2 7
1 3 5 1 6
2 0 4 3 −8
−2 1 −3 0 5


R1 ↔ R2

⇒


1 3 5 1 6
0 1 1 −2 7
2 0 4 3 −8
−2 1 −3 0 5

 R3 − 2R1

R4 + 2R1

(3) Eliminate entries in 2nd column (4) Make a leading 1 in 4th column

⇒


1 3 5 1 6
0 1 1 −2 7
0 −6 −6 1 −20
0 7 7 2 17

 R3 + 6R2

R4 − 7R2

⇒


1 3 5 1 6
0 1 1 −2 7
0 0 0 −11 22
0 0 0 16 −32

 R3/(−11)
R4/16

(5) Eliminate entries in 4th column (6) Row Echelon Form

⇒


1 3 5 1 6
0 1 1 −2 7
0 0 0 1 −2
0 0 0 1 −2


R4 −R3

⇒


1 3 5 1 6
0 1 1 −2 7
0 0 0 1 −2
0 0 0 0 0


At this stage we have found a row echelon form of the matrix. Notice that we
eliminated nonzero terms in the lower left of the matrix by starting with the
first column and working our way over column by column. Columns 1, 2, and
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4 are the pivot columns of this matrix. We now use the pivots to eliminate the
other nonzero entries in each pivot column (working right to left). Recall that a matrix is in reduced

row echelon (rref) if:

1. Nonzero rows begin with a
leading 1.

2. Leadings 1’s on subsequent
rows appear further right
than previous rows.

3. Rows of zeros are at the
bottom.

4. Zeros are above and below
each pivot.

(7) Eliminate entries in 4th column (8) Eliminate entries in 2nd column

⇒


1 3 5 1 6
0 1 1 − 2 7
0 0 0 1 −2
0 0 0 0 0


R1 −R3
R2 + 2R3 ⇒


1 3 5 0 8
0 1 1 0 3
0 0 0 1 −2
0 0 0 0 0


R1 − 3R2

(9) Reduced Row Echelon Form (10) Switch to system form

⇒


1 0 2 0 −1
0 1 1 0 3
0 0 0 1 −2
0 0 0 0 0

 ⇒

x1 + 2x3 = −1
x2 + x3 = 3

x4 = −2
0 = 0

We have obtained the reduced row echelon form. When we write this matrix
in the corresponding system form, notice that there is not a unique solution to
the system. Because the third column did not contain a pivot column, we can
write every variable in terms of x3 (the redundant equation x3 = x3 allows us
to write x3 in terms of x3). We are free to pick any value we want for x3 and
still obtain a solution. For this reason, we call x3 a free variable, and write our Free variables correspond to non

pivot columns. Solutions can be
written in terms of free variables.

infinitely many solutions in terms of x3 as

x1 = −1− 2x3

x2 = 3− x3

x3 = x3

x4 = −2

or by letting x3 = t

x1 = −1− 2t
x2 = 3− t
x3 = t
x4 = −2

.

By choosing a value (such as t) for x3, we can write our solution in so called parametric form

parametric form. We have now given a parametrization of the solution set,
where t is an arbitrary real number.

2.3.2 Reading Reduced Row Echelon Form - rref

From reduced row echelon form you can read the solution to a system imme-
diately from the matrix. Here are some typical examples of what you will see
when you reduce a system that does not have a unique solution, together with
their solution. The explanations which follow illustrate how to see the solution
immediately from the matrix.1 2 0 1

0 0 1 3
0 0 0 0

 [
1 0 4 −5
0 1 −2 3

] 1 0 2 0
0 1 −3 0
0 0 0 1


(1− 2x2, x2, 3) (−5− 4x3, 3 + 2x3, x3) no solution,0 6= 1

Example 2.13. In the first example, columns 1 and 3 are the pivot columns.
Since column 2 is not a pivot column, we’ll let x2 be a free variable and write
the solution in terms of x2. Rewriting the first matrix in system form yields
x1 + 2x2 = 1, x3 = 3, or solving for each variable in terms of x2 we have
x1 = 1 − x2, x3 = 3. Adding to this system the redundant equation x2 = x2,

we have in vector form

x1

x2

x3

 =

1− 2x2

x2

3

 =

1
0
3

 + x2

−2
1
0

. Sometimes it’s

useful to use a different variable, such as x2 = t, and then write the solution in
parametric form as (x1, x2, x3) = (1−2t, t, 3), where t is any real number. This
solution is a line in space.
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Example 2.14. In the second example, the first and second columns are pivot
columns, so x3 is a free variable. The solution can be written in the formx1

x2

x3

 =

−5− 4x3

3 + 2x3

x3

 =

−5
3
0

 + x3

−4
2
1

. Again the last column appears in

the solution, and then the opposite of the third column together with a 1 in the
third spot gives us the vector which is multiplied by x3.

Example 2.15. In the third example, the first, second, and fourth columns
are pivot columns. Because the last column is a pivot column, we obtain the
equation 0 = 1, which is absurd. Hence the system is inconsistent and has no
solution.

Example 2.16. The ideas above generalize to higher dimensions. Here are two
large rref matrices and their solutions.

0 1 0 2 0 0
0 0 1 3 0 1
0 0 0 0 1 4
0 0 0 0 0 0



x1

x2

x3

x4

x5

 =


0
0
1
0
4

+ x1


1
0
0
0
0

+ x4


0
−2
−3
1
0




0 1 0 2 0 0 0
0 0 1 3 0 1 0
0 0 0 0 1 4 0
0 0 0 0 0 0 0



x1

x2

x3

x4

x5

x6

 =


0
0
0
0
0
0

+ x1


1
0
0
0
0
0

+ x4


0
−2
−3
1
0
0

+ x6


0
0
−1
0
−4
1


Each non pivot column corresponds to one of the vectors in the sum above.

2.4 Rank and Linear Independence

The rank of a matrix is the number of pivot columns of the matrix. To find the
rank of a matrix, you reduce the matrix using Gaussian elimination until you
discover the pivot columns.

Recall that a linear combination of vectors ~v1, ~v2, . . . , ~vn is an expression of
the form c1~v1 + c2~v2 + . . . + cn~vn, where ci is a constant for each i. A linear
combination of vectors is a sum of scalar multiples of the vectors. Also recall
that a linear combination of vectors is really just matrix multiplication, A~c,
where the columns of A are the vectors ~vi and ~c = (c1, c2, . . . , cn). We will try
to emphasis this in what follows.

First we need another definition. The span of a set of vectors is all possible
linear combinations of the vectors. We often write this as span{~v1, ~v2, . . . , ~vn}.
In terms of matrices, the span of a set of vectors is all possible vectors ~b such
that A~x = ~b for some ~x where the vectors are placed in the columns of A.

Example 2.17. 1. The span of the vector (1, 0, 0) is vectors of the form
a(1, 0, 0) = (a, 0, 0) which is the x axis, a line through the origin.

2. The span of the vectors (1, 0, 0) and (0, 1, 0) is the set of vectors in 3D
of the form a(1, 0, 0) + b(0, 1, 0) = (a, b, 0) which is the xy-plane, a plane
through the origin.

3. The span of (2, 0, 1) and (−1,−2, 3) is the set of vectors

a(2, 0, 1)+b(−1,−2, 3) = (2a−b,−2b, a+3b) =

2
0
1

−1
−2
3

[a
b

]
=

2a− b
−2b
a+ 3b

 .
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This is again a plane in 3D that passes through the origin.

Geometrically you can obtain the span of vectors by adding together all
possible stretches of the given vectors. The span of a set of vectors will be
a line, a plane, or some higher dimensional version of these objects (called a
hyperplane) which passes through the origin.

We say that a set of vectors is linearly independent if the only solution to linearly independent

the homogeneous system c1~v1 + c2~v2 + . . . + cn~vn = ~0 is the trivial solution
c1 = c2 = · · · = cn = 0. Otherwise we say the vectors are linearly dependent,
and it is possible to write one of the vectors as a linear combination of the
others. We say the vectors are dependent because one of them depends on (can
be obtained as a linear combination of) the others. In terms of spans, we say
vectors are linearly dependent when one of them is in the span of the other
vectors.

Example 2.18. The vectors (1, 0) and (0, 1) are independent, whereas the vec-
tors (2, 4) and (3, 6) are dependent (notice that (3, 6) = 3

2 (2, 4) is just a linear
combination of (2, 4)). The vectors (1, 2, 0), (2, 0, 3), and (3,−2, 6) are depen-
dent because there is a nonzero linear combination of the three vectors that
yields the zero vector

−1(1, 2, 0) + 2(2, 0, 3)− 1(3,−2, 6) = (0, 0, 0).

Alternatively we know the vectors are dependent because we can write the third
vector is a linear combination of the first two since

−1(1, 2, 0) + 2(2, 0, 3) = (3,−2, 6).

In matrix form we need to solve the homogeneous system When solving a homogeneous
system of equations, the column
of zeros at the right contributes
no new information, and so is
often ommitted.

1
2
0

2
0
3

3
−2
6

c1c2
c3

 =

0
0
0

 1
2
0

2
0
3

3
−2
6

0
0
0

 rref−−−→

1
0
0

0
1
0

−1
2
0

0
0
0


whose reduced row echelon form tells us that column 3 is not a pivot column.
This is precisely why the third column can be written as a linear combination
of the first two, and the numbers in column 3 tell us precisely what coefficients
(−1 and 2) to use writing the third column as a linear combination of the pivot
columns.

An easy way to test if vectors are linearly independent is to create a matrix
A where each column represents one of the vectors. The vectors are linearly
independent if A~c = ~0 means ~c = 0. Row reduce the matrix to reduced row
echelon form. The vectors are linearly independent if and only if each column of
A is a pivot column (forcing ~c to be zero). If a column is not a pivot column, then
the vector corresponding to that column can be written as a linear combination
of the preceding vectors using the coefficients in that column.

Example 2.19. The vectors [1 3 5], [−1 0 1], and [0 3 1] are linearly indepen-

dent, as the reduced row echelon form of

1 −1 0
3 0 3
5 1 1

 is

1 0 0
0 1 0
0 0 1

, and each

column is a pivot column.

Example 2.20. The vectors [1 3 5], [−1 0 1], and [1 6 11] are linearly dependent,

as the reduced row echelon form of

1 −1 1
3 0 6
5 1 11

 is

1 0 2
0 1 1
0 0 0

, and column
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3 is not a pivot column. This immediately means that the third vector (of
the original matrix) is a linear combination of the preceding two. Using the
coefficients 2 and 1 from the third column, we can write [1 6 11] = 2[1 3 5] +
1[−1 0 1].

In the preceding example, the third column was not a pivot column. The
numbers 2 and 1 in that column are called the coordinates of the vector [1 6 11] coordinates of a vector relative to

the pivot columnsrelative to the pivot columns [1 3 5] and [−1 0 1]. You have used the language
coordinates of a vector relative to other vectors to state that the coordinates of
(2,−3, 4) relative to (1, 0, 0), (0, 1, 0), (0, 0, 1) are precisely 2, −3, and 4. Every
non pivot column of a matrix can be expressed as a linear combination of the
pivot columns, where the coordinates of the non pivot column come from the
corresponding column in rref.

2.4.1 Linear Combinations, Spans, and RREF

Solving a system of equations such as x + 3y = 0, 2x − y = 5 is equivalent to

solving the vector equation x

[
1
2

]
+ y

[
3
−1

]
=

[
0
5

]
. This is also equivalent to

the following questions.

• Is

[
0
5

]
a linear combination of the vectors

[
1
2

]
and

[
3
−1

]
?

• Is

[
0
5

]
in the span of

[
1
2

]
and

[
3
−1

]
?

To answer all these questions, first reduce the matrix

[
1 3 0
2 −1 5

]
to reduced

row echelon form.[
1 3 0
2 −1 5

]
R2 − 2R1

⇒
[
1 3 0
0 −7 5

]
3R2 + 7R1

⇒
[
7 0 15
0 −7 5

]
R1/7
R2/− 7

⇒
[
1 0 15/7
0 1 −5/7

]
.

This means that a solution to our system is x = 15/7, y = −5/7, and we can The following are equivalent:

1. A~x = ~b has a solution.

2. ~b is a linear combination of
the columns of A.

3. ~b is in the span of the
columns of A.

write

[
0
5

]
=

15

7

[
1
2

]
− 5

7

[
3
−1

]
, which means that the answer to both questions

is “Yes.” The example above generalizes to show that a system A~x = ~b has a
solution if and only if ~b is a linear combination of the columns of A, if and only
if ~b is in the span of the columns of A.

2.5 Determinants

For the rest of this unit, we will assume that the matrix A is a square matrix (in
other words we are solving a system where the number of equations and number
of unknowns are the same). Associated with every square matrix is a number,
called the determinant, which is related to length, area, and volume, and we
use the determinant to generalize volume to higher dimensions. Determinants
are only defined for square matrices. The determinant of a 2 × 2 and 3 × 3
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matrix can be computed as follows:

det

[
a b
c d

]
=

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = adet

∣∣∣∣e f
h i

∣∣∣∣− bdet

∣∣∣∣d f
g i

∣∣∣∣+ cdet

∣∣∣∣d e
g h

∣∣∣∣
= a(ei− hf)− b(di− gf) + c(dh− ge)

We use vertical bars next to a matrix to state we want the determinant. Notice
the negative sign on the middle term of the 3 × 3 determinant. Also, notice
that we had to compute three determinants of 2 by 2 matrices in order to find
the determinant of a 3 by 3.

The determinant in general is defined recursively in terms of minors (deter-
minants of smaller matrices) and cofactors. This method is called the cofactor
expansion of the determinant. The minor Mij of a matrix A is the determinant The determinant is a linear

combination of the cofactors.of the the matrix formed by removing row i and column j from A. We define
a cofactor to be Cij = (−1)i+jMij . To compute the determinant, first pick a
row or column. We define the determinant to be

∑n
k=1 aikCik (if we chose row

i) or alternatively
∑n
k=1 akjCkj (if we chose column j). You can pick any row

or column you want, and then compute the determinant by multiplying each
entry of that row or column by its cofactor, and then summing the results. A


+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...

. . .


sign matrix

sign matrix keeps track of the (−1)j+k term in the cofactor. All you have to do
is determine if the first entry of your expansion has a plus or minus, and then
alternate the sign as you expand. We will eventually prove why you can pick
any row or column. For now, just become comfortable with the arithmetic.

Example 2.21. Let’s find the determinant of the matrix A =

 1 2 0
−1 3 4
2 −3 1


in two ways. First we will use a cofactor expansion along the top row (so the
first term is positive).

detA = 1

∣∣∣∣ 3 4
−3 1

∣∣∣∣− 2

∣∣∣∣−1 4
2 1

∣∣∣∣+ 0

∣∣∣∣−1 3
2 −3

∣∣∣∣
= 1(3 + 12)− 2(−1− 8) + 0(3− 6) = 33

Now we’ll use the second column (so the first term is negative).

|A| = −2

∣∣∣∣−1 4
2 1

∣∣∣∣+ 3

∣∣∣∣1 0
2 1

∣∣∣∣− (−3)

∣∣∣∣ 1 0
−1 4

∣∣∣∣
= −(2)(−1− 8) + (3)(1− 0)− (−3)(4− 0) = 33

The number 33 is the volume of a 3 dimensional parallelepiped created from
the columns of A, as described in the next section.

2.5.1 Geometric Interpretation of the determinant

Consider the 2 by 2 matrix

[
3 1
0 2

]
whose determinant is 3 · 2 − 0 · 1 = 6.

Draw the column vectors

[
3
0

]
and

[
1
2

]
with their base at the origin. These + −

Area = 6

∣∣∣∣3 1
0 2

∣∣∣∣ = 6 and

∣∣∣∣1 3
2 0

∣∣∣∣ = −6

The determinant gives area and
direction.

two vectors give the edges of a parallelogram whose area is the determinant 6.
If I swap the order of the two vectors in the matrix, then the determinant of
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1 3
2 0

]
is −6. The reason for the difference is that the determinant not only

keeps track of area, but also order. Starting at the first vector, if you can
turn counterclockwise through an angle smaller than 180◦ to obtain the second
vector, then the determinant is positive. If you have to turn clockwise instead,
then the determinant is negative. This is often termed “the right-hand rule,” as
rotating the fingers of your right hand from the first vector to the second vector
will cause your thumb to point up precisely when the determinant is positive.

For a 3 by 3 matrix, the columns give the edges of a three dimensional

The determinant of a 3 by 3
matrix gives the volume of the
parallelepiped created by using
the columns of the matrix as the
three parallel edges.

parallelepiped and the determinant produces the volume of this object. The
sign of the determinant is related to orientation. If you can use your right hand
and place your index finger on the first vector, middle finger on the second
vector, and thumb on the third vector, then the determinant is positive.

Example 2.22. Consider the matrix A =

1
0
0

0
2
0

0
0
3

. Starting from the origin,

each column represents an edge of the rectangular box 0 ≤ x ≤ 1, 0 ≤ y ≤ 2,
0 ≤ z ≤ 3 with volume (and determinant) V = lwh = (1)(2)(3) = 6. The sign
of the determinant is positive because if you place your index finger pointing in
the direction (1,0,0) and your middle finger in the direction (0,2,0), then your
thumb points upwards in the direction (0,0,3). If you interchange two of the

columns, for example B =

0
2
0

1
0
0

0
0
3

, then the volume doesn’t change since

the shape is still the same. However, the sign of the determinant is negative
because if you point your index finger in the direction (0,2,0) and your middle
finger in the direction (1,0,0), then your thumb points down in the direction
(0,0,-3). If you repeat this with your left hand instead of right hand, then your
thumb points up.

2.5.2 Zero Determinants and Linear Dependence

Because the determinant helps us find area in 2D, we can use this idea to help
us understand when two vectors in 2D are linearly dependent. If two vectors
are dependent, then one is a linear combination of the other, hence a multiple
of the other. This means that the parallelogram formed by the two vectors
has no area (as the two vectors lie on the same line). So if the vectors are
dependent, the determinant is zero. Similarly, if the determinant is zero, then
the vectors must lie on the same line and hence are linearly dependent. In 3D,
three vectors being linearly dependent implies that one of the vectors lies in a
plane or line spanned by the other two. Any object in 3D that lies in a plane
or line has no volume so the determinant is zero. Similarly, if the determinant
of a 3 by 3 matrix is zero, then the column vectors must lie in the same plane
and hence are linearly dependent. We now have a geometric interpretation for
the key fact that For a square matrix A, the

following are equivalent:

1. The determinant is zero.

2. The columns are linearly
dependent.

3. The rref of A is not I.

The determinant of a matrix is zero if and only if the columns are
linearly dependent.

The homeworks asks you to compute determinants of matrices as well as row
reduce them so that you can verify this fact in various settings. Notice that the
columns of a square matrix are linearly independent if and only if the reduced
row echelon form of the matrix is the identity matrix. This shows us that the
determinant of a square matrix is nonzero if and only if the reduced row echelon
form of the matrix is the identity matrix.



CHAPTER 2. LINEAR ALGEBRA ARITHMETIC 31

2.6 The Matrix Inverse

Recall that the identity matrix I behaves in matrix multiplication like the num-
ber 1 behaves in regular multiplication. When we solve the equation ax = b
with numbers, we multiply both sides by a−1 to obtain x = a−1b = 1

ab. The
multiplicative inverse of a is simply 1/a, because a 1

a = 1
aa = 1. We have been

studying linear systems of the form A~x = ~b. It would be nice if we could just
divide both sides by A, but there is no such thing as division by a matrix in
general. If we look only at square matrices, then sometimes it is possible to find
a matrix B such that BA = AB = I, the identity matrix. If such a matrix B
exists, then multiplying both sides of A~x = ~b on the left by the matrix B yields
BA~x = B ~B, or I~x = ~x = B~b. The matrix B is then called the inverse of A,
and we write it as A−1, the same symbol we used with regular multiplication.
When an inverse exists, the solution to A~x = ~b is simply ~x = A−1~b. The solution to A~x = ~b is

~x = A−1~b, provided A−1 exists.To find an inverse, we will start by considering a general 3 by 3 matrix.
Once we are done, we will know how to find the inverse of any n by n matrix or

state it does not exists. If an inverse exists, then write A−1 =

c11 c12 c13

c21 c22 c23

c31 c32 c33

.

Then the equation AA−1 = I requires that the 3 matrix equations

A

c11

c21

c31

 =

1
0
0

 , A
c12

c22

c32

 =

0
1
0

 , A
c13

c23

c33

 =

0
0
1


each have a solution, or that (1, 0, 0), (0, 1, 0), and (0, 0, 1) are all linear combi-
nations of the columns of A. This requires that we reduce all three augmented
matricesa11 a12 a13 1

a21 a22 a23 0
a31 a32 a33 0

 a11 a12 a13 0
a21 a22 a23 1
a31 a32 a33 0

 a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 1

 .
If the first three columns are all pivot columns, then the row operations required
to reduce all three matrices will be identical, and none of the 4th columns will
be pivot columns. Rather than do three equivalent row reductions, we can solve
all three simultaneously by creating the single augmented matrixa11 a12 a13 1 0 0

a21 a22 a23 0 1 0
a31 a32 a33 0 0 1


or in compact form

[
A I

]
. We now reduce this larger matrix to reduced A matrix An×n has an inverse if

1. The columns of A are
linearly independent.

2. The rank of A is n

3. The rref of A is I.

4. |A| 6= 0.

It does not have an inverse if

1. The columns of A are
linearly dependent.

2. The rank is less than n

3. The rref of A is not I
(there is a row of zeros
along the bottom).

4. |A| = 0.

row echelon form and obtain
[
I B

]
, which tells us the coordinates of (1, 0, 0),

(0, 1, 0), and (0, 0, 1) relative to the columns of A. The columns of the aug-
mented portion B on the right are the solutions to the three original systems,
hence are the columns of A−1. To summarize, an inverse exists precisely if the
augmented system [A|I] reduces to [I|A−1]. The the inverse matrix appears
on the right after row reduction, provided the identity matrix appears on the
left. If the left block of the augmented matrix does not reduce to the identity
matrix, then the matrix does not have an inverse. If the left block does not
reduce to the identity, then this implies that the original columns of A are de-
pendent. Later we will show that having an inverse is equivalent to having a
nonzero determinant and having a rank which equals the number of columns.
Remember that this is true for square matrices, or systems where we have the
same number of equations as unknowns.



CHAPTER 2. LINEAR ALGEBRA ARITHMETIC 32

Example 2.23. To find the inverse of

[
1 2
3 4

]
we reduce

[
1 2 1 0
3 4 0 1

]
. Reduc-

tion gives

[
1 0 −2 1
0 1 3/2 −1/2

]
. The inverse is the right block

[
−2 1
3/2 −1/2

]
. Examples involving larger

matrices are in the homework.
Remember that you can solve
systems by finding an inverse of
the coefficient matrix.

You can always check your result by computing AA−1 to see if it is I, for ex-

ample

[
1 2
3 4

] [
−2 1
3/2 −1/2

]
=

[
1 0
0 1

]
. Using this inverse, the solution to the

system

{
1x+ 2y = 4

3x+ 4y = 0
is A−1~b =

[
−2 1
3/2 −1/2

] [
4
0

]
=

[
−8
6

]
.

2.7 Eigenvalues and Eigenvectors

Let’s start by looking at an example to motivate the language we are about to

introduce. Consider the matrix A =

[
2 1
1 2

]
. When we multiply this matrix

by the vector ~x =

[
1
1

]
, we obtain

[
2 1
1 2

] [
1
1

]
=

[
3
3

]
= 3~x. Multiplication

by the matrix A was miraculously the same as multiplying by the number 3.
Symbolically we have A~x = 3~x. Not every vector ~x satisfies this property, for

by ~x =

[
1
0

]
gives

[
2 1
1 2

] [
1
0

]
=

[
2
1

]
, which is not a multiple of ~x =

[
1
0

]
. Our

main goal in this section is to answer the following two questions:

1. For which nonzero vectors ~x (eigenvectors) is it possible to write A~x = λ~x?

2. Which scalars λ (eigenvalues) satisfy A~x = λ~x?

Now for some definitions. Let A be a square n×n matrix. An eigenvector is eigenvector

a nonzero vector ~x such that A~x = λ~x (matrix multiplication reduces to scalar
multiplication) for some scalar λ called an eigenvalue. We avoid letting ~x be the eigenvalue

zero vector because A~0 = λ~0 no matter what λ is. We can rewrite the equation
A~x = λ~x as ~0 = A~x− λ~x = A~x− λI~x and then factor to obtain

(A− λI)~x = ~0.

In other words, we need to find a λ so that there are nonzero solutions to the
homogeneous system of equations, or equivalently we need to pick a λ so that
the columns of A − λI are linearly dependent. With the correct λ, we know
that A−λI has no inverse, and so it also means that det(A−λI) = 0. This last
equation is the key equation we will solve, since it does not contain the vector
~x anymore. The expression det(A− λI) is called the characteristic polynomial
of A. It is a polynomial of degree n, and hence there are at most n eigenvalues characteristic polynomial

(which correspond to the zeros of the polynomial). To find the eigenvalues and
eigenvectors, we

1. solve det(A− λI) = 0 to obtain the eigenvalues, and then

2. for each eigenvalue, we solve (A− λI)~x = ~0 to obtain the eigenvectors.

As a way to check your work, the following two facts can help.

• The sum of the eigenvalues equals the trace of the matrix (the sum of the The trace and determinant are
equal to the sum and product of
the eigenvalues.

diagonal elements).

• The product of the eigenvalues equals the determinant.
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Example 2.24. To find the eigenvalues of

[
2 1
1 2

]
, first subtract λ from each

diagonal entry

[
2− λ 1

1 2− λ

]
, and then find the determinant. Factor to get

(2−λ)(2−λ)− 1 = λ2− 4λ+ 3 = (λ− 1)(λ− 3). The zeros are 1 and 3, so the
eigenvalues are λ = 1, 3. As a check, the trace of this matrix is 2 + 2 = 4 and
the sum of the eigenvalues is 1 + 3. In addition, the determinant is 4 − 1 = 3
which equals the product of the eigenvalues.

When λ = 1, we compute A − λI =

[
1 1
1 1

]
. We solve the equation (A −

λI)~x = 0 by reducing the augmented matrix

[
1 1 0
1 1 0

]
to its rref

[
1 1 0
0 0 0

]
. Since we are solving a

homogeneous system A~x = ~0, we
could avoid writing the last
column of zeros.

Since x2 is a free variable, we solve x1 + x2 = 0 for x1 to obtain the equations

x1 = −x2, x2 = x2, and then write our solution in vector form

[
x1

x2

]
= x2

[
−1
1

]
for some x2 6= 0 . There are infinitely many eigenvectors corresponding to λ = 1.

A particular eigenvector is

[
−1
1

]
and all the rest are a linear combination of

this one.

When λ = 3, we compute A − λI =

[
−1 1
1 −1

]
. Reducing

[
−1 1 0
1 −1 0

]
gives

[
1 −1 0
0 0 0

]
, which means the eigenvectors are of the form x2

[
1
1

]
for some

x2 6= 0. A particular eigenvector corresponding to λ = 3 is

[
1
1

]
, and all others

are a linear combination of this one.

Finding eigenvalues and eigenvectors requires that we compute determi-
nants, find zeros of polynomials, and then solve homogeneous systems of equa-
tions. You know you are doing the problem correctly if you get infinitely many
solutions to the system (A − λI)~x = 0 for each lambda (i.e. there is at least
one row of zeros along the bottom).

Eigenvalues and eigenvectors show up in many different places in engineer-
ing, computer science, physics, chemistry, and mathematics. We will be ex-
ploring how eigenvectors appear throughout linear algebra as the semester pro-
gresses. For now we’ll just focus on being able to find them.

Example 2.25. Let’s find the eigenvalues and eigenvectors of the matrix A =2 1 4
1 2 4
0 0 1

. Subtracting λ from the diagonals gives

2− λ 1 4
1 2− λ 4
0 0 1− λ

.

The determinant of this matrix is easiest to compute if you expand along the

third row to get 0−0+(1−λ)

∣∣∣∣2− λ 1
1 2− λ

∣∣∣∣. Computing the 2 by 2 determinant

gives (1− λ)[(2− λ)(2− λ)− 1] = (1− λ)(λ− 1)(λ− 3), so the eigenvalues are
1, 1, 3 (1 is a repeated root). As a check, their sum is 1 + 1 + 3 = 5 and the
trace of A is 2 + 2 + 1 = 5 as well. For larger matrices, determinants are not
always easy to check, so just checking the trace is a fast way to make sure you
are on the right path.

When λ = 1, we compute A − λI =

1 1 4
1 1 4
0 0 0

. Reducing the system

(A−λI)~x = 0 yields

1 1 4 0
0 0 0 0
0 0 0 0

, which has two free variables. The solution
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is

x1

x2

x3

 = x2

−1
1
0

 + x3

−4
0
1

. Hence the eigenvectors are nonzero linear

combinations of

−1
1
0

 and

−4
0
1

. Notice that all the eigenvectors can be

obtained as linear combinations of two linearly independent eigenvectors, in
part because λ = 1 is a double root of the characteristic polynomial.

When λ = 3, we compute A − λI =

−1 1 4
1 −1 4
0 0 −2

. Next, reducing−1 1 4 0
1 −1 4 0
0 0 −2 0

 yields

−1 1 0 0
0 0 1 0
0 0 0 0

, which has only one free variable .

The solution is

x1

x2

x3

 = x2

1
1
0

. The eigenvectors are nonzero linear combina-

tions of

1
1
0

. Because λ = 3 is a single root of the characteristic polynomial,

all the eigenvectors can be obtained as linear combinations of one eigenvector.
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2.8 Preparation

This chapter covers the following ideas. When you create your lesson plan, it should contain examples which
illustrate these key ideas. Before you take the quiz on this unit, meet with another student out of class and
teach each other from the examples on your lesson plan.

1. Be able to use and understand matrix and vector notation, addition, scalar multiplication, the dot
product, matrix multiplication, and matrix transposing.

2. Use Gaussian elimination to solve systems of linear equations. Define and use the words homogeneous,
nonhomogeneous, row echelon form, and reduced row echelon form.

3. Find the rank of a matrix. Determine if a collection of vectors is linearly independent. If linearly
dependent, be able to write vectors as linear combinations of the preceding vectors.

4. For square matrices, compute determinants, inverses, eigenvalues, and eigenvectors.

5. Illustrate with examples how a nonzero determinant is equivalent to having independent columns,
an inverse, and nonzero eigenvalues. Similarly a zero determinant is equivalent to having dependent
columns, no inverse, and a zero eigenvalue.

The next unit will focus on applications of these ideas. The main goal of this unit is to familiarize yourself
with the arithmetic involved in linear algebra.

Here are the preparation problems for this unit. All of these problems come from this book (not Schaum’s
Outlines). Remember that solutions appear at the end of each chapter.

Preparation Problems (click for solutions) Webcasts ( pdf copy )

Day 1 2h, 3b, 4c, 4e 1, 2, 3

Day 2 4f, 5c, 6a, 6b 4, 5, 6

Day 3 7d, 7h, 8b, 8j 7, 8

Day 4 9b, 10e, 10g, 10h 9, 10, 11

Day 5 11, Lesson Plan, Quiz

Please download and print all the problems. I have tried to keep the text short and readable, and I want
you to read the text (reading 3-4 pages for every day of class will get you through the whole book). If you
find errors or find some parts hard to read, please email me so that I can improve the text.

The problems listed below are found in the subsequent pages. The suggested problems are a minimal set
of problems that I suggest you complete.

Concept Suggestions Relevant Problems

Basic Notation 1bcf,2abehln 1,2

Gaussian Elimination 3all,4acf 3,4

Rank and Independence 5ac,6bd 5,6

Determinants 7adgh 7

Inverses 8ag,9ac 8,9

Eigenvalues 10abdghi 10

Summarize 11(multiple times) 11

http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/341/1-Arithmetic-Preparation-Solutions.pdf
http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/341/1-Arithmetic-videos.pdf
http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/341/1-Arithmetic-video-01.wmv
http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/341/1-Arithmetic-video-02.wmv
http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/341/1-Arithmetic-video-03.wmv
http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/341/1-Arithmetic-video-04.wmv
http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/341/1-Arithmetic-video-05.wmv
http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/341/1-Arithmetic-video-06.wmv
http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/341/1-Arithmetic-video-07.wmv
http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/341/1-Arithmetic-video-08.wmv
http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/341/1-Arithmetic-video-09.wmv
http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/341/1-Arithmetic-video-10.wmv
http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/341/1-Arithmetic-video-11.wmv
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2.9 Problems

1. Vector Arithmetic: For each pair of vectors, (1) find the length of each vector, (2) compute the dot
product of the vectors, (3) find the cosine of the angle between them, and (4) determine if the vectors
are orthogonal.

(a) (1, 2), (3, 4)

(b) [−2 1], [4 − 8]

(c) (1, 2, 2), (3, 0,−4)

(d) 〈−2, 3, 5〉 , 〈4,−4, 4〉
(e) [1 1 1 1], [2 3 − 4 − 1]

(f) [1 − 4 3 0 2]T , [2 1 0 10 1]T

2. Matrix Arithmetic: Consider the matrices

A =

[
1 2
3 4

]
, B =

[
4 −1
3 2

]
, C =

[
1 0 −1
2 3 4

]
, D =

 0 2 1
3 0 4
−1 1 2

 , and E =

 3
1
−4

 .
Compute each of the following, or explain why it is not possible.

(a) A+B and 3A− 2B

(b) AB and BA

(c) AC and CA

(d) BC and CB

(e) CD and DC

(f) DE and ED

(g) CDE

(h) CCT and CTC

(i) DCT and CDT

(j) AB and BTAT

(k) BA and ATBT

(l) Trace of A, B, D.

For each of the following, compute the product in three ways (1) using linear combinations of columns,
(2) using rows dotted by columns, and (3) using linear combinations of rows (see Table 2.1).

(m) AB (n) BC (o) CD (p) DE

3. Interpreting RREF: Each of the following augmented matrices requires one row operation to be
in reduced row echelon form. Perform the required row operation, and then write the solution to
corresponding system of equations in terms of the free variables.

(a)

1 0 0 3
0 0 1 1
0 1 0 −2


(b)

 1 2 0 −4
0 0 1 3
−3 −6 0 12


(c)

0 1 0 4
0 0 5 15
0 0 0 0


(d)

1 0 2 4
0 1 −3 0
0 0 0 1


(e)


0 1 0 7 0 3
0 0 1 5 −3 −10
0 0 0 0 1 2
0 0 0 0 0 0



4. Solving Systems with Gaussian Elimination: Solve each system of equations using Gaussian
elimination, by reducing the augmented matrix to reduced row echelon form (rref).

(a)
x− 3y = 10

3x+ 2y = 8

(b)
2x+ 6y − z = 9
x+ 3y − 3z = 17

(c)
x2 − 2x3 = −5

2x1 − x2 + 3x3 = 4
4x1 + x2 + 4x3 = 5

(d)
x1 + 2x3 = −2

2x1 − 3x2 = −3
3x1 + x2 − x3 = 2

(e)
2x1 + x2 + 4x3 = −1
−x1 + 3x2 + 5x3 = 2

x2 + 2x3 = −2

(f)
x1 − 2x2 + x3 = 4

−x1 + 2x2 + 3x3 = 8
2x1 − 4x2 + x3 = 5

(g)

x1 + 2x3 + 3x4 = −7
2x1 + x2 + 4x4 = −7
−x1 + 2x2 + 3x3 = 0
x2 − 2x3 − x4 = 4

5. Rank and Linear Dependence: Compute the rank of each matrix. Use this result to determine if
the columns are linearly dependent. If the vectors are dependent, write each non pivot column as a
linear combination of the pivot columns.
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(a)

1 2 3
4 −2 1
3 0 4

 (b)

 1 −1 −1
−2 3 5
3 1 9

 (c)

 1 3 −1 9
−1 −2 0 −5
2 1 3 −2


(d)


1 3 12 1
2 0 −6 3
−1 1 8 −4
0 2 10 2


6. Linear Independence: In each problem, determine if the vectors given are linearly independent. If

the vectors are linearly dependent, write one of the vectors as a linear combination of the others.

(a) [2,−1, 0], [1, 0, 3], [3, 2, 4]

(b) [1, 2,−3, 4], [3,−2,−1,−2], [5,−2,−3,−1]

(c) [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0]

(d) [1, 0,−1,−2], [1, 2, 3, 0], [0, 1,−1, 2], [2, 0, 1,−5]

7. Determinants: Find the determinant of each matrix. For 3 by 3 matrices, compute the determinant
in 2 different ways by using a cofactor expansion along a different row or column.

(a)

[
1 2
3 4

]

(b)

[
4 3
5 9

]

(c)

2 1 0
0 2 1
1 0 2



(d)

3 1 −2
1 −1 4
2 2 1



(e)

2 3 −1
1 0 0
4 2 5



(f)

5 1 −3
2 −1 2
1 4 −1



(g)


2 1 −6 8
0 3 5 4
0 0 1 5
0 0 0 −4



(h)


3 2 5 −1
0 8 4 2
0 −1 0 0
0 −5 3 −1



(i)


1 1 1 1
2 −1 1 1
−1 1 2 −2
1 1 −1 −1



(j)


1 1 1 1
2 2 2 2
0 2 1 −1
1 0 −2 1


For the following matrices, compute the determinant and use your answer to determine if the columns
are linearly independent.

(k) Use the matrix from 5a (l) Use the matrix from 5b (m) Use the matrix from 5d

8. Inverse: Find the inverse of each matrix below.

(a)

[
1 2
3 4

]
(b)

[
−2 4
3 −5

]
(c)

[
0 1
−1 0

]
(d)

[
2 3
4 5

]

(e)

[
7 3
2 1

]

(f)

1 0 2
0 1 0
0 0 4


(g)

 1 0 2
0 1 0
−1 1 4



(h)

3 0 3
0 −1 1
0 3 −4



(i)

1 2 −1
2 3 −2
0 3 2



(j)

−2 0 5
−1 0 3
4 1 −1


(k)

2 1 1
1 2 1
1 1 2


(l)

[
a b
c d

]
9. Solve systems using an inverse: Solve each system by using an inverse from above.

(a)

{
x1 + 2x2 = 3

3x1 + 4x2 = 4
using 8a.

(b)

{
−2x1 + 4x2 = 4

3x1 − 5x2 = −2
using 8b.

(c)

 1x1 + 2x3 = 2
x2 = 3

−x1 + x2 + 4x3 = 1
using 8g.

(d)

 −2x1 + 5x3 = −2
−x1 + 3x3 = 1

4x1 + x2 − x3 = 3
using 8j.
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Now grab any problem from the entire unit that involves solving a system where an inverse applies.
Find the inverse of the coefficient matrix and use it to find the solution. (Use the solutions at the back
to select a problem with a unique solution).

10. Eigenvalues and Eigenvectors: For each matrix, compute the characteristic polynomial and eigen-
values. For each eigenvalue, give all the corresponding eigenvectors. Remember that you can check
your answer by comparing the trace to the sum of the eigenvalues, and the determinant to the product
of the eigenvalues.

(a)

[
1 2
0 3

]
(b)

[
0 1
−1 −2

]
(c)

[
2 3
3 2

]
(d)

[
0 1
−1 0

]
(e)

[
1 4
2 3

]
(f)

[
3 1
4 6

]
(g)

1 2 2
0 1 2
0 0 1



(h)

1 2 2
0 1 0
0 0 1


(i)

3 0 0
0 2 1
0 1 2



(j)

1 1 0
0 2 0
0 1 1


11. At this point, you are ready to make your own examples. Create your own 2 by 2 or 3 by 3 matrix A.

• Find rref A.

• Find the rank of A.

• Are the columns of A independent?

• Compute |A|.
• Compute A−1 (or explain why not possible).

• Find the eigenvalues and eigenvectors of A.

For a 3 by 3 matrix, the eigenvalues and eigenvectors may be hard to find by hand (so use technology).
Use technology to check your work by hand. The first column of questions applies to all matrices
(square or not), whereas the last column only makes sense when the matrix is square. For a 2 by
2 matrix, you can always compute the eigenvalues using the quadratic formula, which may result in
irrational or complex eigenvalues.

Repeat this exercise a few times with various types of matrices (diagonal, triangular, symmetric, skew-
symmetric). Do you notice any patterns? If you pick larger matrices, you can do everything except
the eigenvalues and eigenvectors by hand. Once you feel comfortable with the computations by hand,
move to a computer and start using larger matrices to find patterns.

2.10 Projects

The following projects require you to use technology to further explore a topic from this unit. Use a computer
algebra system (CAS) to perform your computations so you can save your work and quickly modify things
as needed.

1. A matrix and its transpose AT have some common properties. Your job in this project is to explore
the relationships between a matrix and its transpose.

(a) Start by choosing your own 4 by 4 matrix. For both A and AT , compute the rref, rank, determi-
nant, inverse, eigenvalues, and eigenvectors. Which are the same?

(b) Change your matrix to some other 4 by 4 or larger matrix and repeat the computations.

(c) Based on these two examples, which quantities do you think will be always be the same for A and
AT ?

(d) Try creating an ugly large matrix and see if your conjecture is correct. While examples are not
proofs that a conjecture is true, examples do provide the foundation upon which all mathematical
theorems are built. New ideas always stem from examples.

(e) What happens if a matrix is not square? Select your own non square matrix (such as 3 by 4).
Compute the rref of both A and AT , as well as the rank.

(f) Change the matrix and repeat this computation. What conjecture should you make?
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2.11 Solutions

1. Vector Arithmetic:

(a)
√

5, 5, 11, cos θ = 11

5
√

5
, No

(b)
√

5, 2
√

5, 0, cos θ = 0, Yes

(c) 3, 5,−5, cos θ = − 1
3
, No

(d)
√

38, 4
√

3, 0, cos θ = 0, Yes

(e) 2,
√

30, 0, cos θ = 0, Yes

(f)
√

30,
√

106, 0, cos θ = 0, Yes

2. Matrix Arithmetic:

(a)

[
5 1
6 6

]
,

[
−5 8
3 8

]
(b)

[
10 3
24 5

]
,

[
1 4
9 14

]
(c)

[
5 6 7
11 12 13

]
, CA not possible

(d)

[
2 −3 −8
7 6 5

]
, CB not possible

(e)

[
1 1 −1
5 8 22

]
, DC not possible

(f)

 −2
−7
−10

, ED not possible

(g)

[
8
−65

]

(h)

[
2 −2
−2 29

]
,

5 6 7
6 9 12
7 12 17


(i)

−1 10
−1 22
−3 9

,

[
−1 −1 −3
10 22 9

]

(j)

[
10 3
24 5

]
,

[
10 24
3 5

]
(k)

[
1 4
9 14

]
,

[
1 9
4 14

]
(l) TrA = 5, TrB = 6, TrD = 2.

3. Interpreting RREF:

(a)

1 0 0 3
0 1 0 −2
0 0 1 1

,
x1 = 3
x2 = −2
x3 = 1

(b)

1 2 0 −4
0 0 1 3
0 0 0 0

,
x1 = −2x2 − 4
x2 = x2 (free variable)
x3 = 3

(c)

0 1 0 4
0 0 1 3
0 0 0 0

,
x1 = x1 (free)
x2 = 4
x3 = 3

(d)

1 0 2 0
0 1 −3 0
0 0 0 1

, no solution

(e)


0 1 0 7 0 3
0 0 1 5 0 −4
0 0 0 0 1 2
0 0 0 0 0 0

,

x1 = x1 (free)
x2 = −7x4 + 3
x3 = −5x4 − 4
x4 = x4 (free)
x5 = 2

4. Solving Systems with Gaussian Elimination:

(a)

[
1 0 4
0 1 −2

]
x1 = 4
x2 = −2

(b)

[
1 3 0 2
0 0 1 −5

] x1 = −3x2 + 2
x2 = x2 (free)
x3 = −5

(c)

1 0 0 −2
0 1 0 1
0 0 1 3

 x1 = −2
x2 = 1
x3 = 3

(d)

1 0 0 0
0 1 0 1
0 0 1 −1

 x1 = 0
x2 = 1
x3 = −1

(e)

1 0 1 0
0 1 2 0
0 0 0 1

, no solution

(f)

1 −2 0 1
0 0 1 3
0 0 0 0

 x1 = 2x2 + 1
x2 = x2 (free)
x3 = 3

(g)


1 0 0 0 2
0 1 0 0 1
0 0 1 0 0
0 0 0 1 −3


x1 = 2
x2 = 1
x3 = 0
x4 = −3

5. Rank and Linear Dependence:

(a) 3, independent

(b) 2, dependent, rref is

1 0 2
0 1 3
0 0 0

 so

2

 1
−2
3

+ 3

−1
3
1

 =

−1
5
9


(c) 2, dependent, rref is

1 0 2 −3
0 1 −1 4
0 0 0 0

 so

2

 1
−1
2

− 1

 3
−2
1

 =

−1
0
3

 and

−3

 1
−1
2

+ 4

 3
−2
1

 =

 9
−5
−2


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(d) 3, dependent, rref is


1 0 −3 0
0 1 5 0
0 0 0 1
0 0 0 0

 so

−3


1
2
−1
0

+ 5


3
0
1
2

+ 0


1
3
−4
2

 =


12
−6
8
10



6. Linear Independence:

(a)

 2 1 3
−1 0 2
0 3 4

 rref−−→

1 0 0
0 1 0
0 0 1

, independent

(b)


1 3 5
2 −2 −2
−3 −1 −3
4 −2 −1

→


1 0 1
2

0 1 3
2

0 0 0
0 0 0

, dependent

1

2


1
2
−3
4

+
3

2


3
−2
−1
−2

 =


5
−2
−3
−1


(c) Independent. Placing the vectors in columns

of a 4 by 4 matrix reduces to the identity, so
there are 4 pivot columns.

(d)


1 1 0 2
0 2 1 0
−1 3 −1 1
−2 0 2 −5

→


1 0 0 3
2

0 1 0 1
2

0 0 1 −1
0 0 0 0

,

dependent

3

2


1
0
−1
−2

+
1

2


1
2
3
0

−


0
1
−1
2

 =


2
0
1
−5



7. Determinants:

(a) −2

(b) 21

(c) 9

(d) −28

(e) −17

(f) −58

(g) −24

(h) −30

(i) 24

(j) 0

8. Inverse:

(a)

[
−2 1
3
2
− 1

2

]
(b)

[
5
2

2
3
2

1

]
(c)

[
0 −1
1 0

]
(d)

[
− 5

2
3
2

2 −1

]
(e)

[
1 −3
−2 7

]

(f)

1 0 − 1
2

0 1 0

0 0 1
4


(g)

 2
3

1
3
− 1

3

0 1 0
1
6
− 1

6
1
6



(h)

 1
3

3 1

0 −4 −1
0 −3 −1



(i)

−6 7
2

1
2

2 −1 0

−3 3
2

1
2



(j)

−3 5 0
11 −18 1
−1 2 0



(k)

 3
4
− 1

4
− 1

4

− 1
4

3
4
− 1

4

− 1
4
− 1

4
3
4


(l)

1

ad− bc

[
d −b
−c a

]
9. Solve systems using an inverse:

(a)

[
−2 1
3
2
− 1

2

] [
3
4

]
=

[
−2
5
2

]
(b)

[
5
2

2
3
2

1

] [
4
−2

]
=

[
6
4

]

(c)

 2
3

1
3
− 1

3

0 1 0
1
6
− 1

6
1
6

2
3
1

 =

2
3
0


(d)

−3 5 0
11 −18 1
−1 2 0

−2
1
3

 =

 11
−37

4


10. Eigenvalues and Eigenvectors:

(a) λ2 − 4λ+ 3, for λ = 3 eigenvectors are

[
1
1

]
x2

where x2 6= 0, for λ = 1 eigenvectors are[
1
0

]
x1 where x1 6= 0.

(b) λ2 + 2λ + 1, for λ = −1 eigenvectors are[
−1
1

]
x2 where x2 6= 0

(c) λ2 − 4λ − 5, for λ = −1 eigenvectors are[
−1
1

]
x2 where x2 6= 0, for λ = 5 eigenvec-

tors are

[
1
1

]
x2 where x2 6= 0

(d) λ2 + 1, for λ = i eigenvectors are

[
−i
1

]
x2

where x2 6= 0, for λ = −i eigenvectors are[
i
1

]
x2 where x2 6= 0

(e) λ2 − 4λ− 5, for λ = 5 eigenvectors are

[
1
1

]
x2

where x2 6= 0, for λ = −1 eigenvectors are[
−2
1

]
x2 where x2 6= 0
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(f) λ2 − 9λ + 14, for λ = 7 eigenvectors are[
1/4
1

]
x2 where x2 6= 0 (alternatively you

could write any nonzero multiple of [1, 4]T if
you want to avoid fractions), for λ = 2 eigen-

vectors are

[
−1
1

]
x2 where x2 6= 0

(g) −λ3+3λ2−3λ+1 = −(λ−1)3 = −(λ−1)3, for

λ = 1 eigenvectors are

1
0
0

x1 where x1 6= 0

(h) −λ3 + 3λ2 − 3λ + 1 = −(λ − 1)3, for λ = 1

eigenvectors are

1
0
0

x1 +

 0
−1
1

x3 where x1

and x3 cannot simultaneously be zero.

(i) −λ3 + 7λ2 − 15λ+ 9 = −(λ− 3)2(λ− 1), for
λ = 3 eigenvectors are nonzero linear combi-

nations of

0
1
1

 and

1
0
0

, for λ = 1 eigenvec-

tors are nonzero linear combinations of

 0
−1
1

.

(j) −λ3 +4λ2−5λ+2− (λ−2)(λ−1)2, for λ = 1
eigenvectors are nonzero linear combinations

of

0
0
1

 and

1
0
0

, for λ = 2 eigenvectors are

nonzero linear combinations of

1
1
1

.



Chapter 3

Linear Algebra
Applications

This chapter covers the following ideas.

1. Find the currents in electrical systems involving batteries and resistors,
using both Gaussian elimination and Cramer’s rule.

2. Find interpolating polynomials. Use the transpose and inverse of a matrix
to solve the least squares regression problem of fitting a line to a set of
data.

3. Find the partial fraction decomposition of a rational function. Utilize this
decomposition to integrate rational functions.

4. Describe a Markov process. Explain how an eigenvector of the eigenvalue
λ = 1 is related to the limit of powers of the transition matrix.

5. Explain how to generalize the derivative to a matrix. Use this generaliza-
tion to locate optimal values of the function using the second derivative
test. Explain the role of eigenvalues and eigenvectors in the second deriva-
tive test.

3.1 Kirchoff’s Electrial Laws

Gustav Kirchoff discovered two laws of electricity that pertain to the conserva-
tion of charge and energy. To describe these laws, we must first discuss voltage,
resistance, and current. Current is the flow of electricity, and often it can be
compared to the flow of water. As a current passes across a conductor, it en-
counters resistance. Ohm’s law states that the product of the resistance R and
current I across a conductor equals the voltage V , i.e. RI = V . If the voltage
remains constant, then a large resistance corresponds to a small current. A
resistor is an object with high resistance which is placed in an electrical system
to slow down the flow (current) of electricity. Resistors are measured in terms
of ohms, and the larger the ohms, the smaller the current. Figure 3.1 illustrates
two introductory electrical systems.

In this diagram, wires meet at nodes (illustrated with a dot). Batteries and
voltage sources (represented by or other symbols) supply a voltage of E
volts. At each node the current may change, so the arrows and letters i represent
the different currents in the electrical system. The electrical current on each
wire may or may not follow the arrows drawn (a negative current means that

42
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E R2

R1

R3

i1

i2

i3

E R2

R1

R3

R4 R5

R6

i1

i2

i3

i4

i5

i6

Two Loop System Three Loop System

Figure 3.1: Electrical Circuit Diagrams.

the current flows opposite the arrow). Resistors are depicted with the symbol
, and the letter R represents the ohms.

Kirchoff discovered two laws. They both help us find current in a system,
provided we know the voltage of any batteries, and the resistance of any resis-
tors.

1. Kirchoff’s current law states that at every node, the current flowing in
equals the current flowing out (at nodes, current in = current out).

2. Kirchoff’s voltage law states that on any loop in the system, the directed
sum of voltages supplied equals the directed sum of voltage drops (in
loops, voltage in = voltage out).

Let’s use Kirchoff’s laws to generate a system of equations for the two loop
system.

1. First we will examine Kirchoff’s current law. At the first node (top mid-
dle), current i1 flows in while i2 and i3 flow out. Kirchoff’s current law
states that i1 = i2 + i3 or i1 − i2 − i3 = 0. At the second node, both i2
and i3 are flowing in while i1 flows out. This means that i2 + i3 = i1 or
−i1 + i2 + i3 = 0. This second equation is the same as multiplying both
sides of the first by −1 (so we say the 2nd equation depends on the first).

2. We now look at Kirchoff’s voltage law. Pick a loop and work your way
around the loop in a clockwise fashion. Each time you encounter a battery
or resistor, include a term for the voltage supplied E on the left side of an
equation, and the voltage drop (resistance times current Ri) on the right.
If you encounter a battery or resistor as you work against the current,
then times that term by −1. The left loop has a battery with voltage E
and the resistor contributes a drop in voltage of R1i2 volts. An equation
for the first loop is E = R1i1 + R2i2. On the right loop we encounter
along current i3 a resistor with resistance R3 ohms. While working our
way against the arrow drawn on i2, we encounter an R2 ohm resistor.
There are no batteries on the second loop. The two resistors give us the
equation 0 = −R2i2 +R3i3.

We can now write a system of equations involving the unknowns i1, i2, i3, put
it in matrix form, and then solve

i1 − i2 − i3 = 0
−i1 + i2 + i3 = 0
R1i1 +R2i2 = E
−R2i2 +R3i3 = 0

matrix form−−−−−−−→


1 −1 −1 0
−1 1 1 0
R1 R2 0 12
0 −R2 R3 0


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rref−−→



1 0 0
ER2 + ER3

R1R2 +R1R3 +R2R3

0 1 0
ER3

R1R2 +R1R3 +R2R3

0 0 1
ER2

R1R2 +R1R3 +R2R3

0 0 0 0


.

The reason we have a row of zeros at the bottom of or system is because the
two rows corresponding to the nodes are linearly dependent. Hence, when we
reduce the matrix that dependence relation becomes a row of zeros.

A similar computation can be done for the three loop system. There are 6
unknown currents, 4 nodes, and 3 loops. This will give us 7 equations with 6
unknowns. The 4 equations from the nodes will again contribute rows which
are linearly dependent, which means you can always ignore an equation from
one of the nodes. Reduction will give a unique solution. In the homework, you
are asked to setup systems of equations for various electrical systems, and then
solve them.

Example 3.1. Let’s look at an example which involves numbers. Suppose
E = 12 (a 12 volt battery) and the resistors have R1 = 2, R2 = R3 = 4 ohms.
The top node gives the equation i1 = i2 +i3 (remember flow in equals flow out).
We’ll skip the bottom node. The left loop gives the equation 12 = 2i1 + 4i2,
while the right loop gives the equation 0 = −4r2 + 4r3. We now

i1 − i2 − i3 = 0
2i1 + 4i2 = 12
−4i2 + 4i3 = 0

matrix form−−−−−−−→

1 −1 −1 0
2 4 0 E
0 −4 4 0

 rref−−→

1 0 0 3
0 1 0 3/2
0 0 1 3/2


which tells us the currents are i1 = 3, i2 = 3/2, and i3 = 3/2.

3.1.1 Cramer’s Rule

Cramer’s rule is a theoretical tool which gives the solution to any linear system
A~x = ~b with n equations and n unknowns, provided that there is a unique
solution. Let D = det(A). Let Di be the determinant of the matrx formed

by replacing the ith column of A with ~b. Then Cramer’s rule states that x1 =
D1

D , x2 = D2

D , . . . , xn = Dn

D . We may prove it in class with pictures which
connect determinants to area (eventually I’ll add this to an appendix). This
method of solving a system of equations is quickly doable for 2 by 2 and 3
by 3 systems, but becomes computationally inefficient beyond (as computing
determinants is time consuming and numerically unstable on large matrices).
For large systems, it is better to use Gaussian elimination. Cramer’s rule is a
powerful theoretical tool, and can simplify generic computations.

Example 3.2. Let’s solve

 1 2 0
−2 0 1
0 3 −2

x1

x2

x3

 =

 2
−2
1

 using Cramer’s rule.

We compute the determinant of the coefficient matrix first to obtain

D =

∣∣∣∣∣∣
1 2 0
−2 0 1
0 3 −2

∣∣∣∣∣∣ = −11.

Next we replace each column of the coefficient matrix with the right column of
our augmented system and compute the three determinants to obtain∣∣∣∣∣∣

2 2 0
−2 0 1
1 3 −2

∣∣∣∣∣∣ = −12,

∣∣∣∣∣∣
1 2 0
−2 −2 1
0 1 −2

∣∣∣∣∣∣ = −5,

∣∣∣∣∣∣
1 2 2
−2 0 −2
0 3 1

∣∣∣∣∣∣ = −2.
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Cramer’s rule requires that we divide each of these determinants by the original
determinant, giving the solution x1 = 12/11, x2 = 5/11, x3 = 2/11. Using
Gaussian Elimination, we obtain the same solution 1 2 0 2

−2 0 1 −2
0 3 −2 1

 rref−−→

1 0 0 12/11
0 1 0 5/11
0 0 1 2/11

 ,
however the arithmetic involved in keeping track of fractions or really large
integers becomes much more difficult by hand without Cramer’s rule.

Example 3.3. Consider the electrical system in Example 3.1 where E = 12,
R1 = 2, and R2 = R3 = 4. The corresponding augmented matrix we used to
solve this system was1 −1 −1 0

2 4 0 E
0 −4 4 0

 , A =

1 −1 −1
2 4 0
0 −4 4

 , b =

0
E
0

 , D =

∣∣∣∣∣∣
1 −1 −1
2 4 0
0 −4 4

∣∣∣∣∣∣ = 32.

We now replace each column with ~b and compute the determinant of the corre-
sponding matrix (remember to cofactor along the column which contains 0, 12, 0
to do this quickly)

D1 =

∣∣∣∣∣∣
0 −1 −1
12 4 0
0 −4 4

∣∣∣∣∣∣ = 96, D2 =

∣∣∣∣∣∣
1 0 −1
2 12 0
0 0 4

∣∣∣∣∣∣ = 48, D3 =

∣∣∣∣∣∣
1 −1 0
2 4 12
0 −4 0

∣∣∣∣∣∣ = 48.

Dividing each of these by the determinant of the original matrix gives the
solution i1 = 96/32 = 3, i2 = i3 = 48/32 = 3/2, which matches the solution we
found using row reduction in the previous section.

3.2 Find Best Fit Curves

3.2.1 Interpolating Polynomials

Through any two points (with different x values) there is a unique line of the
form y = mx + b. If you know two points, then you can use them to find
the values m and b. Through any 3 points (with different x values) there
is a unique parabola of the form y = ax2 + bx + c, and you can use the 3
points to find the values a, b, c. As you increase the number of points, there
is still a unique polynomial (called an interpolating polynomial) with degree
one less than the number of points, and you can use the points to find the
coefficients of the polynomial. In this section we will illustrate how to find
interpolating polynomials, and show how the solution requires solving a linear
system. Cramer’s rule or Gaussian elimination will give us the solution.

To organize our work, let’s first standardize the notation. Rather than
writing y = mx + b, let’s write y = a0 + a1x (where a0 = b and a1 = m). For

a parabola, let’s write y = a0 + a1x+ a2x
2 =

2∑
k=0

akx
k. We can now write any

polynomial in the form

y = a0 + a1x+ · · ·+ anx
n =

n∑
k=0

akx
k.

By standardizing the coefficients, we can use summation notation to express
any degree polynomial by changing the n on the top of the summation sign.
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Now that our notation is organized, let’s use it to find a polynomial through 3
points.

Example 3.4. Let’s find a parabola through the three points (0, 1), (2, 3), (4, 7).
The polynomial is y = a0 +a1x+a2x

2 and our job is to find the three constants
a0, a1, a2. Since we have three points, we put these points into the equation to
obtain the three equations

a0 = 1 a0 + 2 a1 + 4 a2 = 3 a0 + 4 a1 + 16 a2 = 7

This is a linear system with 3 equations and 3 unknowns. We now write the
system in matrix form and reduce it1 0 0 1

1 2 4 3
1 4 16 7

 rref−−→

1 0 0 1
0 1 0 1/2
0 0 1 1/4

 .
The reduce row echelon form tells us that the coefficients are a0 = 1, a1 =
1/2, a2 = 1/4, which means our parabola is y = 1 + 1

2x + 1
4x

2. Cramer’s rule
gives D = 16, D1 = 16, D2 = 8, D3 = 4, and so a0 = 16/16 = 1, a1 = 8/16 =
1/2, a2 = 4/16 = 1/4, the same as with Gaussian elimination.

Once you have obtained your interpolating polynomial, you can always check
your work by putting the points back into your new equation. When x = 0 we
have y = 1 + 0 + 0 = 1, when x = 2 we have 1 + 1 + 1 = 3, and when x = 4 we
have 1 + 2 + 4 = 7, which means the parabola passes through the three points
(0,1), (2,3), and (4,7) as needed.

In the example above, notice that powers of x appear as the coefficients of
our coefficient matrix, and we augment that matrix by the y values. This is
the general pattern for finding an interpolating polynomial. The diagram below
shows the general method for finding an interpolating polynomial through three
points.

(x1, y1), (x2, y2), (x3, y3)x0
1 = 1 x1

1 x2
1 y1

1 x1
2 x2

2 y2

1 x1
3 x2

3 y3

 rref−−→

1 0 0 a0

0 1 0 a1

0 0 1 a2


y = a0 + a1x+ a2x

2

Finding an interpolating polynomial through 4 points is very similar, you just
have to add one more row and column to the matrix and repeat the process.

(x1, y1), (x2, y2), (x3, y3), (x4, y4)
1 x1

1 x2
1 x3

1 y1

1 x1
2 x2

2 x3
2 y2

1 x1
3 x2

3 x3
3 y3

1 x1
4 x2

4 x3
4 y4

 rref−−→


1 0 0 0 a0

0 1 0 0 a1

0 0 1 0 a2

0 0 0 1 a3


y = a0 + a1x+ a2x

2 + a3x
3

This pattern generalizes to

all dimensions. Remember that the x values must be different (a function
requires only one output for each input). Once you have obtained your

solution, remember that you can easily check if your solution is correct by
plugging the points into your equation.

3.2.2 Least Squares Regression

Interpolating polynomials give a polynomial which passes through every point
listed. While they pass through every point in a set of data, the more points



CHAPTER 3. LINEAR ALGEBRA APPLICATIONS 47

the polynomial must pass through, the more the polynomial may have to make
large oscillations in order to pass through each point. Sometimes a simple line or
parabola is desired that passes near the points and gives a good approximation
of a trend in the data. When I needed to purchase a minivan for my expanding
family, I gathered mileage and price data for about 40 cars from the internet. I
plotted this data and discovered an almost linear downward trend (as mileage
increased, the price dropped). Using this data I was able to create a line to
predict the price of a car. I then used this data to talk the dealer into dropping
the price of their car by over $1000. Finding an equation of this line, called
the least squares regression line, is the content of this section. In other words,
if you have 3 or more points, how do you find a line that is ”closest” to passing
through these points? The least squares regression line is used to find trends in
many branches of science, in addition to haggling for lower prices when buying
a car. Statistics builds upon this idea to provide powerful tools for predicting
the future.

Let’s introduce the idea with an example. Let’s find a line that is closest to
passing through the three points (0, 1), (2, 3), and (4, 6). Since the points are
not collinear, there is not a line through all three. Suppose for a moment that
there were a line of the form y = b+mx = a0 + a1x that did pass through the
points. Plug our 3 points into the equation b+mx = y, which gives the system
of equations

b = 1

b+ 2m = 3

b+ 4m = 6

augmented matrix−−−−−−−−−−−→

1 0 1
1 2 3
1 4 6

 matrix eqn−−−−−−−→

1 0
1 2
1 4

[ b
m

]
=

3
1
6

 .
Notice that the system can be written in matrix form A~x = ~b where A contains
a column of 1’s and x values, and ~b is a column of y values. If you try to reduce
this matrix, you will discover the system is inconsistent (has no solution) which
should not be a surprise since there is no line which passes through these three
points. Notice that there are more equations (3 equations) than variables (b
and m), which means the system is over determined.

While there is no solution, can we still use our matrix equation to find a
solution? Is there a way to reduce the number of rows in our system, so that
the resulting system has only 2 rows? If we multiply on the left by a 2 by 3
matrix, we would obtain a system with 2 rows instead of 3, and the rows of the
new matrix would be linear combinations of the rows of our original matrix.
The only 2 by 3 matrix in this problem is the transpose of A. So let’s multiply
both sides of the matrix equation by the transpose of A, and see what happens:

A =

1 0
1 2
1 4

 , AT =

[
1 1 1
0 2 4

]
,

ATA =

[
1 1 1
0 2 4

]1 0
1 2
1 4

 =

[
3 6
6 20

]
, AT~b =

[
1 1 1
0 2 4

]1
3
6

 =

[
10
30

]
.

The equation A~x = ~b becomes the equation ATA~x = AT~b, or

[
20 6
6 3

] [
m
b

]
=[

30
10

]
. This is a system of 2 equations with 2 unknowns, and it has a unique

solution. Reducing

[
3 6 10
6 20 30

]
to

[
1 0 5/6
0 1 5/4

]
means the solution is y =

5
6 + 5

4x. In Linear Algebra we would prove all the results above. For now, let’s
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just use these tools. In Excel you can create a scatterplot of data nd then right
click to automatically have the computer find the least square regression line.

In general, a least squares regression problem is solved by (1) assuming the
form of a solution (y = b + mx), (2) putting your values of x and y into the

system to get a matrix equation A~x = ~b, (3) multiply both sides by AT , and (4)
solving the simplified system, using elimination or Cramer’s rule. Since these
simplified systems will always be 2 by 2 systems, Cramer’s rule provides an
extremely quick solution.

Example 3.5. Let’s find the least squares regression line which passes nearest
the four points (0, 0), (−1, 2), (−2, 4), and (0,−1). We are after an equation
of the form y = b + mx. The four points give the equations b = 0, b − m =
2, b− 2m = 4, b = −1. In matrix form we write

1 0
1 −1
1 −2
1 0

[ bm
]

=


0
2
4
−1

 , A =


1 0
1 −1
1 −2
1 0

 ,~b =


0
2
4
−1

 ,
AT =

[
1 1 1 1
0 −1 −2 0

]
, ATA =

[
4 −3
−3 5

]
, AT~b =

[
5
−10

]
.

We now need to solve the matrix equation

[
4 −3
−3 5

] [
b
m

]
=

[
5
−10

]
. Cramer’s

rule gives the solution as

b =

∣∣∣∣ 5 −3
−10 5

∣∣∣∣∣∣∣∣ 4 −3
−3 5

∣∣∣∣ =
−5

11
, m =

∣∣∣∣ 4 5
−3 −10

∣∣∣∣∣∣∣∣ 4 −3
−3 5

∣∣∣∣ =
−25

11
.

The least square regression line is y = − 5
11 −

25
11x.

A Quick 2 by 2 Inverse

Finding the least square regression line requires solving the system ATA~x =
AT~b for ~x. Symbolically we can solve this system by multiplying both sides on
the left by (ATA)−1 (this inverse will exist), giving the solution

~x

[
b
m

]
= (ATA)−1AT~b.

For 2 by 2 matrices, there is quick way to find the inverse. To find the

inverse of a 2 by 2 matrix A =

[
a b
c d

]
, we need to solve the system

[
a b 1
c d 0

]
to find the first column of the inverse and

[
a b 0
c d 1

]
to find the second column.

Cramer’s rule gives the formula

A−1 =


∣∣∣∣1 b
0 d

∣∣∣∣ /|A| ∣∣∣∣0 b
1 d

∣∣∣∣ /|A|
∣∣∣∣a 1
c 0

∣∣∣∣ /|A| ∣∣∣∣a 0
c 1

∣∣∣∣ /|A|

 =
1

|A|

[
d −b
−c a

]

To find the inverse of a 2 by 2 matrix, just interchange the diagonal entries,
change the sign on the others, and divide by the determinant.
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Example 3.6. Let’s repeat the introductory example from the last section by
using an inverse to find the line closest to passing through the three points
(0, 1), (2, 3), and (4, 6). The matrix equation and relevant matrices are1 0

1 2
1 4

[ b
m

]
=

3
1
6

 , A =

1 0
1 2
1 4

 ,~b =

1
3
6

 ,
AT =

[
1 1 1
0 2 4

]
, ATA =

[
3 6
6 20

]
, AT~b =

[
10
30

]
.

The inverse of (ATA) is
1

60− 36

[
20 −6
−6 3

]
, which means our solution is[

b
m

]
= (ATA)−1AT b =

1

24

[
20 −6
−6 3

] [
10
30

]
=

1

24

[
20
30

]
=

[
5/6
5/4

]
.

We of course obtained the same solution y = 5
6 + 5

4x.

The advantage of using an inverse to solve a least square regression problem
is that the product W = (ATA)−1AT can be computed once, and then solutions

to the least squares regression problem are found by the simple product ~x = W~b.
A different set of data points where the x values remain the same but the y
values change can then be solved by just changing ~b and using the same results
as before.

Example 3.7. Let’s find the least square regression line for the two data sets

1. (0, 2), (2, 1), and (4, 3)

2. (0, 6), (2, 3), and (4,−1)

Notice that both of the data sets have the same x values as the previous example.
Hence we can still use

A =

1 0
1 2
1 4

 , AT =

[
1 1 1
0 2 4

]
, ATA =

[
3 6
6 20

]
, (ATA)−1 =

1

24

[
20 −6
−6 3

]
.

The change occurred with the y values, which means that ~b changed for each
problem. Before solving either, we compute

W = (ATA)−1AT =
1

24

[
20 −6
−6 3

] [
1 1 1
0 2 4

]
=

1

24

[
20 8 −4
−6 0 6

]
We can now solve both problems rapidly, by multiplying by W .

1. The y values are 2, 1, 3, so we compute

1

24

[
20 8 −4
−6 0 6

]2
1
3

 =
1

24

[
36
6

]

which means that our line is (after simplifying fractions) y = 3
2 + 1

4x.

2. The y values are 6, 3,−1, so we compute

1

24

[
20 8 −4
−6 0 6

] 6
3
−1

 =
1

24

[
148
−42

]

which means that our line is (after simplifying fractions) y = 37
6 −

7
4x.
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3.3 Partial Fraction Decompositions

A partial fraction decomposition is a method of breaking a complex rational
function up into the sum of smaller simpler functions to work with. We will
be using partial fraction decompositions to rapidly solve differential equations
throughout the semester (using Laplace transforms). For now, we will start
by gaining practice with partial fraction decompositions by integrating rational
functions. To illustrate their value, let’s start with an example.

Example 3.8. Let’s find the integral of the function f(x) =
2x+ 1

(x− 2) (x− 3)
.

The denominator is the product of two linear functions. Is it possible to break
up the function into two simpler functions, namely can we write

2x+ 1

(x− 2) (x− 3)
=

A

x− 2
+

B

x− 3

for unknown constants A and B? If we multiply both sides by the original
denominator, we obtain (cancel the common factors)

2x+ 1 = A(x− 3) +B(x− 2).

Now expand the right hand side and collect the terms which have the same
powers of x,

2x+ 1 = (A+B)x+ (−3A− 2B).

Both sides of the equation above represent lines. In order for the two lines to
be the same line, they must have the same slope and intercept. This means we
can create an equation for each power of x by equating the coefficients on both
sides of the equation. This gives us the two equations

2 = A+B 1 = −3A− 2B.

This is a linear system and Gaussian elimination or Cramer’s rule will solve it:[
1 1 2
−3 −2 1

]
rref−−→

[
1 0 −5
0 1 7

]

The solution is A = −5, B = 7 and so
2x+ 1

(x− 2) (x− 3)
=
−5

x− 2
+

7

x− 3
. Finish

by integrating each term separately to obtain∫
2x+ 1

(x− 2) (x− 3)
dx =

∫
−5

x− 2
dx+

∫
7

x− 3
dx = −5 ln |x− 2|+ 7 ln |x− 3|.

3.3.1 Finding the correct form

The general process for finding a partial fraction decomposition requires that
you start with an appropriate guess for the final form, multiply both sides by
the original denominator, collect like powers of x on both sides, and then solve
the corresponding linear system. How do you pick an appropriate guess to begin
with? Before giving the full idea, let’s look at a simple example involving only
integers and fractions, before generalizing to polynomials.

The fraction 1
6 = 1

2·3 can be written as a sum of two fractions with sim-
pler denominators as 1

6 = 1
2 −

1
3 . The prime factors of 6 are 2 and 3, so we

decompose the more complicated fraction 1
6 into two simpler fractions whose

denominators are the factors of 6. The fraction 5
9 = 5

3·3 has a repeated factor
of 3 in the denominator, and can be written as 5

9 = 1
3 + 2

32 . This simplifies the
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numerators so that they are all less than the denominator. Improper fractions
(a larger numerator than denominator) are written in proper form and then we
decompose the remainder, as in 14

9 = 1 + 5
9 which then becomes 1 + 1

3 + 2
9 after

decomposing the fraction.
In a similar manner, the way we decompose a rational function depends on

the factors of the denominator. If the degree of th numerator is larger than the
denominator, you start by performing long division to force the degree of the
numerator to be smaller than the denominator. Then find the factors of the
denominator. The appropriate guess for your partial fraction decomposition

1. Include a term for every factor of the denominator.

2. The numerator of each term is one degree less than the degree of the
factor (so constants go above linear factors, and linear terms go above
quadratic factors).

3. If a factor is a repeated factor, then it should be included each time, with
an increasing power in the denominator.

A proper partial fraction decomposition form will have the same number of
unknowns as the degree of the denominator.

Example 3.9. Let’s illustrate the ideas above by picking the appropriate par-
tial fraction decomposition form for the following rational functions:

1.
2x+ 3

x2 − 1

2.
x+ 1

x3 + x

3.
3x+ 2

x2 + 2x+ 1

4.
x4 + 2x− 1

x(x− 1)3(x2 + 4x+ 5)(x2 + 1)2

For the first, the denominator factors as two linear terms (x − 1)(x + 1).
Since both of these are linear, we place constants above each one to obtain

2x+ 3

x2 − 1
=

A

x− 1
+

B

x+ 1
.

There are two unknowns, which matches the degree of the denominator.
The denominator of the second factors as x(x2 + 1). The quadratic term

does not factor any more over real number (its zeros are ±
√
−1), so we place a

linear guess above it. This gives

x+ 1

x3 + x
=
A

x
+
Bx+ C

x2 + 1
.

On the third, the denominator factors as (x+1)2. Because this is a repeated
factor, it get’s included twice, but each time we include it we increase the power
on the denominator. Because the factor is linear, we place a constant above
each term. This gives

3x+ 2

x2 + 2x+ 1
=

A

x+ 1
+

B

(x+ 1)2
.
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On the last example, the denominator is already factored. Each quadratic
factor needs a linear term placed above it. The form is

x4 + 2x− 1

x(x− 1)3(x2 + 4x+ 5)(x2 + 1)2
=
A

x
+

H

x− 1
+

I

(x− 1)2
+

J

(x− 1)3

+
Bx+ C

x2 + 4x+ 5
+
Dx+ E

x2 + 1
+

Fx+G

(x2 + 1)2
.

Notice that there are 10 unknowns, which is the degree of the denominator.

3.3.2 Integrating Rational Functions

A rational function is the quotient of two polynomials, r(x) = p(x)
q(x) . If we

can factor the denominator into products of linear and quadratic terms, then
we can always integrate the rational function by performing a partial fraction
decomposition and then integrating each term. The three key integrals used to
are

∫
1

x−adx = ln |x − a|,
∫

1
x2+1dx = arctanx, and

∫
x

x2+1dx = 1
2 ln(x2 + 1).

You may have to complete the square and perform a u-substitution to reduce
the integrals to one of these 3 key integrals.

Example 3.10. Let’s compute
∫ −x2+2 x+5

(x2+1)(x−3)dx, using the form

−x2 + 2x+ 5

(x2 + 1) (x− 3)
=
Ax+B

x2 + 1
+

C

x− 3
.

In this case the denominator doesn’t factor into a product of linear terms, so the
quadratic term x2 + 1 has a linear term Ax+B in the numerator. Multiplying
both sides by the denominator and collecting powers of x gives

−x2 + 2x+ 5 = (A+ C)x2 + (B − 3A)x+ (C − 3B).

Equating the coefficients of x on each side gives the three equations

5 = C − 3B, 2 = B − 3A,−1 = A+ C

Rewriting in matrix form and reducing the matrix gives us 0 −3 1 5
−3 1 0 2
1 0 1 −1

 rref−−→

1 0 0 −6/5
0 1 0 −8/5
0 0 1 1/5

 .
We can now integrate using our solution to obtain∫

−x2 + 2x+ 5

(x2 + 1) (x− 3)
dx =

∫
1

5

(
−6x− 8

x2 + 1

)
+

1

5

(
1

x− 3

)
dx

= −6

5

∫
x

x2 + 1
dx− 8

5

∫
1

x2 + 1
dx+

1

5

∫
1

x− 3
dx

= − 6

10
ln |x2 + 1| − 8

5
arctanx+

1

5
ln |x− 3|+ C.

3.4 Markov Process

Matrices can be used to model a process called a Markov Process. To fit this
kind of model, a process must have specific states, and the matrix which models
the process is a transition matrix which specifies how each state will change
through a given transition. An example of a set of states is “open” or “closed”
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in an electrical circuit, or “working properly” and “working improperly” for
operation of machinery at a manufacturing facility. A car rental company which
rents vehicles in different locations can use a Markov Process to keep track of
where their inventory of cars will be in the future. Stock market analysts
use Markov processes and a generalization called stochastic processes to make
predictions about future stock values.

Example 3.11. Let’s illustrate a Markov Process related to classifying land
in some region as “Residential,” “Commercial,” or “Industrial.” Suppose in
a given region over a 5 year time span that 80% of residential land will re-
main residential, 10% becomes commercial, and 10% becomes industrial. For
commerical land, 70% remains commercial, 20% becomes residential, and 10%
becomes industrial. For industrial land, 70% remains industrial, 30% becomes
commercial, and 0% becomes residential. To find what happens at the end of a
5 year period, provided we know the current R, C, and I values, we could just
compute

Rnew = .8R+ .2C + 0I
Cnew = .1R+ .7C + .3I
Inew = .1R+ .1C + .7I

matrix form−−−−−−−→

Rnew

Cnew

Inew

 =

.8 .2 0
.1 .7 .3
.1 .1 .7

RC
I


The matrix on the right above is called the transition matrix of the Markov
process. It is a matrix where each column relates to one of the “states,” and

R C I

to R
to C
to I

.8 .2 0
.1 .7 .3
.1 .1 .7


Transition Matrix

the numbers in that column are the proportions of the column state that will
change to the row state through the transition (the ordering on row and column
states is the same). We calculate the next “state” by multiplying our current
state by the transition matrix. If current land use is about 50% residential,
30% commercial, and 20% industrial, then 5 years later the land use would be.8 .2 0

.1 .7 .3

.1 .1 .7

50
30
20

 =

46
32
22


If the same transitions in land use continue, we can multiply the previous pro-
jection (state) by the transition matrix to obtain a 10 and 15 year projection
for land use:.8 .2 0

.1 .7 .3

.1 .1 .7

46
32
22

 =

43.2
33.6
23.2

 .8 .2 0
.1 .7 .3
.1 .1 .7

43.2
33.6
23.2

 =

41.28
34.8
23.92


10 Year Projection 15 Year Projection

As we continue to multiply on the left by our transition matrix, each time we
add 5 more years to our projection. This projection is valid as long as the same
trends continue.

3.4.1 Steady State Solutions

Consider the land use example from above. Let ~x0 be our initial state. If our
transition matrix A remains the same forever, what will eventually happen to
the proportion of land devoted to residential, commercial, or industrial use?
We can write each new state as powers of the transition matrix A by writing
~x1 = A~x0, ~x2 = A~x1 = AA~x0 = A2~x0, ~x3 = A3~x0, and ~xn = An~x0. What
happens to the product An~x0 as n → ∞? Can we reach a state ~x = (R,C, I)
such that A~x = ~x, the next state is the same as the current? If this occurs, then
any future transitions will not change the state either. This state ~x is called a
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steady state, since it does not change when multiplied by the transition matrix
(it remains steady).

Finding a steady state is an eigenvalue-eigenvector problem, as we are look-
ing for a solution to the equation A~x = 1~x (where the eigenvalue is 1). For any
Markov process (where the columns of the matrix sum to 1), the number 1 will
always be an eigenvalue. All we have to do is find the eigenvectors correspond-
ing to the eigenvalue 1. The solution to the problem lim

n→∞
An~x0 is this steady

state, and is an eigenvector. For the land use Markov process, an eigenvector

(using technology) corresponding to 1 is
[

3
2

3
2 1

]T
. Since any multiple of an

eigenvector is again an eigenvector, we can multiply by a constant so that the

proportions sum to 100. Multiplying by 2 we have
[
3 3 2

]T
, which means

that the ratio of land will be 3 acres residential to 3 acres commercial to 2 acres
industrial. To write this in terms of percentages, divide each component by 8
(the sum 3 + 3 + 2) to obtain 3/8 : 3/8 : 2/8 or multiplying by 100 we have
37.5% : 37.5% : 25%. These are the long term percentages of land use.

More examples are available in the handwritten solutions to problems, avail-
able online.

3.5 The Second Derivative Test

Let’s start with a review from first semester calculus. If a function y = f(x)
has a relative extremum at x = c, then f ′(c) = 0 or the derivative is undefined.
The places where the derivative is either zero or undefined are called critical
values of the function. The first derivative test allows you to check the value
of the derivative on both sides of the critical value and then interpret whether
that point is a maximum or minimum using increasing/decreasing arguments.
The second derivative test requires you to compute the second derivative at
x = c. If f ′′(c) > 0 (the function is concave upwards), then the function has a
minimum at x = c. If f ′′(c) < 0 (the function is concave downwards), then the
function has a maximum at x = c. If f ′′(c) = 0, then the second derivative test
fails.

Example 3.12. The function f(x) = x3 − 3x has derivatives f ′ = 3x2 − 3 and
f ′′ = 6x. The first derivative is zero when 3(x2 − 1) = 3(x − 1)(x + 1) = 0,
or x = ±1. The second derivative at x = 1 is 6 (concave upwards), so there
is a minimum at x = 1. The second derivative at x = −1 is −6 (concave
downwards), so there is a maximum at that point.

We’re now ready to extend this idea to all functions of the form f : Rn → R
(the output is 1 dimensional, so that it makes sense to talk about a largest or
smallest number). We will only consider the case n = 2, as it simplifies the
computations and provides all that is needed to extend to all dimensions. The
first derivative test breaks down in every dimension past the first, because there
are more than 2 ways to approach a point of the domain (you can’t just look at
the left side or right side). However, at a local extremum, the derivative is still
zero, which often results in solving a system of equations. In higher dimensions,
there are three classifications of critical points: maximum, minimum, or saddle
point (a point where the tangent plane is horizontal, but in some directions you
increase and in other directions you decrease).

The second derivative test does not break down. Consider the function
z = f(x, y). Its derivative Df(x, y) =

[
fx fy

]
is a function with two inputs

and two outputs. The second derivative D2f(x, y) =

[
fxx fxy
fyx fyy

]
is a 2 × 2

square matrix called the Hessian of f . This matrix will always be symmetric,
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in that the transpose of the matrix equals itself (because fxy = fyx). At a
critical point (where the first derivative is zero), the eigenvalues of D2f give
the directional second derivative in the direction of a corresponding eigenvector.
The largest eigenvalue is the largest possible value of the second derivative in
any direction and the smallest eigenvalue is the smallest possible value of the
second derivative in any direction.

The second derivative test is the following. Start by finding all the the second derivative test with
eigenvaluescritical points (places where the derivative is zero). Then find the eigenvalues of

the second derivative. Each eigenvalue represents the 2nd directional derivative
in the direction of a corresponding eigenvector. In every other direction, the
directional 2nd derivative is between the smallest and largest eigenvalue.

1. If the eigenvalues are all positive at a critical point, then in every direction
the function is concave upwards. The function has a minimum at that
critical point.

2. If the eigenvalues are all negative at a critical point, then in every direction
the function is concave downwards. The function has a maximum there.

3. If there is a positive eigenvalue and a negative eigenvalue, the function
has a saddle point there.

4. If either the largest or smallest eigenvalue is zero, then the second deriva-
tive test fails.

Eigenvalues are the key numbers needed to generalize optimization to all di-
mensions. A proof of this fact is beyond the scope of this class.

Example 3.13. For the function f(x, y) = x2 + xy + y2, the gradient is Df =[
2x+ y x+ 2y

]
, which is zero only at x = 0, y = 0 (solve the system of

equations 2x + y = 0, x + 2y = 0). The Hessian is D2f =

[
2 1
1 2

]
. The

eigenvalues are found by solving 0 = det

[
2− λ 1

1 2− λ

]
= (2 − λ)2 − 1 =

4 − 4λ + λ2 − 1 = (λ − 3)(λ − 1), so λ = 3, 1 are the eigenvalues. Since both
eigenvalues are positive, the function is concave upwards in all directions, so
there is a minimum at (0, 0).

The eigenvectors of the Hessian help us understand more about the graph of
the function. An eigenvector corresponding to 3 is (1,1), and corresponding to
1 is (-1,1). These vectors are drawn in figure 3.2, together with two parabolas
whose 2nd derivatives are precisely 3 and 1. The parabola which opens upwards
the most quickly has a 2nd derivative of 3. The other parabola has a second
derivative of 1. In every other direction, the 2nd derivative would be between
1 and 3.

Example 3.14. For the function f(x, y) = x3 − 3x + y2 − 4y, the gradient is
Df =

[
3x2 − 3 2y − 4

]
, which is zero at x = 1, y = 2 or x = −1, y = 2. Hence

there are two critical points, so we have to find two sets of eigenvalues. The

Hessian is D2f =

[
6x 0
0 2

]
. When x = −1, y = 2, the eigenvalues of

[
−6 0
0 2

]
are λ = −6, 2. Since one is positive and one is negative, there is a saddle

point at (−1, 2). When x = 1, y = 2, the eigenvalues of

[
6 0
0 2

]
are λ = 6, 2.

Since both are positive, there is a minimum at (−1, 2) (as in every direction the
function is concave upwards).
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Figure 3.2: The eigenvectors of the second derivative tell you the directions
in which the 2nd derivative is largest and smallest. At each critical point,
two eigenvectors are drawn as well as a parabola whose second derivative (the
eigenvalue) matches the second derivative of the surface in the corresponding
eigenvector direction.

Again the eigenvectors help us understand how the function behaves, as
illustrated in figure 3.2. At (1,2) we have an eigenvector (1,0) corresponding to
6, and (0,1) corresponding to 2. In both eigenvector directions the function is
concave upwards, but opens more stepply in the (1,0) direction as 6 is bigger
than 2. At (-1,2) the we have an eigenvector (1,0) corresponding to -6, and
(0,1) corresponding to 2. The functions opens stepply downwards in the (1,0)
direction, and upwards in the (0,1) direction.
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3.6 Preparation

This chapter covers the following ideas. When you create your lesson plan, it should contain examples which
illustrate these key ideas. Before you take the quiz on this unit, meet with another student out of class and
teach each other from the examples on your lesson plan.

1. Find the currents in electrical systems involving batteries and resistors, using both Gaussian elimination
and Cramer’s rule.

2. Find interpolating polynomials. Use the transpose and inverse of a matrix to solve the least squares
regression problem of fitting a line to a set of data.

3. Find the partial fraction decomposition of a rational function. Utilize this decomposition to integrate
rational functions.

4. Describe a Markov process. Explain how an eigenvector of the eigenvalue λ = 1 is related to the limit
of powers of the transition matrix.

5. Explain how to generalize the derivative to a matrix. Use this generalization to locate optimal values
of the function using the second derivative test. Explain the role of eigenvalues and eigenvectors in the
second derivative test.

Here are the preparation problems for this unit. Please make sure you come to class having completed
your problem, and able to explain to others how to do it. We will often be doing problems very similar to
the prep problems in class, and your preparation will help you contribute to your group. As time permits, I
will post handwritten solutions to these problems on I-Learn. Please check there if you are struggling with
your prep problem.

Preparation Problems (click for solutions) Webcasts on YouTube - click here

Day 1 1a, 1b, 2a, 3b

Day 2 3f, 4c, 4d, 5b

Day 3 6a, 6b, 7d, 7g

Day 4 Lesson Plan, Quiz

The problems listed below are found in this book.

Concept Suggestions Relevant Problems

Kirchoff’s Laws 1

Cramer’s Rule 2

Interpolating Polynomials 3

Least Square Regression 4

Partial Fraction Decomposition 5

Markov Process 6

2nd Derivative Test 7

3.7 Problems

1. Consider the following electrical systems. Use the given values to find the current in each wire.

http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/03-Linear-Algebra-Applications-Preparation-Solutions.pdf
http://www.youtube.com/user/bmwoodruff#grid/user/26D7C9E45A54794F
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E R2

R1

R3

i1

i2

i3

E R2

R1

R3

R4 R5

R6

i1

i2

i3

i4

i5

i6

(a) E = 12, R1 = 2, R2 = 2, R3 = 2.

(b) E = 12, R1 = 2, R2 = 3, R3 = 3.

(c) E = 12, R1 = 2, R2 = 3, R3 = 6.

(d) E = 12, R1 = 1, R2 = 2, R3 = 2.

(e) E = 9, R1 = 3, R2 = 1, R3 = 2.

(f) E = 6, R1 = 1, R2 = 1, R3 = 2.

(g) E = 12, R1 = 1, R2 = 1, R3 = 1, R4 = 1, R5 = 1, R6 = 1

(h) E = 12, R1 = 2, R2 = 1, R3 = 3, R4 = 4, R5 = 2, R6 = 3

2. Use Cramer’s rule to find solutions to the following linear systems. If Cramer’s rule fails, explain why.

(a) 2x+ 3y = 0, x− 2y = 1

(b) x+ y = 2, x− y = 3

(c) 3x+ y = 6, x+ 3y = 2

(d) 2x+ y = 1, 4x+ 2y = 2

(e) x+ y = 0, 2x− y + z = 1, x+ z = 0

(f) x+ 2y = 3, x− y + z = 0, x+ 3y + z = 1

(g) y + 2z = 1, x− z = 3, 2x+ y = 1

3. In each of the following scenarios, find a polynomial of least degree which passes through the given
points. Then plot the points and the polynomial.

(a) (1, 2), (3, 3)

(b) (0, 1), (2, 3), (−1, 4)

(c) (1, 1), (2, 2), (−1, 5)

(d) (1, 2), (3, 3), (5, 6)

(e) (1, 2), (3, 3), (5, 5)

(f) (0, 1), (1, 3), (−1, 4), (2, 4)

4. For each set of data points, find an equation of the least squares regression line. Plot the points and
the line on the same axes.

(a) (0, 0), (1, 3), (1, 2)

(b) (1, 1), (2, 1), (3, 2)

(c) (1, 2), (3, 0), (5, 1)

(d) (0, 0), (1, 3), (1, 2), (4, 5)

(e) (0, 0), (1, 3), (1, 2), (4,−5)

(f) (−1, 2), (1, 3), (2, 5), (3, 3)

(g) Challenge: Find an equation of the least squares
regression parabola y = ax2+bx+c which passes
through the points (0, 0), (1, 3), (1, 2), (4, 5).
[Hint, you will need a 4 by 3 matrix for A in-
stead of an n by 2. Use the transpose to reduce
the size of the matrix to a 3 by 3 matrix, and
then solve.]

5. Compute each integral by finding a partial fraction decomposition.

(a)

∫
1

(x− 3)(x+ 2)
dx

(b)

∫
2x+ 3

(x− 3)(x+ 2)
dx

(c)

∫
x

(x+ 1)(x− 2)
dx

(d)

∫
x2 + 2

x2(x− 2)
dx

(e)

∫
1

(x2 + 1)(x− 2)
dx

(f)

∫
x+ 1

(x2 + 1)x2
dx

6. Markov Process - In each scenario, write the transition matrix. If an initial state is given, then find
the next two states. Finish by finding a steady state solution and use it to answer the question at the
end.
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(a) In a certain town, there are 3 types of land zones: residential, commercial, and industrial. The
city has been undergoing growth recently, and the city has noticed the following trends. Every 5
years, 10% of the older residential land gets rezoned as commercial land, while 5% gets rezoned
as industrial. The other 85% remains residential. For commercial land, 70% remains commercial,
while 10% becomes residential and 20% becomes industrial. For industrial land, 60% remains
industrial, while 25% becomes commercial and 15% becomes residential. Currently the percent of
land in each zone is 40% residential, 30% commercial, and 30% industrial. What will the percent
distribution be in 5 years? In 10 years? If this trend continues indefinitely, what percent of the
land will eventually be residential?.

(b) Suppose we own a car rental company which rents cars in Idaho Falls and Rexburg. The last few
weeks have shown a weekly trend that 60% of the cars rented in Rexburg will remain in Rexburg
(the other 40% end up in IF), whereas 80% of the cars rented in Idaho Falls will remain in Idaho
Falls. If there are currently 60 cars in Rexburg and 140 cars in IF, how many will be in each city
next week? In two weeks? In three weeks? If this trend continues indefinitely, about how many
cars should you expect to find in Rexburg each week?

(c) Repeat the previous problem if 40% of the cars rented in Rexburg will remain in Rexburg (the
other 60% end up in IF), whereas 80% of the cars rented in Idaho Falls will remain in Idaho Falls.

(d) Repeat the previous problem if 70% of the cars rented in Rexburg will remain in Rexburg (the
other 30% end up in IF), whereas 80% of the cars rented in Idaho Falls will remain in Idaho Falls.

(e) A school cafeteria regularly offers 3 types of meals to its students. One of the meals is always a
pizza/salad combo, One is always hamburgers and fries, and one is a daily special which changes
daily. In an attempt to understand student preferences, the school discovered the following infor-
mation. If a student has a hamburger one day, then there is a 30% chance they will try the daily
special the next day, and a 40% percent chance they will have the salad bar. If they have the
salad bar, then there is a 30% chance they’ll switch to the daily special, and a 40% chance they’ll
switch to the hamburger. If the have the daily special, then there is a 50% chance they’ll get the
daily special the next day, a 20% chance they’ll switch to pizza, and a 30% chance they’ll switch
to hamburger. If this trend continues, what percent of the students will eat each type of meal?

[While this problem is highly rigged, there is a branch of applied mathematics which is studied by
financial analysts call stochastic processes which models such a scenario. This modeling process
can help predict how a new restaurant will perform in a city, sometimes predict stock market
fluctuations, and more. The study of stochastic processes begins with a Markov process and then
introduces statistics and probability to help predict what happens when trends change.]

7. For each function, find the location of all critical points. Then use the second derivative test to
determine if each critical point corresponds to a maximum, minimum, or saddle point. Graph the
function in 3D to verify your results, and locate the eigenvectors and eigenvalues in the picture.

(a) f(x, y) = x2 + xy + y2

(b) f(x, y) = x2 + 4xy + y2

(c) f(x, y) = x2 + 2xy + y2

(d) f(x, y) = x2 − 4x+ y2 + 2y + 1

(e) f(x, y) = x2 − 2x+ xy + y2

(f) f(x, y) = x2 + xy + 3y2

(g) f(x, y) = x3− 3x+ y2− 2y (2 critical points)

(h) f(x, y) = x3−3x+y3−3y2 (4 critical points)

3.8 Solutions

Remember that the Technology introduction has a
step-by-step guide for solving many of these problems.

1. Kirchoff’s Laws1 −1 −1 0
R1 R2 0 E
0 −R2 R3 0



(a) (4, 2, 2)

(b) (24/7, 12/7, 12/7)

(c) (3, 2, 1)

(d) (6, 3, 3)

(e) (27/11, 18/11, 9/11)
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(f) (18/5, 12/5, 6/5)
1 −1 −1 0 0 0 0
0 0 1 −1 −1 0 0
0 0 0 1 1 −1 0
R1 R2 0 0 0 0 E
0 −R2 R3 R4 0 R6 0
0 0 0 −R4 R5 0 0


(g) {7, 5, 2, 1, 1, 2}
(h)

{
25
6
, 11

3
, 1
2
, 1
6
, 1
3
, 1
2

}
2. Cramer’s rule

(a)
{

3
7
,− 2

7

}
(b)

{
5
2
,− 1

2

}
(c) {2, 0}
(d) Fails. The determinant of the coefficient ma-

trix is zero.

(e)
{

1
2
,− 1

2
,− 1

2

}
(f)

{
5
2
, 1
4
,− 9

4

}
(g) Fails. The determinant of the coefficient ma-

trix is zero.

3. Interpolating Polynomials

(a) 1/2x+ 3/2

(b) (4/3)x2 − (5/3)x+ 1

(c) x2 − 2x+ 2

(d) (1/4)x2 − (1/2)x+ 9/4

(e) (1/8)x2 + 15/8

(f) −x3 + (5/2)x2 + (1/2)x+ 1

4. Regression (Make the plots using technology)

(a) y = 5x
2

(b) y = x
2

+ 1
3

(c) y = 7
4
− x

4

(d) y = 10x
9

+ 5
6

(e) y = 5
2
− 5x

3

(f) y = 3x
7

+ 19
7

(g) A =


0 0 1
1 1 1
1 1 1
16 4 1

 , B =


0
3
2
5

 , ATA =

258 66 18
66 18 6
18 6 4

 , ATB =

85
25
10

,

y = − 5
12
x2 + 35

12
x+ 0

5. Partial Fractions

(a) −1/5 ln (x+ 2) + 1/5 ln (x− 3)

(b) 1/5 ln (x+ 2) + 9/5 ln (x− 3)

(c) 1/3 ln (x+ 1) + 2/3 ln (x− 2)

(d) x−1 + 3/2 ln (x− 2)− 1/2 ln (x)

(e) − 1
10

ln
(
x2 + 1

)
− 2

5
arctan (x) + 1

5
ln (x− 2)

(f) −x−1 − 1/2 ln
(
x2 + 1

)
− arctan (x) + ln (x)

6. Markov Process

(a) Transition matrix

0.85 0.1 0.15
0.1 0.7 0.25
0.05 0.2 0.6

, 5 years

(41.5,32.5,26), 10 years: (42.425,33.4,24.175),
Steady state: [4, 3, 2]T so 4/9 or 44.4% will be
residential.

(b) Transition matrix

[
3/5 1/5
2/5 4/5

]
, 1 week

(64,136), 2 week: (65.6,134.4), 3 week:
(66.24,133.76), Steady state: [1, 2]T so 1/3
(33.3%) will be in Rexburg. This means 66
or 67 cars will be in Rexburg.

(c) Transition matrix

[
2/5 1/5
3/5 4/5

]
, 1 week

(52,148), 2 week: (50.4,149.6), 3 week:
(50.08,149.92), Steady state: [1, 3]T so 1/4 or
25% will be in Rexburg. This means 50 cars
will be in Rexburg.

(d) Transition matrix

[
7/10 1/5
3/10 4/5

]
, 1 week

(70,130), 2 week: (75,125), 3 week:
(77.5,122.5), Steady state: [2, 3]T so 2/5 or
40% will be in Rexburg. This means 80 cars
will be in Rexburg.

(e) My order is hamburger, pizza/salad, special
(your order may vary which means your ma-
trix will be a little different, but the eigenvec-
tor will still have the same ratios). Transition

matrix

3/10 2/5 3/10
2/5 3/10 1/5
3/10 3/10 1/2

, Steady state:

[29, 26, 33]T or [29/88, 26/88, 33/88]T so Ham-
burger - 32.9545%, Pizza/Salad - 29.5455%,
Special - 37.5%.

7. Second Derivative Test

(a) At (0, 0) eigenvalues are 3, 1 (both positive so
min) with eigenvectors [1, 1]T , [−1, 1]T .

(b) At (0, 0) eigenvalues are 6,−2 (saddle point)
with eigenvectors [1, 1]T , [−1, 1]T .

(c) At (0, 0) eigenvalues are 4, 0 (test fails) with
eigenvectors [1, 1]T , [−1, 1]T .

(d) At (2,−1) eigenvalues are 2, 2 (both positive
so min) with eigenvectors [1, 0]T , [0, 1]T .

(e) At (4/3,−2/3) eigenvalues are 3, 1 (both posi-
tive so min) with eigenvectors [1, 1]T , [−1, 1]T .

(f) At (0, 0) eigenvalues are 6.23607, 1.76393
(both positive so min) with eigenvectors
[.236, 1]T , [−4.236, 1]T .

(g) At (−1, 1) eigenvalues are −6, 2 (saddle) with
eigenvectors [1, 0]T , [0, 1]T . At (1, 1) eigenval-
ues are 6, 2 (both positive so min) with eigen-
vectors [1, 0]T , [0, 1]T .
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(h) At (−1, 0) eigenvalues are −6,−6 (both nega-
tive so max) with eigenvectors [1, 0]T , [0, 1]T .
At (−1, 2) eigenvalues are −6, 6 (saddle)
with eigenvectors [1, 0]T , [0, 1]T . At (1, 0)

eigenvalues are 6,−6 (saddle) with eigenvec-
tors [1, 0]T , [0, 1]T . At (1, 2) eigenvalues are
6, 6 (both positive so min) with eigenvectors
[1, 0]T , [0, 1]T .



Chapter 4

First Order ODEs

This chapter covers the following ideas. When you create your lesson plan, it
should contain examples which illustrate these key ideas. Before you take the
quiz on this unit, meet with another student out of class and teach each other
from the examples on your lesson plan.

1. Be able to interpret the basic vocabulary of differential equations. In
particular, interpret the terms ordinary differential equation (ODE), ini-
tial value, initial value problem (IVP), general solution, and particular
solution.

2. Use the three step modeling process (express, solve, and interpret) to
analyze exponential growth and decay, Newton’s law of cooling, mixing,
and the logistics equation.

3. Identify and solve separable ODES and exact differential forms. Use in-
tegrating factors and substitutions to solve additional ODEs.

4. Use Laplace transforms to solve first order ODEs.

4.1 Basic Concepts and Vocabulary

A differential equation is an equation which involves derivatives (of any order)
of some function. For example, the equation y′′ + xy′ + sin(xy) = xy2 is a
differential equation. An ordinary differential equation (ODE) is a differ-
ential equation involving a function y(x) whose domain is one dimensional. A
solution to an ODE on an interval J = (a, b) is a function y(x) defined on the
interval J which satisfies the ODE. To verify that a function is a solution to an
ODE, calculate derivatives and put them in the ODE. If the resulting equation
is an identity for all x ∈ J , then you have a solution. The order of an ODE is
the largest order derivative that appears in the ODE.

Typically a solution to an ODE involves an arbitrary constant C. There is
often an entire family of curves which satisfy a differential equation, and the
constant C just tells us which curve to pick. A general solution of an ODE
is all possible solutions of the ODE. A particular solution is one of infinitely
many solutions of an ODE. Often an ODE comes with an initial condition
y(x0) = y0 for some values x0 and y0. We can use these initial conditions to find
a particular solution of the ODE. An ODE, together with an initial condition,
is called an initial value problem (IVP).

Example 4.1. The ODE y′ = ky has the general solution y = cekx for x ∈
(−∞,∞). We check that this is a solution by calculating d

dxce
kx = kcekx =

62
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ky. This is a first order ODE because only the first derivative and no higher
derivatives appear in the ODE. If the initial condition y(0) = 3 were also in the
problem, then the particular solution to this IVP is found by solving for c in
the equation 3 = cek0. This simplifies to c = 3, so y(x) = 3ekx is the solution
to the IVP y′ = ky, y(0) = 3.

4.2 Modeling Basics

Many quantities in the world can be described in terms of rates of change.
Differential equations arise in any physical model where rates of change are
part of the model. Modeling requires that we (1) express quantities in terms
of mathematical equations, (2) solve those equations, and (3) interpret the
results in the context of our original problem. The first and third steps require
human intervention, while the second step can often be solved with the aid of
technology. We will start by looking at three models: exponential growth and
decay, Newton’s law of cooling, and mixing. I will illustrate steps (1) and (3)
first, and then in the next section we will focus on methods of solving.

4.2.1 Exponential Model

Exponential growth and decay models radioactive decay, retirement investing,
carbon dating, population growth, and more. The model is based on the princi-
ple that the rate of change of a quantity is directly proportional to the quantity
itself. The rate of decay of a radioactive isotope is proportional to the amount
of the isotope that remains. The rate of increase in a retirement investment is
proportional to how much money is in the retirement investment. If you double
an investment, then it should grow twice as quickly. We now follow the three
steps.

1. (Express) The derivative is proportional to the quantity itself can be ex-
pressed mathematically by the formula y′(x) = ky(x), where k is some
constant.

2. (Solve) The general solution to this ODE is y(x) = cekx. (Solved in
example 4.2)

3. (Interpret) When x = 0, we have y = c. This means that c is the initial
amount of a radioactive isotope, or the initial investment in a retirement
portfolio. The constant k helps us determine how quickly an isotope
decays (k < 0), or how quickly an investment grows (k > 0).

4.2.2 Newton’s Law of Cooling

One version of Newton’s law of cooling states that the rate of change of temper-
ature dT

dt of a body (which conducts heat well) is proportional to the difference
between the current temperature T (t) of the body and the temperature TA of
the surrounding atmosphere (which is assumed to be constant).

1. (Express) Newton’s law of cooling can be expressed mathematically as
dT
dt = k(T − TA) for some constant k. If T > TA, then the temperature
needs to drop, so we know k < 0. If T < TA, then the temperature needs
to rise, so k < 0 gives k(T − TA) > 0 as the product of two negatives. In
all cases, the constant k will hence be negative.

2. (Solve) The general solution to this ODE is y = TA + cekt (solved in
Example 4.3).
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3. (Interpret) When t = 0, we have T (0) = TA + c. This means that
c = T (0) − TA is the initial difference in temperature. Since k is always
negative, as t→∞ the temperature T (t) approaches TA, the temperature
of the surrounding atmosphere.

4.2.3 Mixing Model

We will encounter mixing problems throughout the semester of the following
type. Suppose a 5000 gallon tank contains a solution of water which initially
contains 200 lbs of salt. The tank has an inflow valve, and an outflow value.
Suppose 30 gallons of water (with 3 lbs of salt per gallon) are pumped into the
tank each minute. The mixture is evenly spread throughout the entire tank
by constant stirring. At the same time, 30 gallons of the stirred mixture flow
through the outflow valve each minute. Find the amount of salt in the tank at
time t.

1. (Express) If we let y(t) be the amount of salt in the tank at any time t,
then y′ = (flow in)− (flow out). The flow in is

flow in =
30 gal

min

∣∣∣∣3 lbs

gal
=

90 lbs

min
of salt.

The amount of salt lost per minute is proportional to the amount of salt
in the tank. Since the tank holds 5000 gallons, and the outflow is 30
gal/min, we loose 30

5000 of the water in the tank each minute. Since the
mixture is evenly stirred, this means that 30

5000 of what currently is in the
tank (which is y lbs) should leave every minute. So our flow out is

flow out =
30 gal

min

5000 gal

∣∣∣∣y lbs =
30

5000
y

lbs

min
of salt.

Hence y′ = 90− 30
5000y. The initial condition is y(0) = 200 lbs.

2. (Solve) The general solution is y(t) = 15000 + ce(−3/500)t. Using y(0) =
200, we find 200 = 15000 + c, or c = −14800. So y(t) = 15000 −
14800e(−3/500)t.

3. (Interpret) The salt content starts at 200 lbs and grows to a maximum of
15000 lbs as t → ∞. The quantity grows more rapidly at the beginning
than at the end.

4.3 Basic Methods

The modeling process often results in a differential equation. We will learn
various methods of solving these differential equations. Software can solve the
differential equations in this course, however, the differential equations you may
encounter in the future might not be solvable by any of the methods in this
textbook or by software. Understanding the ideas and processes which go into
these methods will give you building blocks which you may need to creatively
solve new differential equations.

4.3.1 Separable

The most basic differential equation to solve is one in which you can “separate”
the variables. The idea is to rearrange the equation in the form f(y)dy =
g(x)dx, where you separate the x and y terms so that they appear on different
sides of the equation. The solution is found by integrating each side.
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Example 4.2: Exponential Model Solution. Divide the differential equa-
tion y′ = ky on both sides by y. Then multiply both sides by the differential
dx to obtain 1

ydy = kdx. Integration on both sides yields ln |y| = kx+ c. Expo-

nentiating both sides gives |y| = ekx+c = ekxec. Now ec is a positive constant,
so we rename that constant to be c and obtain |y| = cekx for c > 0. Removing
the absolute values on y allows c to be any nonzero constant. If c = 0, then the
equation y = 0 satisfies the differential equation y′ = ky, so we can let c = 0
as well. This shows that a general solution to y′ = ky is y(x) = cekx for any
constant c.

Example 4.3: Newton’s Law of Cooling Solution. The differential equa-
tion for Newton’s law of cooling, dTdt = k(T−TA), is another separable ODE. Re-
arrange the equation as 1

T−TA
dT = kdt. Integration yields ln |T −TA| = kt+ c.

Exponentiation gives |T − TA| = ekt+c = ektec = cekt. Removing absolute
values as before gives T = TA + cekt as a general solution.

4.3.2 Exact Differential Forms

Recall that a vector field ~F = 〈M,N〉 is called a gradient field if there exists

a function f(x, y), called a potential for F , which satisfies ∇f = ~F . Recall

also that ~F = 〈M,N〉 has a potential (under suitable conditions) if and only if
My = Nx (test for exactness). Similarly, a differential form Mdx+Ndy is said

to be exact if there exists a function f(x, y) which satisfies df = Df(x, y)

[
dx
dy

]
=

Mdx + Ndy. If a first order differential equation can be written in the form
Mdx+Ndy = 0, and that differential form is exact, then a general solution to
the ODE is f(x, y) = c for any constant c, where f is a potential for 〈M,N〉. A general solution to

Mdx+Ndy = 0 is f = c where f
is a potential for 〈M,N〉 and c is
an arbitrary constant.

This is because the level curves of the potential (f = c) are orthogonal to the
gradient of the potential, which is precisely what 〈M,N〉 · 〈dx, dy〉 = 0 means.

Example 4.4. The differential equation 3xy′ = 2x−3y can be rewritten in the
differential form (3y − 2x)dx+ 3xdy = 0. We calculate My = ∂

∂y (3y − 2x) = 3

and Nx = ∂
∂x (3x) = 3. Since My = Nx, a potential exists. We integrate both

terms and obtain ∫
Mdx = 3xy − x2

∣∣∣∣ ∫
Ndy = 3xy.

Summing the integrals and ignoring duplicates, we obtain f = 3xy − x2 as a
potential. The general solution of 3xy′ = 2x − 3y is 3xy − x2 = c for any
constant c. We have written the solution implicitly (without solving explicitly

for y). Solving for y gives the explicit solution y = c+x2

3x , however you may not
always be able to solve for y.

Notice that if a differential equation is separable f(y)dy = g(x)dx, then it
represents an exact differential form, namely−g(x)dx+f(y)dy = 0 has potential
−
∫
g(x)dx +

∫
f(y)dy. Every separable differential equation can be solved by

considering exact differential forms. In fact, the goal of every method below Solving an exact ODE is the BIG
IDEA.is to rewrite the ODE so that it is an exact differential form, which means that

finding a potential is the BIG IDEA of this unit.

4.3.3 Integrating Factors (What to do if it isn’t exact)

Not every differential equation, when written in differential form Mdx+Ndy =
0 is exact. However, by multiplying both sides by an appropriate factor (called
an integrating factor), often we can make the ODE exact.
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Example 4.5. The differential form −kydx+dy = 0 (which models exponential
growth) is not exact. However, if you multiply both sides by e−kx, then the
differential form −ke−kxydx + e−kxdy = 0 is exact with potential f = ye−kx,
and hence the solution is ye−kx = c or y = cekx as before. Alternatively, we
could multiply both sides of −kydx + dy = 0 by 1

y . This gives the differential

form −kdx + 1
ydy = 0, which is exact with potential f = −kx + ln |y|. The

general solution is thus −kx + ln |y| = c which becomes ln |y| = kx + c and
simplifies to y = cekx as before. In either case we multiplied a non exact
differential form by a factor (called an integrating factor) to obtain an exact
differential form.

Essentially every method we look at for this unit can be solved by finding
an appropriate integrating factor and then finding a potential to get the general
solution. So how do we find an appropriate integrating factor? If a differential
form Mdx+Ndy is not exact, then we seek a function F so that FMdx+FNdy
is exact. To simplify our work, we will consider two cases: (1) F is a function
which depends on only x, or (2) F is a function which depends on only y.

1. If F = F (x), then for FMdx+FNdy to be exact we must have (FM)y =
(FN)x, which is equivalent to FNy = FMx + FxM . Rearranging (sep-

arating F from the other terms) gives 1
F Fx =

My−Nx

N . Integrating both

sides yields ln |F | =
∫ My−Nx

N dx. Solving for F gives F (x) = e
∫ My−Nx

N dx.

The preceding formula will give us our integrating factor as long as
My−Nx

N
depends only on x.

2. If F = F (y), then for FMdx+FNdy to be exact we must have (FM)y =
(FN)x, which is equivalent to FMy + FyM = FNx. Rearranging gives
1
F Fy =

Nx−My

M . Integrating both sides yields ln |F | =
∫ Nx−My

M dx, and

solving for F gives F (y) = e
∫ Nx−My

M dy. The preceding formula will give

us our integrating factor as long as
Nx−My

M depends only on y.

Observation 4.1. If
My −Nx

N
depends on x, then e

∫ My−Nx
N dx is an integrating

factor. If
Nx −My

M
depends on y, then e

∫ Nx−My
M dy is an integrating factor.

Example 4.6. To solve the differential equation (x + y)dx + 3xdy = 0, we

compute My − Nx = 1 − 3 = −2. Division by N gives
My−Nx

N = −2
3x . Hence

F = e
∫
−2/(3x)dx = e−2/3 ln(x) = x−2/3. Then the differential form (x1/3 +

x−2/3y)dx+ 3x1/3dy = 0 has potential 3x4/3

4 + 3x1/3y. So a general solution is

3x4/3

4 + 3x1/3y = c or y =
c− 3x4/3

4

3x1/3 .

4.3.4 Linear ODEs - a common special form

A linear ODE is an ODE of the form y′+ p(x)y = q(x). It is linear in y and y′.
The linear ODE y′+p(x)y = 0 is separable, hence can be solved. If q(x) is not 0,
we rewrite the linear ODE in differential form, getting (p(x)y−q(x))dx+dy = 0.

Since
My−Nx

N = (p(x)− 1)/1 = p(x) only depends on x, we use the integrating

factor F (x) = e
∫
pdx to solve the differential equation.

Example 4.7. To solve y′ + 2xy = 3x, we multiply by the integrating factor
F (x) = e

∫
2xdx = ex

2

, and obtain (2xyex
2 − 3xex

2

)dx+ ex
2

dy = 0. A potential

is u = yex
2 − 3

2e
x2

, so the general solution is yex
2 − 3

2e
x2

= c, or y = ce−x
2

+ 3
2 .
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4.3.5 u-Substitutions (How to make it exact)

If an appropriate integrating factor cannot be found to make an ODE exact,
then sometimes a substitution will get the job done. Which substitution to
make may require ingenuity. However, sometimes the appropriate substitu-
tion to make can be seen by examining the function itself to see if there are
complex parts which could be simplified by a substitution. We will illustrate
this approach with three common substitutions. This process is very similar to
u-substitution from first semester calculus.

Homogeneous ODEs, u = y/x

Some ODE’s can be reduced to separable form by using the substitution u =
y/x. If an ODE of the form y′ = f(x, y) satisfies yprime = f(tx, ty) (replacing
each x and y with tx or ty does nothing), then we call the ODE a homogeneous
first order ODE. In such cases, the substitution u = y/x will reduce the ODE
to separable form. If an ODE has y/x terms or x/y terms in it, try this kind of
substitution. We substitute y = ux and y′ = xu′ + u and then try to separate
variables or find an integrating factor. Rather than memorizing these equations,
it is easiest to just carry out the computations each time.

Example 4.8. The differential equation 4xyy′ = x2 + y2 is equivalent to 4y′ =
x
y+ y

x . Replacing each y with ux, and y′ with xu′+u, we obtain 4xu′+4u = 1
u+u.

This is equivalent to 4xu′ = 1
u − 3u = 1−3u2

u . Separating variables we obtain

4u
1−3u2u

′ = 1
x . Integration on both sides yields

4

−6
ln |1 − 3u2| = ln |x| + c.

Exponentiating both sides eliminates the absolute values and gives the equation
(1−3u2)−2/3 = cx (this c is different than the first). Now substitute back in u =

y/x and solve for y, to obtain 1−3(y/x)2 = cx−3/2, or y = ±x
√

1/3− cx−3/2 =

±1/3
√

3x2 − c
√
x (again c has changed) as a solution for any constant c.

Bernoulli Equations, u = y1−n

A Bernoulli equation is an ODE of the form y′+ p(x)y = r(x)yn. To solve such
an ODE, let u = y1−n. This means u′ = (1−n)y−ny′ = (1−n)y−n(ryn−py) =
(1− n)(r − py1−n) = (1− n)(r − pu). By using this transformation, the ODE
become a linear ODE of the form u′+ (1−n)p(x)u = (1−n)r(x). Hence it has
an integrating factor and can be solved as before. Again, it is easiest to carry
out the computation with each example, rather than learn this general formula.

Example 4.9. We’ll solve the equation y′ + y = 3y2. First the substitution
u = y1−2 = y−1 gives u′ = (−1)y−2y′ = (−1)y−2(3y2 − y) = (−1)(3 − y−1) =
(−1)(3−u). So we have the linear ODE u′−u = −3, which in differential form
becomes (3 − u)dx + du = 0. We compute (Mu − Nx)/N = −1, and so our
integrating factor is F (x) = e−x. The differential form (3e−x−ue−x)dx+e−xdu
is exact and has potential f = −3e−x + ue−x. Hence a solution is written

implicitly as −3e−x + 1
y e
−x = c or explicitly as y = e−x

c+3e−x = 1
cex+3 .

Logistic Equation - A Bernoulli Model

The logistic equation is dy
dt = Ay−By2. It is used to model population growth,

spread of disease, and other quantities which have an upper bound. If B = 0,
then we obtain the exponential model which we can already solve. This type
of growth occurs with small populations where there is plenty of space to grow.
The term −By2 is added to the model to prevent overgrowth, and places a
population maximum on the model. To solve the logistic equation, we let u =
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y1−2 = y−1 as the equation is a Bernoulli equation. Differentiating gives u′ =
−y−2y′ = −y−2(Ay−By2) = −(Ay−1−B) = B−Au, or (Au−B)dx+du = 0.
Since (Mu−Nx)/N = A, we multiply by the integrating factor F (x) = e

∫
Adx =

eAx. The exact differential form (AueAx − BeAx)dx + eAxdu has potential
ueAx − B

Ae
Ax, so a general solution is ueAx − B

Ae
Ax = c, or 1

y e
Ax − B

Ae
Ax = c.

Solving for y gives y = eAx

c+B/AeAx = 1
ce−Ax+B/A

. Alternatively, we can multiply

everything by A to write y = A
ce−Ax+B

Example 4.10. Let’s solve the logistics equation dy
dt = 4y − y2. We let u =

y1−2 = y−1 as the equation is a Bernoulli equation. Differentiating gives u′ =
−y−2y′ = −y−2(4y−y2) = −(4y−1−1) = 1−4u, or (4u−1)dx+du = 0. Since
(Mu −Nx)/N = 4, we multiply by the integrating factor F (x) = e

∫
4dx = e4x.

The exact differential form (4ue4x − e4x)dx+ e4xdu has potential ue4x − 1
4e

4x,
so a general solution is ue4x− 1

4e
4x = c, or 1

y e
4x− 1

4e
4x = c. Solving for y gives

y = e4x

c+1/4e4x or y = 4
ce−4x+1 (where c was changed at the last step).

4.4 Finding Laplace Transforms and Inverses

Recall that the Laplace transform of a function f(t) defined for t ≥ 0 is
F (s) = L(f(t)) =

∫∞
0
e−stf(t)dt. The function f(t) is called the inverse Laplace

transform of F (s), and we write f(t) = L−1(F (s)). As a notational convenience,
we use lower case letters and t to describe original functions, and the same cap-
ital letter and s to represent the Laplace transform.

4.4.1 Finding the Laplace Transform - Review

Let’s start with a couple warm up examples. Remember that the improper in-
tegral computed with the Laplace transform will normally exist only for certain
values of s.

Example 4.11. If f(t) = 1, then F (s) =
∫∞

0
e−st1dt = e−st

−s
∣∣∞
0

= 1
s , where the

integral converges provided s > 0.

Example 4.12. If f(t) = eat, then F (s) =
∫∞

0
e−steatdt =

∫∞
0
e−(s−a)tdt =

e−(s−a)t

−(s−a)

∣∣∞
0

= 1
s−a , where the integral converges provided s > a.

Since integration can be done term by term, we have L(af + bg) = aL(f) +
bL(g) for functions f, g and constants a, b. We can use this to find many other
Laplace transforms without having to do any more integration.

Example 4.13. We have L(cosh at) = 1
2L(eat + L(e−at)) = 1

2

(
1
s−a + 1

s+a

)
=

s
s2−a2 . Similarly L(sinh at) = a

s2−a2 .

The Laplace transform of the trigonometric functions cosx and sinx requires
a little more work. The solution is similar to the transforms of coshx and sinhx,
the only difference being a plus or minus in the denominator. Integration by
parts twice yields L(cosωt) = s

s2+ω2 and L(sinωt) = ω
s2+ω2 .

Example 4.14. Let’s find the transform of cosx. We start by writing the
definition of the transform L(cosωt) =

∫∞
0
e−st cosωtdt. The tabular method

(illustrated on the side), after 2 iterations, gives

D I

+ cosωt e−st

− −ω sinωt e−st/(−s)
+ −ω2 cosωt e−st/s2
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f(t) F (s) provided

1
1

s
s > 0

tn
n!

sn+1
s > 0

eat
1

s− a
s > a

f ′ sL(f)− f(0)

f(t) F (s) provided

cos(wt)
s

s2 + ω2
s > 0

sin(wt)
ω

s2 + ω2
s > 0

cosh(wt)
s

s2 − ω2
s > |ω|

sinh(wt)
ω

s2 − ω2
s > |ω|

Table 4.1: Table of Laplace Transforms

∫ ∞
0

e−st cosωtdt

=
(
cosωte−st/(−s) + ω sinωte−st/s2

) ∣∣∞
0
−
∫ ∞

0

ω2 cosωte−st/s2dt

= 1/s− ω2/s2

∫ ∞
0

e−st cosωtdt.

Replacing each integral above with L(cosωt) gives

L(cosωt) = 1/s− ω2/s2L(cosωt).

We have written the original integral in terms of itself. To simplify we combine
like terms (1 + ω2/s2)L(cosωt) = 1

s , or (s2 + ω2)L(cosωt) = s, and then we
solve for the transform L(cosωt) = s

s2+ω2 . The computation of L(sinx) is very
similar, but results with an ω in the numerator instead of s.

Integration by parts also shows that L(tn) = n!
sn+1 for integers n. For con-

venience, table 4.1 summarizes the Laplace Transforms we will use most often.
Feel free to use this table as you find Laplace transforms and their inverses.
With practice, you will memorize this table.

4.4.2 Finding an Inverse Laplace Transform

If the Laplace transforms of two functions are the same, then the two functions
must be the same. This fact allows us to invert the Laplace transform and
obtain the only function with a given Laplace transform. Inverting a Laplace
transform often involves matching the transformed function up with a function
from a table, and then using the table to invert the transform. We’ll illustrate
this with a few examples.

Example 4.15. To find the inverse Laplace transform of F (s) =
7

s3
, first notice

that
2

s3
is the transform of t2. We rewrite F (s) =

7

s3
=

7

2

2!

s3
, and then find the

inverse transform as L−1(F (s)) =
7

2
t2.

Example 4.16. To find the inverse Laplace transform of F (s) =
3s+ 4

s2 + 25
, we

notice that the transforms of cos(5t) and sin(5t) are s/(s2 +52) and 5/(s2 +52).
We rewrite

F (s) =
3s+ 4

s2 + 25
= 3

s

s2 + 25
+

4

5

5

s2 + 25
,
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and then the inverse transform is 3 cos(5t) +
4

5
sin(5t).

Example 4.17. To find the inverse Laplace transform of F (s) =
3s+ 1

s2 + 3s+ 2
,

we start by factoring the denominator as (s2 + 3s + 2) = (s + 2)(s + 1). We
then use a partial fraction decomposition to write

3s+ 1

s2 + 3s+ 2
=

A

s+ 2
+

B

s+ 1
.

Multiplication on both sides by s2 + 3s+ 2 gives

(3)s+ (1) = A(s+ 1) +B(s+ 2) = (A+B)s+ (A+ 2B).

Since the left and right sides are both linear equations of s, the coefficients must
be equal so we must have 3 = A+B and 1 = A+ 2B. The solution is B = −2

and A = 5. This means that F (s) = 5
1

s+ 2
−2

1

s+ 1
, which means the Laplace

inverse is f(t) = 5e−2t − 2e−t.

4.5 Solving IVPs

4.5.1 The Transform of a derivative

The Laplace transform of a derivative is, using integration by parts,

L(f ′) =

∫ ∞
0

e−stf ′(t)dt = (e−stf(t))
∣∣∞
0

+ s

∫ ∞
0

e−stf(t)dt = sL(f)− f(0).

We can use this formula to solve ODEs.
Here’s the big idea. Given an ODE, take the Laplace transform of each

side, giving what is called the subsidiary equation. This equation can be solved
for L(y) = Y (s) using only algebra. You then compute L−1(Y (s)) to find the
solution to the IVP y(t). This may involve finding a partial fraction decompo-
sition. Laplace transforms reduce many IVPs to a 3 step process (1) convert
to the subsidiary equation, (2) use algebra to solve for Y , performing a partial
fraction decomposition if needed, (3) find inverse Laplace transform.

The following two examples represent the basic ideas used to solve pretty
much every Laplace transform problem. We will be revisiting this idea through-
out the semester.

Example 4.18. To solve the IVP y′ + 2y = 0, y(0) = 1 we start by taking
the Laplace transform of each side. This gives the subsidiary equation sL(y)−
y(0) + 2L(y) = 0, or using the notation L(y) = Y , we have sY − 1 + 2Y = 0.
Solving for Y gives the equation Y = 1

s+2 . The inverse Laplace transform of

both sides gives y(t) = e−2t.

Example 4.19. To solve the IVP y′ + 2y = 3, y(0) = 1, take the Laplace

transform of each side. This gives the subsidiary equation sY − 1 + 2Y =
3

s
.

Solving for Y gives the equation Y =
s+ 3

s(s+ 2)
. The partial fraction decom-

position
s+ 3

s(s+ 2)
=

A

s
+

B

s+ 2
requires we solve s + 3 = A(s + 2) + Bs, or

1 = A + B, 3 = 2A giving A = 3/2 and B = −1/2. Our subsidiary equation

is now Y =
3

2

1

s
− 1

2

1

s+ 2
. The inverse Laplace transform of both sides gives

y(t) =
3

2
− 1

2
e−2t.



CHAPTER 4. FIRST ORDER ODES 71

4.6 Preparation

This chapter covers the following ideas. When you create your lesson plan, it should contain examples which
illustrate these key ideas. Before you take the quiz on this unit, meet with another student out of class and
teach each other from the examples on your lesson plan.

1. Be able to interpret the basic vocabulary of differential equations. In particular, interpret the terms
ordinary differential equation (ODE), initial value, initial value problem (IVP), general solution, and
particular solution.

2. Use the three step modeling process (express, solve, and interpret) to analyze exponential growth and
decay, Newton’s law of cooling, mixing, and the logistics equation.

3. Identify and solve separable ODES and exact differential forms. Use integrating factors and substitu-
tions to solve additional ODEs.

4. Use Laplace transforms to solve first order ODEs.

Here are the preparation problems for this unit. Please make sure you come to class having completed
your problem, and able to explain to others how to do it. We will often be doing problems very similar to
the prep problems in class, and your preparation will help you contribute to your group.

Preparation Problems (from Schaum’s Outlines) (click for solutions)

Day 1 5.5,5.21,6.4,7.4

Day 2 7.10,7.17,4.11,6.16

Day 3 22.1-3,24.1,24.14,7.7

Day 4 Lesson Plan, Quiz

Concept Sec. Suggested Relevant

Separable Review 4 42 1-8,23-45

Exact 5 5,11,26,29,34 1-13,24-40,56-65

Integrating Factors 5 21,22,41,47 21,22,41-42,47-49,51,55

Linear 6 4,13,20,32,51 1-6,9-15,20-36,43-49,50-57

Homogeneous 4, 11,12,48 11-17,46-54

Bernoulli 6 16,53 16,17,37-42,53

Applications 7 4[27],6[33],1[38] 1-6 [26-44]
7 10[48],17[67],7[88] 8-10 [45-50],16-18[65-70], 7[87-88]

Laplace Review 21 19,32,33[use table] 4-7,10-12,27-35

Inverse Transforms 22 1,2,3,6,13,15 1-3,6,15,17,20-28,42,42,45-47

Solving ODEs 24 1,14,19(parfrac) 1,2,11,14,15,19-19,22,24,25,38-42

4.7 Problems

All the problems for this unit come from Schaum’s Outlines Differential Equations by Rob Bronson.

4.8 Solutions

Every problem in Schaum’s Outlines has a solution provided.

http://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/04-First-Order-ODEs-Preparation-Solutions.pdf


Chapter 5

Homogeneous ODEs

This chapter covers the following ideas. When you create your lesson plan, it
should contain examples which illustrate these key ideas. Before you take the
quiz on this unit, meet with another student out of class and teach each other
from the examples on your lesson plan.

1. Explain Hooke’s Law in regards to mass-spring systems. Construct and
solve differential equations which represent this physical model, with or
without the presence of a damper.

2. Understand the vocabulary and language of higher order ODEs, such
as homogeneous, linear, coefficients, superposition principle, basis, linear
independence.

3. Solve homogeneous linear ODE’s with constant coefficients (with and
without Laplace transforms). In addition, create linear homogeneous
ODE’s given a basis of solutions, or the roots of the characteristic equa-
tion.

4. Explain how the Wronskian can be used to determine if a set of solutions
is linear independent. Briefly mention the existence and uniqueness the-
orems in relation to linear ODEs, and give a reason for their importance.

5.1 An Example - Hooke’s Law

The force F of a spring is proportional to the distance y of the spring from the
equilibrium point y = 0, and the force acts opposite the direction of motion.
This is represented by the equation F = −ky for a positive constant k, called
the spring constant. Since force equals mass times acceleration (one of Newton’s
laws of motion), we have my′′ = −ky or my′′+ky = 0. This is our introductory
example of a 2nd order ODE. If a damper (called a dashpot) is placed in a
mass-spring system , then the damper applies a force (via friction) which is
proportional to the velocity of the spring. This gives the 2nd order ODE my′′+
cy′ + ky = 0 for some constants m, c, and k. We will develop general methods
of solving 2nd order linear ODEs, and then return to mass-spring systems to
study the applications.

5.2 Basic Notation and Vocabulary

A second order linear differential equation is an ODE which can be written in
the form y′′+p(x)y′+q(x)y = r(x). It is linear in y and its derivatives, and the

72
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coefficients of the linear ODE are p(x) and q(x). A higher order linear ODE can
be written in the same form y(n)+an−1(x)y(n−1)+· · ·+a1(x)y′+a0(x)y = r(x).
If r(x) = 0, we say the linear ODE is homogeneous, otherwise we say it is non
homogeneous.

Superposition principle: If y1 and y2 are two solutions of a homogeneous
linear ODE (on some interval J), then so is y1 + y2. In particular, any linear
combination c1y1 + c2y2 of y1 and y2 are solutions to the homogeneous linear
ODE. The general solution of an nth order homogeneous linear ODE is all linear
combinations y = c1y1 + c2y2 + · · · + cnyn of n linearly independent solutions
y1, y2, . . . , yn (called a basis of solutions). To solve a 2nd order homogeneous
linear ODE, all that must be done is find 2 linearly independent solutions and
then the general solution is all linear combinations of these two solutions. To
solve an nth order homogeneous linear ODE, you just have to find n linearly
independent solutions, and then a general solution is all linear combinations
of these two solutions. In other words, the set of solutions of a homogeneous
linear ODE is the span of n linearly independent solutions (this is very similar
to what we learned about column and row spaces, where pivot columns served
as a basis of solutions, and the other columns are all linear combinations of the
pivot columns).

5.3 Laplace Transforms

The theory of Laplace transforms will give us a simple way to solve linear ODEs
of any order. We will start by adding one new transform rule, the s-shifting
theorem, to our list of rules, and then we will use Laplace transforms to solve
some higher order ODEs.

5.3.1 The s-shifting theorem

In Table 5.1, we add one more Laplace transform to what we learned in the
first order ODE section. The s-shifting theorem states that

L(eatf(t)) = F (s− a)

or alternatively L−1(F (s− a)) = eatf(t). For example, we compute

L(e3t cos(πt)) =
s− 3

(s− 3)2 + π2

(replace s in L(cosπt) = s
s2+π2 with s− 3) and

L(t2e−5t) =
2!

(s+ 5)3

(replace s in L(t2) = 2!
s3 with s + 5). In other words, multiplication of the

function f(t) by eat results in replace s with s − a when you compute the
transform.

The reason the s-shifting theorem is true is because (here’s the 3 step proof)

L(eatf(t)) =

∫ ∞
0

e−st(eatf(t))dt =

∫ ∞
0

e−(s−a)tf(t)dt = F (s− a).

We need to compute inverse Laplace transforms using the s shifting theorem.
The following examples illustrate how this is done.



CHAPTER 5. HOMOGENEOUS ODES 74

f(t) F (s) provided

1
1

s
s > 0

tn
n!

sn+1
s > 0

eat
1

s− a
s > a

f ′ sL(f)− f(0)

eatf(t) F (s− a)

f(t) F (s) provided

cos(wt)
s

s2 + ω2
s > 0

sin(wt)
ω

s2 + ω2
s > 0

cosh(wt)
s

s2 − ω2
s > |ω|

sinh(wt)
ω

s2 − ω2
s > |ω|

Table 5.1: Table of Laplace Transforms

Example 5.1. The inverse Laplace transform of 3
(s−4)3 is related to the inverse

transform of 3
s3 . The transform of t2 is 2

s3 , so the inverse transform of 3
s3 = 3

2
2
s3

is 3
2 t

2. Because there was an s − 4 in the original denominator, we have to
multiply by e4t to obtain the inverse Laplace transform of 3

(s−4)3 as 3
2 t

2e4t.

Example 5.2. The inverse Laplace transform of s−2
(s−4)2+1 is found by first ob-

taining an s−4 in the numerator and then breaking the fraction into two parts,
s−4+4−2
(s−4)2+1 = s−4

(s−4)2+1 + 2 1
(s−4)2+1 . We then compute the inverse transform as

e4t cos(t) + 2e4t sin(t).

To use the s shifting theorem, you have to get good at adding zero to a
problem (as I did in the previous example with −4 + 4). You may also have to
complete the square in the denominator.

Example 5.3. To find the inverse transform of
s+ 2

s2 + 4s+ 13
, first complete the

square in the denominator s2 + 4s+ 13 = s2 + 4s+ 4− 4 + 13 = (s+ 2)2 + 9.
Since the transform of cos 3t is s

s2+9 , the inverse transform of s+2
(s+2)2+9 is simply

e−2t cos 3t (using the shifting theorem).

5.3.2 Solving ODEs with Laplace transforms

In the first order ODE unit, we showed that the Laplace transform of a deriva-
tive is, using integration by parts,

L(f ′) =

∫ ∞
0

e−stf ′(t)dt = (e−stf(t))
∣∣∞
0

+ s

∫ ∞
0

e−stf(t)dt = sL(f)− f(0).

We can use this formula to get the following rules for higher order derivatives.

L(f ′′) = sL(f ′)− f ′(0) = s[sL(f)− f(0)]− f ′(0) = s2L(f)− sf(0)− f ′(0)

L(f ′′′) = s3L(f)− s2f(0)− sf ′(0)− f ′′(0)

L(f ′′′′) = s4L(f)− s3f(0)− s2f ′(0)− sf ′′(0)− f ′′′(0)

We’ll use these formulas to solve ODEs and help us discover patterns which will
greatly simplify solving higher order linear ODEs.

Example 5.4. To solve the ODE y′′ + 8y′ + 15y = 0 (no initial conditions
are given), we start by taking the Laplace transform of both sides. This gives
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s2Y − sy(0)− y′(0) + 8(sY − y(0)) + 15Y = 0. Solving for Y gives

Y =
sy(0) + y′(0) + 8y(0)

s2 + 8s+ 15
.

The denominator factors into the product (s + 5)(s + 3), so we use a partial
fraction decomposition to write

Y =
sy(0) + y′(0) + 8y(0)

(s+ 5)(s+ 3)
=

A

s+ 3
+

B

s+ 5
.

Without initial conditions, we will avoid solving the problem in general. How-
ever, the inverse transform of the right side is simply Ae−3x + Be−5x (if x is
the independent variable instead of t). A general solution to the ODE is just
y = Ae−3x + Be−5x for some constants A and B. Letting A = 0 or B = 0, we
have found two solutions to our ODE, namely y1 = e−3x and y2 = e−5x. These
two solutions form a basis for solutions, and a general solution is all linear com-
binations of them, namely y = c1e

−3x + c2e
−5x. If we had been given initial

conditions, we could have use them to find c1 and c2.

Notice in the example above that the solution involves the sum of two ex-
ponential functions. The powers in the exponents came from the roots of the
denominator when performing a partial fraction decomposition. We can find
the denominator quickly by replacing each derivative of y with s to the same
power. Notice that y′′+ 8y′+ 15y became s2 + 8s+ 15. We will find that for all
homogeneous ODEs of any order, the solution will involve sums of exponential
and trigonometric functions, obtained by analyzing the roots of this polynomial.

5.4 Homogeneous Constant Coefficient ODEs

We now consider the homogeneous linear ODE y′′+ay′+by = 0 (the coefficients
p(x) and q(x) are constants). The solution method begins by guessing the so-
lution is of a certain form (thanks to the Laplace transform method above),
and then observing how close our guess was. A solution to y′ + ay = 0 is an
exponential function y = e−ax, so perhaps a solution to y′′ + ay′ + by = 0
is g = eλx for some constant λ (λ is the standard notation because eventu-
ally we will see that this number is an eigenvalue of a matrix). We calculate
g′ = λeλx and g′′ = λ2eλx. The function g is a solution to our ODE if and only
if g′′ + ag′ + by = eλx(λ2 + aλ + b) = 0. So g = eλx is a solution if an only if
λ is a zero of the characteristic equation λ2 + aλ + b = 0. This same prin- characteristic equation

ciple applies to higher order linear homogeneous ODEs. Factoring polynomials
(and using the quadratic equation) are important tools in solving homogeneous
linear ODEs with constant coefficients. We will start by focusing on 2nd order
homogeneous ODEs, but the principles we learn generalize to any order ODE.
Recall that there are three possible cases for roots of a quadratic equation: two
real, one double, or two complex conjugate roots. After illustrating the solution
technique in each case, we’ll show why that solution technique is valid by using
Laplace transforms.

Example 5.5: Two real roots. For the differential equation, y′′+8y′+15y =
0, the characteristic equation is λ2 + 8λ + 15 = (λ + 5)(λ + 3). The roots of
this equation are λ = −5,−3 so both y1 = e−5x and y2 = e−3x are solutions
of the ODE (compare this with the example in the Laplace transform section).
Since these two solutions are linearly independent (neither is a multiple of the
other), a general solution to this ODE is y = c1e

−5x + c2e
−3x.
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If the initial conditions are y(0) = −3 and y′(0) = 2, then we can find the
constants c1 and c2. First, let’s compute the derivative y′ = −5c1e

−5x−3c2e
−3x.

We know that if x = 0 then y = −3 and y′ = 2, so plugging these into
our equations for y and y′ gives the system of equations −3 = c1 + c2 and
2 = −5c1 − 3c2. Using Gaussian elimination or Cramer’s rule, the solution to
this system is c1 = 7/2 and c2 = −13/2. Hence the solution to the IVP is
y = 7

2e
−5x − 13

2 e−3x.
Alternatively, we can use Laplace transforms if we know the initial condi-

tions. The Laplace transform of both sides of y′′+8y′+15y = 0 with y(0) = −3
and y′(0) = 2 is

s2Y − s(−3)− 2 + 8(sY − (−3)) + 15Y = 0.

Solving for Y gives Y =
−3s− 22

s2 + 8s+ 15
. Using a partial fraction decomposition,

we write
−3s− 22

s2 + 8s+ 15
=

A

s+ 3
+

B

s+ 5
or −3s − 22 = A(s + 5) + B(s + 3),

which means −3 = A+B,−22 = 5A+3B. Cramer’s rule gives the solution A =∣∣∣∣ −3 1
−22 3

∣∣∣∣ / ∣∣∣∣1 1
5 3

∣∣∣∣ = 13
−2 and B =

∣∣∣∣1 −3
5 −22

∣∣∣∣ / ∣∣∣∣1 1
5 3

∣∣∣∣ = −7
−2 , so our partial fraction

decomposition is −13/2
s+3 + 7/2

s+5 . The inverse transform gives y = − 13
2 e
−3x+ 7

2e
−5x,

the same as before.

In general, when you have two distinct real roots, a general solutions consists
of the sum of two exponential functions, where the roots of the characteristic
equation λ1, λ2 are the coefficients in the exponent, so a general solution is
y = c1e

λ1x + c2e
λ2x.

Example 5.6: One real double root. For the differential equation, y′′ +
4y′ + 4y = 0, the characteristic equation is λ2 + 4λ + 4 = (λ + 2)2. The only
root λ = −2 is a double root. One of the solutions is y1 = e−2x. To obtain
the other solution, Laplace transforms (the next paragraph) suggest that we
multiply this solution by x so that a solution is y2 = xe−2x, which you can
easily verify is a solution (just take two derivatives, and put them back into the
ODE). Since we now have two linearly independent solutions, a general solution
is y = c1e

λx + c2xe
λx = c1e

−2x + c2xe
−2x.

Why do we multiply by x? Take the Laplace transform of both sides of
y′′ + 4y′ + 4y = 0 to obtain the subsidiary equation s2Y − sy(0) − y′(0) +

4(sY − y(0)) + 4Y = 0. Solving for Y gives Y =
sy(0) + 4y(0) + y′(0)

s2 + 4s+ 4
=

sy(0) + 4y(0) + y′(0)

(s+ 2)2
. Because there is an s + 2 in the denominator, we need

to obtain an s+ 2 in the numerator as well (to use the s-shifting theorem), so
we write

Y =
sy(0) + 4y(0) + y′(0)

(s+ 2)2
=
A(s+ 2) +B

(s+ 2)2
=

A

s+ 2
+

B

(s+ 2)2

(this is a partial fraction decomposition). The Laplace inverse of the last line
is Ae−2x +Bxe−2x, using the s-shifting theorem on the second part (since the
Laplace inverse of 1

s2 is x, and replacing s with s− (−2) means I multiply x by
e−2x).

In general, whenever the characteristic equation has a double root, the sub-
sidiary equation will be of the form Y = A

s−λ + B
(s−λ)2 which means the solution

will be Aeλx + Bxe−λx. So if you have a double root, just remember that a
second linearly independent solution is obtained by multiplying by x.
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Example 5.7: Two complex roots. For the differential equation, y′′+ 6y′+
13y = 0 the characteristic equation is λ2 + 6λ + 13. The roots (using the

quadratic equation) are λ =
−6±
√

(−6)2−4(1)(13

2(1) = −3±
√
−16/2 = 3±2i, which

are complex roots. These complex roots have an interpretation. We can verify
that two solutions to our ODE are y1 = e−3x cos(2x) and y2 = e−3x sin(2x) (the
shifting theorem from Laplace transforms shows why in the next paragraph).
Hence the general solution is y = c1e

−3x cos(2x) + c2e
−3x sin(2x). In general, if

the roots of the characteristic equation are a± bi, then two solutions are

y1 = eax cos(bx) and y2 = eax sin(bx).

A general solution is hence y = c1e
ax cos(bx) + c2e

ax sin(bx).
Let’s use Laplace transforms to show why the above is true. The Laplace

transform of both sides of y′′+ 6y′+ 13y = 0 gives s2Y − sy(0)−y′(0) + 6(sY −

y(0)) + 13Y = 0. Solving for Y gives Y =
sy(0) + 6y(0) + y′(0)

s2 + 6s+ 13
. Completing

the square on the denominator gives Y = sy(0)+6y(0)+y′(0)
(s+3)2+4 . Because there is an

s+ 3 in the denominator, we need to obtain an s+ 3 in the numerator as well
(to use the s-shifting theorem), so we write

Y =
sy(0) + 6y(0) + y′(0)

(s+ 3)2 + 4
=
A(s+ 3) +B

(s+ 3)2 + 4
=

A(s+ 3)

(s+ 3)2 + 4
+

B

(s+ 3)2 + 4

(this is a partial fraction decomposition). To find the Laplace inverse of the
last line, recall that the inverse of s

s2+4 is cos(2x) and the inverse of 2
s2+4

is sin(2x), so the inverse of A(s+3)
(s+3)2+4 + B

(s+3)2+4 = A (s+3)
(s+3)2+4 + B

2
2

(s+3)2+4 is

Ae−3x cos(2x) + B
2 e
−3x sin(2x), using the s-shifting theorem. Since B is just

a constant anyway, we ignore the division by 2 to obtain a general solution
y = c1e

−3x cos(2x) + c2e
−3x sin(2x).

In general, whenever the characteristic equation has two complex roots a±bi,
the subsidiary equation will be of the form Y = A(s−a)

(s−a)2+b2 + B
(s−a)2+b2 which

means the solution will be Aeax cos(bx) + B
2 e

ax sin(bx). So if you have a com-
plex pair of roots, just remember that two linearly independent solutions are
eax cos(bx) and eax sin(bx).

5.4.1 Summary

To find the solution of a 2nd order homogeneous ODE with constant coefficients,
find the roots of the characteristic equation and then the general solution is
given in the following table.

Root type General solution

Two real roots λ1, λ2 y = c1e
λ1x + c2e

λ2x

One real root λ y = c1e
λx + c2xe

λx

Two complex conjugate roots λ = a± bi y = c1e
ax cos(bx) + c2e

ax sin(bx)

To find the solution to a higher order homogeneous ODE with constant
coefficients, just factor the characteristic equation. Each distinct real root con-
tributes an exponential function eλx to the solution. If a root appears k times,
then eλx, xeλx, . . . , xk−1eλx are k linearly independent solutions to the ODE
(Laplace transforms gives this result). Remember, just keep multiplying by x
until you have k different solutions. Each complex root will appear in conjugate
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pairs, so each complex root contributes two solutions eax cos(bx) and eax sin(bx)
to a general solution. If a complex root appears k times, then multiply the pre-
vious two solutions by x until you have k pairs of solutions. Laplace Transforms
show why these results are valid.

Example 5.8. Suppose the characteristic equation of your ODE is

λ4(λ− 2)3(λ2 + 4)2(λ2 + 2λ+ 10) = 0.

First notice that the degree of this polynomial is 13, so there should be 13
linearly independent solutions. The zeros of this equation are 0, 2, ±2i, −1±3i
(counting multiplicities there are 13 roots). The root λ = 0 yields the solution
e0x = 1. Since λ = 0 has multiplicity 4, the four functions e0x = 1, x(1), x2(1),
and x3(1) are all terms in a general solution. The root λ = 2 adds the three
terms e2x, xe2x, and x2e2x. The pair ±2i adds the terms cos 2x, sin 2x, x cos 2x,
and x sin 2x (the last two come become the roots are repeated). The last pair
−1± 3i adds the terms e−x cos 3x and e−x sin 3x. A general solution is (notice
there are 13 terms)

y = c1 + c2x+ c3x
2 + c4x

3

+ c5e
2x + c6xe

2x + c7x
2e2x

+ c8 cos 2x+ c9 sin 2x+ c10x cos 2x+ c11x sin 2x

+ c12e
−x cos 3x+ c13e

−x sin 3x.

5.5 Hooke’s law again

Recall the setup from the introduction. The ODE my′′ + cy′ + ky = 0 models
the motion of a mass-spring system, giving the distance y(t) from equilibrium
at time t of an object with mass m that is placed on the end of a spring with
modulus k (spring constant). A dashpot applies a frictional force proportional
to the speed of motion, its strength represented by the coefficient of friction
c. Let’s start by examining the mass-spring system where friction is neglected
(without a damper), and then what happens with damping.

5.5.1 Free Oscillation - Two imaginary roots

The mass-spring system satisfies the differential equation my′′ + ky = 0. Since
m and k are both positive, the roots of the equation mλ2 + k = 0 will always

be imaginary, namely λ = ±
√
−k
m = ±i

√
k
m . So the position of the end of the

spring can be written as y = A cos(ωt) +B sin(ωt) where ω =
√

k
m and A and

B are constants.
Recall from trigonometry the fact that we can always write the sum of two

sine or cosine functions with the same period as a a single trigonometric function
with a new amplitude and possibly a shift. In symbols, we write

A cos(ωt) +B sin(ωt) = C cos(ωt− φ),

where the amplitude is C =
√
A2 +B2 with a phase shift φ = arctan(B/A). In

the language of linear algebra, a linear combination of sine and cosine functions
is a single trigonometric function with amplitude A and phase shift φ. This
makes it easy to see that the solution of a mass spring system is in fact a
harmonic oscillation, with a fixed amplitude, period, and phase shift. However,
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Over Damped Critically Damped Under Damped

Two distinct real roots One double root Two complex roots

y = c1e
λ1t + c2e

λ2t y = c1e
λt + c2te

λt y = c1e
αt cosβt+ c2e

αx sinβt

Table 5.2: The three cases of damped motion.

the equation A cos(ωt) +B sin(ωt) is much easier to work with when trying to
find solutions to initial value problems.

Example 5.9. Let’s solve the IVP y′′ + 4y = 0, y(0) = 2, y′(0) = 3, giving
the period and amplitude of the solution, and writing the solution in the form
y = C cos(ωt − φ). The characteristic equation is λ2 + 4 = 0 whose roots are
±2i. A general solution is y = A cos 2t+B sin 2t. Since y(0) = 2, we know that
2 = A cos 0 + B sin 0 = A which means A = 2. We compute y′ = −2A sin 2t +
2B cos 2t and then plug y′(0) = 3 into y′ to obtain 3 = −2A sin 0+2B cos 0 = 2B
which means B = 3/2. The previous two calculations give the solution as

y = 2 cos 2t+
3

2
sin 2t.

The period is T = 2π/ω = 2π/2 = π. The amplitude is C =
√
A2 +B2 = Recall the period of a sine or

cosine curve of the form sin(ωt)
or cos(ωt) is T = 2π

ω
.

√
4 + 9/4 =

√
25/4 = 5/2. The phase shift is φ = arctan(3/4) ≈ .6435 rad or

36.87◦. We can now write our solution in the form

y =
5

2
cos

(
2t− arctan

3

4

)
.

Remember that with any problem, you can always check your answer by
taking derivatives, and plugging in the initial conditions. Using the single
trigonometric form of our solution, we compute y′ = −5 sin(2t − arctan(3/4))
and y′′ = −10 cos(2t − arctan(3/4)) and plug them into the ODE to obtain
y′′ + 4y = −10 cos(2t − arctan(3/4)) + 10 cos(2t − arctan(3/4)) = 0. Plugging
in the initial conditions we obtain y(0) = 5

2 cos
(
− arctan 3

4

)
= 5

2 cos arctan 3
4 .

Note that arctan 3
4 is the angle of a triangle whose opposite edge is length 3, and

adjacent edge is length 4. The hypotenuse of this triangle is 5, and its cosine is 4
5

while its sine is 3
5 . This means y(0) = 5

2
4
5 = 2 and y′(0) = −5 sin(− arctan 3

4 ) =
5 sin arctan 3

4 = 5 3
5 = 3 as desired. We have shown that our solution satisfies

both the ODE and the initial conditions, hence is the solution to our IVP.

5.5.2 Damped Motion - Three cases

If friction is present (possibly in the form of a damper or a dashpot), then
the mass-spring system satisfies the differential equation my′′ + cy′ + ky = 0.
The constant c must always be positive, just as m and k are positive. The
characteristic equation in this present setup yields one of three possible solution
types shown in Table 5.2. We will just illustrate each type and then compare
the graphical solutions.

Example 5.10. If m = 10, c = 80, k = 150, then the differential equation
becomes y′′ + 8y′ + 15y = 0. The general solution is y = c1e

−5t + c2e
−3t. This

case is called over damping, and occurs whenever there are two distinct roots
of the characteristic polynomial. Both roots are negative, so the position of the
spring will exponentially approach zero (equilibrium). The term corresponding
to the root which is furthest from zero vanishes very quickly, so the root closer
to zero determines how quickly the spring returns to equilibrium.
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Example 5.11. If m = 10, c = 40, k = 40, then the differential equation be-
comes y′′+4y′+4y = 0. There is only one real root, and the general solution is
y = c1e

−2t+c2te
−2t. The solution approaches zero rapidly, essentially following

the exponential function towards zero. This kinds of system is called critically
damped. Such systems appear rarely in nature because the combinations of
m, c, and k must be perfectly aligned to obtain a double root. Most real life
systems are either over damped or under damped.

Example 5.12. If m = 10, c = 60, k = 130, then the differential equation
becomes y′′ + 6y′ + 13y = 0. With two complex roots, a general solution is
y = e−3t(c1 cos(2t) + c2 sin(2t)). A system with two imaginary zeros is said to
be under damped, because the damping is not enough to prevent oscillation. We
can rewrite the position in an under damped system as y = Ce−αx cos(ωt−φ),
which shows that the spring will oscillate, with a decreasing amplitude following
a multiple of the exponential function e−3x. The oscillation will eventually
become so small as to ignore it all together.

To understand the difference between these three types of damping, imag-
ine for a moment that you just installed new shocks on your car (they are over
damped). As you drive along the freeway, any bumps that you feel are imme-
diately damped away so that you hardly feel them (your car slowly returns to
equilibrium). As time passes on, your shocks wear out (the damping force is
reduced) and you find that when you hit bumps on the road your car more
quickly returns to equilibrium (you feel a more rapid jolt). Eventually, the
shocks in your car wear out enough that when you hit a bump in the road you
feel an up and down motion in the car. At this point your shocks are now under
damped.

5.6 Existence and Uniqueness - the Wronskian

A second order homogeneous linear ODE of the form y′′ + p(x)y′ + q(x)y = 0
with variable coefficients p(x) and q(x) satisfies some interesting properties. If
the coefficients are continuous functions on some interval, and x0 is in that
interval, then an initial value problem y(x0) = K0, y

′(0) = K1 (1) always has
a solution, and (2) that solution is unique. This theorem is crucial because it
means there always is a solution, and if you find the solution then it is unique.
In addition, if the coefficients are continuous functions on some interval, then
the ODE will always have a general solution, and it can be found by taking all
possible linear combinations of two linearly independent solutions (which are
called a basis of solutions). Again this means that a general solution exists, and
is in some sense unique.

We now focus on how to determine if two solutions are linearly independent.
If y1 and y2 are two solutions of a 2nd order homogeneous linear ODE, then

their Wronskian is W (y1, y2) = det

[
y1 y2

y′1 y′2

]
. Two solutions on an interval

are linearly dependent on that interval if and only if their Wronskian is zero
at some point in that interval (and hence the Wronskian is equal to zero at
every point on the interval). We will prove this fact, using linear algebra and
the uniqueness theorems of differential equations. If the solutions are linearly
dependent, then one solution is a multiple of the other, hence the Wronskian is
zero immediately. Now suppose the Wronskian is zero at some point x0, and
then show the solutions are linearly dependent on the entire interval. Using
facts learned from linear algebra, the determinant being zero means that there
is a nontrivial solution k1, k2 to the system of equations k1y1(x0) + k2y2(x0) =
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0, k1y
′
1(x0) + k2y

′
2(x0) = 0. Let y = k1y1(x) + k2y2(x). This is a solution

to the the ODE, and it satisfies k1y1(x0) + k2y2(x0) = 0. Since the function
y = 0 satisfies the initial conditions y(x0) = 0, y′(x0) as well, we see that
y = k1y1(x) + k2y2(x) = 0 for all x by the uniqueness of a solution to an IVP.
Hence we have a nontrivial solution to the equation k1y1(x) + k2y2(x) = 0 for
all x, and so y1 and y2 are linearly dependent.

Example 5.13. Two solutions of the differential equation y′′ + 4y′ + 4y = 0
are y1 = e−2x and y2 = xe−2x. The Wronskian is

W (y1, y2) =

∣∣∣∣ e−2x xe−2x

−2e−2x −2xe−2x + e−2x

∣∣∣∣
= (e−2x)(−2xe−2x + e−2x)− (xe−2x)(−2e−2x)

= e−4x(−2x+ 1 + 2x)

= e−4x

which is never zero. Because the two functions are both solutions to an ODE,
and because the Wronskian is not zero, the two solutions are linearly indepen-
dent. This idea generalizes to higher order ODEs.
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5.7 Preparation

This chapter covers the following ideas. When you create your lesson plan, it should contain examples which
illustrate these key ideas. Before you take the quiz on this unit, meet with another student out of class and
teach each other from the examples on your lesson plan.

1. Explain Hooke’s Law in regards to mass-spring systems. Construct and solve differential equations
which represent this physical model, with or without the presence of a damper.

2. Understand the vocabulary and language of higher order ODEs, such as homogeneous, linear, coeffi-
cients, superposition principle, basis, linear independence.

3. Solve homogeneous linear ODE’s with constant coefficients (with and without Laplace transforms). In
addition, create linear homogeneous ODE’s given a basis of solutions, or the roots of the characteristic
equation.

4. Explain how the Wronskian can be used to determine if a set of solutions is linear independent. Briefly
mention the existence and uniqueness theorems in relation to linear ODEs, and give a reason for their
importance.

Here are the preparation problems for this unit. All of these problems come from Schaum’s Outlines.

Preparation Problems

Day 1 8.33-35, 9.1, 9.7, 9.12

Day 2 10.12, 13.9, 14.2, 14.5

Day 3 21.54, 22.36, 24.26, 8.18

Day 4 Lesson Plan, Quiz

Here are the homework problems which line up with the material we are learning. If you are struggling
with a topic from the preparation problem set, please use this list as a guideline to find related practice
problems.

Concept Sec Suggestions Relevant Problems

Vocabulary of ODEs 8* 33-35 1-3,33-35

2nd Order Homogeneous 9* 1,7,12,21,27,40 1-15, 17-45

nth Order Homogeneous 10* 3,7,8,9,12,18,37,41,44,49 All

IVPs (Homogeneous) 13 9 4,9,13

Applications 14 2,3,5,29,31,34,41-43 1-8,26-43

Laplace Transforms 21* 26, 54 14(c),15(b),25,26,54-58,

Inverse Transforms 22* 7, 34-36,38,read 12 and 18,44 6-10,15-19,29-30,32-53

Solving ODES 24 26,44 5,26,31,36,43,44

Wronskian and Theory 8* 9,10,18,20,43,48,53,58 5-10, 13-20, 31,36-64

*The problems in these sections are quick problems. It is important to do lots of them to learn the
pattern used to solve ODEs. You may be able to finish 7 problem in under 30 minutes or less. Please do
more, so that when you encounter these kinds of problems in the future you can immediately give an answer
and move forward. You’ll notice that the suggested list is more than 7 per day (that’s because there are
tons of really quick problems you can do).



Chapter 6

Non Homogeneous ODEs

This chapter covers the following ideas. When you create your lesson plan, it
should contain examples which illustrate these key ideas. Before you take the
quiz on this unit, meet with another student out of class and teach each other
from the examples on your lesson plan.

1. Explain Hooke’s Law in regards to mass-spring systems, where there is an
external force. Construct and solve differential equations which represent
this physical model, with or without the presence of a damper and be able
to interpret how solutions change based on changes in the model.

2. Understand the theory which relates solutions of homogeneous linear
ODE’s to non homogeneous ODEs.

3. Use the method of undetermined coefficients to solve non homogeneous
linear ODEs.

4. Explain Kirchhoff’s voltage law, Ohm’s law, and how to model electrical
circuits using 2nd order non homogeneous linear ODEs. Illustrate how
results about circuits can be translated into results about mass-spring
systems.

6.1 An example - Hooke’s Law

Second order non homogeneous linear ODEs occur in mass-spring systems when
there is an outside force, such as a machine applying pressure, bumps in a road
causing vertical motion on shock absorbers, etc. If a spring is involved in some
kind of moving object, then forces will be applied to the spring from outside
the system. If we let r(t) represent the external force (sometimes called the
driving, or input force), then the sum of the forces acting on the spring is
−ky − cy′ + r(t), so Newton’s 2nd law F = ma = my′′ gives the differential
equation my′′ = −cy′−ky+ r(t), or my′′+ cy′+ky = r(t). The solution y(t) is
called the output or response of the system to the driving force. Solving such
a system in general can be a difficult task. We will discuss the ideas behind
solving such ODE’s in general first, and then focus on a special case where the
driving force is periodic of the form r(t) = F0 cosωt. Near the end of this book
in the Fourier series chapter, we will show how the solutions to this simple
periodic force can give solutions to any period force.

83
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6.2 Theory

If yp is a particular solution to a non homogeneous linear ODE, and yc is a
solution to the corresponding homogeneous linear ODE, then yc+yp is a solution
to the non homogeneous linear ODE. We call yp a particular solution, and yc
we call a complementary solution. If y1 and y2 are two particular solutions to
a non homogeneous linear ODE, then the difference y1 − y2 is a solution to the
corresponding homogeneous ODE. This is because if you put both of them into
the ODE, you will get out the same driving force, so if you subtract them, you
will get out out zero. This means that y2 = y1 + yc for some solution yc of the
homogeneous linear ODE. This shows the following.

Theorem 6.1. A general solution to a non homogeneous linear ODE is y =
yc+yp where yp is a particular solution to the ODE and yc is a general solution
of the corresponding homogeneous linear ODE.

To solve a non homogeneous linear ODE, we first find a single solution
yp to the ODE and then add to it a general solution of the corresponding
homogeneous ODE. If we can guess a particular solution and we know how
to find homogeneous solutions (from the previous chapter), then we can find
a general solution of a non homogeneous ODE. The existence and uniqueness
theorems apply to non homogeneous ODEs.

Example 6.1. Consider the non homogeneous ODE y′′+4y = 8x. The function
yp = 2x is a particular solution to this ODE, since y′′p = 0 and then 4(2x) = 8x
(before this chapter ends you will learn how to discover yp = 2x, but for now
let’s just use it to illustrate an idea). Removing the driving force 8x gives the
corresponding homogeneous ODE y′′ + 4y = 0. The characteristic equation
of this homogeneous ODE is λ2 + 4 = 0, whose solutions are λ = ±2i. A
general solution to the homogeneous ODE is yc = c1 cos 2x + c2 sin 2x. A
general solution to the non homogeneous ODE is found by simply summing the
particular yp and complementary yc solutions, giving

y = yp + yc = 2x+ yc = c1 cos 2x+ c2 sin 2x.

6.3 Method of Undetermined Coefficients

If a linear ODE can be written in the form y′′ + ay′ + by = r(x), where r(x)
is an exponential function, a polynomial, a cosine or sine, or sums or products
of such functions, then we will be able to find particular solutions to the ODE
by making educated guesses. The idea is to notice that derivatives of these
types of functions involve functions similar to themselves. To find a particular
solution, we chose as our guess a function which is very similar to r(x), which
has unknown coefficients which we then determine by taking derivatives of
our guess, substituting them into our ODE, and then solving for the unknown
coefficients. Table 6.1 illustrates the type of guesses that should be made based
on what form r(x) takes. There are three key rules needed to use this table to
make appropriate guesses, the product rule, modification rule, and sum rule.

• Product Rule: If r(x) contains a term which is the produce of terms
in Table 6.1, then include in yp a product of the corresponding guesses,
giving each term in the product it’s own undetermined coefficient.

• Modification Rule: Select a single term in r(x). After applying the
product rule (if needed), if the guess from Table 6.1 contains a term which
is a solution to the corresponding homogeneous ODE, then multiply the
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Form of r(x) Guess for yp

keax Ceax

kxn Knx
n +Kn−1x

n−1 + · · ·+K1x
1 +K0

k cos(ωx) or k sin(ωx) K cos(ωx) +M sin(ωx)

keax cos(ωx) or keax sin(ωx) Keax cos(ωx) +Meax sin(ωx)

Table 6.1: Method of Undetermined Coefficients. For every term in the driving
force r(x) of the form on the left, your guess yp for the particular solution should
contain the terms on the right.

entire guess by x. If your guess still contains a term which is a solution
to the homogeneous ODE, then keep multiplying by x until no terms
are solutions to the homogeneous ODE. This requires that we start each
problem by solving the corresponding homogeneous linear ODE.

• Sum Rule: If r(x) is a sum of functions in Table 6.1, then make an
appropriate guess for each term in r(x), and choose for yp the sum of the
guesses (combining coefficients when the same term appears more than
once).

Following are a few examples of how this method works. These ideas can be
discovered using Laplace transforms, but the details to do this are more involved
than just making an educated guess and then showing that your guess is correct.
When we learn about systems of ODEs, we will use matrices and the matrix
exponential to organize all this work and show how the method of undetermined
coefficients really comes from simple integration on matrices.

Example 6.2. To solve y′′+5y′+4y = 3, we first solve the homogeneous ODE
y′′+5y′+4y = 0. The characteristic equation λ2+5λ+4 = (λ+4)(λ+1) = 0 has
roots λ = −4,−1, which means the complementary solution is yc = c1e

−4x +
c2e
−x. Since the driving force is a constant, we guess the particular solution

yp = K0 with unknown coefficient K0. We put yp, y
′
p = 0 and y′′p = 0 into the

ODE to obtain the equation 0+0+4(K0) = 3, or K0 = 3/4. A general solution
to the non homogeneous ODE is y = yc + yp = c1e

−4x + c2e
−x + 3/4.

Example 6.3. To solve y′′ + 5y′ + 4y = 3x2, we first solve the homogeneous
ODE y′′+5y′+4y = 0. As in the previous example, the characteristic equation
λ2 + 5λ + 4 = (λ + 4)(λ + 1) = 0 has roots λ = −4,−1, which means the
complementary solution is yc = c1e

−4x + c2e
−x. Because the driving force is a

parabola, we choose yp = K2x
2+K1x+K0 for unknown coefficients K2,K1,K0.

We put yp, y
′
p = 2K2x+K1, and y′′p = 2K2 into the ODE to obtain the equation

2K2 + 5(2K2x+K1) + 4(K2x
2 +K1x+K0) = 3x2.

To solve for the unknown constants, we factor the equation (grouping each

x2 x 1

y′′ 0 0 2K2

5y′ 0 10K2 5K1

4y 4K2 4K1 4K0

r(t) 3 0 0
You can organize your work by
placing the coefficients of each
power of x in their corresponding
column. Then the sum of each
column must match the
coefficient of the driving force.

power of x - the table on the side can simplify this) to obtain

(4K2)x2 + (10K2 + 4K1)x+ (2K2 + 5K1 + 4K0) = 3x2.

The only way for the polynomial on the left to equal the polynomial on the
right is if the coefficients of each power of x are the same on both sides. This
means that we have to solve the linear system (back to linear algebra) 4K2 =
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3, 10K2 + 4K1 = 0, 2K2 + 5K1 + 4K0 = 0. Using back substitution, we have
K2 = 3/4,K1 = −15/8,K0 = 63/32. So the general solution to the non
homogeneous ODE is y = yc + yp = c1e

−4x + c2e
−x + 3/4x2 − 15/8x+ 63/32.

Example 6.4. To solve y′′ + 6y′ + 9y = 5e−3x, we first solve the homogeneous
linear ODE y′′ + 6y′ + 9y = 0. The characteristic equation λ2 + 6λ + 9 =
(λ+3)(λ+3) = 0 has a double root λ = −3. Hence we get yc = c1e

−3x+c2xe
−3x.

As a guess for a particular solution, we choose yp = Ke−3x for an unknown
coefficient K. However, this is a solution in yc, so we use the modification
rule and multiply by x twice to obtain yp = Kx2e−3x as our guess. We put
yp, y

′
p = 2Kxe−3x− 3Kx2e−3x and y′′p = 2Ke−3x− 12Kxe−3x + 9Kx2e−3x into

the ODE to obtain the equation

e−3x(2K − 12Kx+ 9Kx2) + 6e−3x(2Kx− 3Kx2) + 9(Kx2e−3x) = 5e−3x.

We can organize our work in table form, as shown on the side. Equating

x2e−3x xe−3x e−3x

y′′ 9K −12K 2K
6y′ −18K 12K
9y 9K

r(t) 0 0 5

coefficients of like terms on both sides gives us two trivial equations 0 = 0 –
this reduction will happen whenever repeated roots appear. The last equation
simplifies to give 2Ke−3x = 5e−3x, and so K = 5/2. Hence, the general solution
to the non homogeneous ODE is y = yc+yp = c1e

−3x+c2xe
−3x+(5/2)x2e−3x.

Example 6.5. To solve the ODE y′′ + y = 4 cosx + e2x sin 3x, we first solve
the homogeneous linear ODE y′′ + y = 0, which has general solution y =
c1 cosx + c2 sinx. Since cos(x) is a solution of the homogeneous ODE, we
choose x(A cosx + B sinx) as a term in yp (modify both the cosine and sine
term). The term e2x sin 3x yields the guess Ce2x cos 3x + De2x sin 3x. Using
the sum rule we add these two guesses together to obtain our final guess for a
particular solution

yp = x(A cosx+B sinx) + Ce2x cos 3x+De2x sin 3x.

The first derivative is (using the product rule for derivatives)

y′p =x(−A sinx+B cosx) + (A cosx+B sinx)

− 3Ce2x sin 3x+ 2Ce2x cos 3x+ 3De2x cos 3x+ 2De2x sin 3x

=(A+Bx) cosx+ (B −Ax) sinx

+ e2x((2C + 3D) cos 3x+ (2D − 3C) sin 3x).

The second derivative is

y′′p =− (A+Bx) sinx+ (B) cosx+ (B −Ax) cosx−A sinx

+ e2x(−3(2C + 3D) sin 3x+ 3(2D − 3C) cos 3x)

+ 2e2x((2C + 3D) cos 3x+ (2D − 3C) sin 3x)

=(2B −Ax) cosx+ (−2A−Bx) sinx

+ e2x((−5C + 12D) cos 3x+ (−12C − 5D) sin 3x).

In table form we write

cosx sinx x cosx x sinx e2x cos 3x e2x sin 3x

y A B C D
y′ A B B −A 2C + 3D 2D − 3C
y′′ 2B −2A −A −B −5C + 12D −12C − 5D

Putting yp, y
′
p, and y′′p into the ODE y′′ + y = 4 cosx + e2x sin 3x (eliminating

the middle row), and placing the terms in table form (to simplify organization),
we have With practice you can start

skipping steps and speed up
organization by using a table to
factor your derivatives.
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cosx sinx x cosx x sinx e2x cos 3x e2x sin 3x

y′′ 2B −2A −A −B −5C + 12D −12C − 5D
y A B C D

r(t) 4 0 0 0 0 1

Summing the columns and equating coefficients gives the 4 non trivial equations
2B = 4, −2A = 0, −4C + 12D = 0, −12C − 4D = 1 (notice that two of the
equations vanished, which always happens when the modification rule is used).
These four equations immediately shows that B = 2 and A = 0. Using Cramer’s
rule gives C = −3/40 and D = −1/40. The general solution is

y = yc + yp = c1 cosx+ c2 sinx+ 2x sinx− 3

40
e2x cos 3x− 1

40
e2x sin 3x.

6.4 Hooke’s Law Again

We now return to the mass-spring system where the driving force r(t) is not
zero in the differential equation my′′ + cy′ + ky = r(t). We will examine a
periodic (with period 2π

ω ) driving force of the form r(t) = F0 cosωt for some
constants F0 and ω. The number ω is called the angular frequency. We will give
a general solution to this ODE, and then explore how F0 and ω can influence
the solution. In particular, we will discover how resonance (large oscillations)
can occur. The collapse of the Tacoma Narrows bridge in 1940 provides a visual
illustration of how resonance must be accounted for in mechanical design, as the
forces from wind generated vorticies pushed and pulled on the bridge structure
at just the right frequency to cause the bridge to collapse (see wikipedia or Billah,

K.; R. Scanlan (1991). “Resonance, Tacoma Narrows Bridge Failure, and Undergraduate

Physics Textbooks”).
The quadratic equation tells us that the zeros of the characteristic equation

mλ2 + cλ+ k = 0 are

λ =
−c±

√
c2 − 4mk

2m
.

If c 6= 0, then the complementary solution will not contain a cosωx or sinωx,
which means that the modification rule will not be needed when selecting yp.

If c = 0, then the roots are ±
√
k

m
, so as long as

√
k/m 6= ω we do not

need to worry about the modification rule. We’ll assume for the moment that
the modification rule does not need to be used, and then consider the case
ω =

√
k/m afterwards.

Using the method of undetermined coefficients, we guess the solution

yp(t) = a cosωt+ b sinωt.

Differentiation gives

y′p(t) = −aω sinωt+ bω cosωt and y′′p (t) = −aω2 cosωt− bω2 sinωt.

Substitution into the ODE gives m(−aω2 cosωt − bω2 sinωt) + c(−aω sinωt +
bω cosωt) + k(a cosωt + b sinωt) = F0 cosωt. Factoring the left side gives
(−amω2 + bcω + ak) cosωt+ (−bmω2 − acω + bk) sinωt = F0 cosωt (the table
on the right organizes our work). Hence we have the linear system

cosωt sinωt

my′′ −amω2 −bmω2

cy′ bcω −acω
ky ak bk

r(t) F0 0

{
(k −mω2)a+ bcω = F0

−acω + (k −mω2)b = 0
→
[
(k −mω2) cω
−cω (k −mω2)

] [
a
b

]
=

[
F0

0

]
,
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where a and b are our unknown constants. Cramer’s rule gives the solution to
this system, by computing

a =

∣∣∣∣F0 cω
0 (k −mω2)

∣∣∣∣∣∣∣∣(k −mω2) cω
−cω (k −mω2)

∣∣∣∣ =
F0(k −mω2)

(k −mω2)2 + c2ω2
,

b =

∣∣∣∣(k −mω2) F0

−cω 0

∣∣∣∣∣∣∣∣(k −mω2) cω
−cω (k −mω2)

∣∣∣∣ =
F0cω

(k −mω2)2 + c2ω2
.

This gives a particular solution to the ODE to which we add yc(t) to find the
general solution. If you make the substitution ω0 =

√
k/m (or k = mω2

0), then
the solution becomes (you do not need to memorize this, however you should
know how to derive it)

a = F0
m(ω2

0 − ω2)

m2(ω2
0 − ω2)2 + c2ω2

b = F0
cω

m2(ω2
0 − ω2)2 + c2ω2

.

This gives us a general formula for studying the motion of a mass spring system
which is driven by an external periodic force.

Observation 6.2. When c > 0, the homogeneous solution to a damped mass-
spring system will involve exponentials which approach 0 as t→∞. This means
that yc → o as t→∞, so the solution y = yc + yp tends to follow the (stable)
solution yp as t→∞. We call yc the transient solution as it dies out, and yp the
steady state solution as it is the solution left after significant passage of time.
The particular solution has the same period (hence the same frequency) as the
driving force (recall that frequency is defined as 1/period). In other words, this
means that after a reasonable amount of time, the solution to a damped mass-
spring system with a sinusoidal driving force will become a harmonic oscillation
with frequency matching the frequency of the driving force.

Observation 6.3. If c = 0 and w 6= ω0 (remember ω0 =
√
k/m), then a =

F0

m(ω2
0 − ω2)

and b = 0. Hence we can write

y(t) = yc + yp = C cos(ω0t− δ) +
F0

m(ω2
0 − ω2)

cosωt.

This is the superposition of two harmonic oscillations with differing frequencies.
As ω → ω0, the amplitude of the particular solution approaches infinity,
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This is a typical graph of a
solution with resonance. In this
example, w = 2, m = 1.1, c ≈ 0,
and k = 4. Since
ω0 =

√
4/1.1 ≈ 2 = ω, the

quantity
F0

m(ω2
0 − ω2)

has a small

denominator, which results in
large periodic oscillations. If the
oscillations are too large, they
will destroy the system.

and so we have extremely large oscillations (often called resonance). When
the two frequencies are extremely close together, resonance can result in huge
oscillations which can tear apart a mechanical system almost instantly. Notice
in the picture on the right how the solution

As a side note, the word frequency is used in different ways in different
places. Always attach either circular or natural to the word frequency to convey
the correct idea.

• The circular (angular) frequency, is ω0 =
√
k/m (radians per second).

• The natural frequency is f = ω0

2π (hertz).

The period (distance from one peak to the next) is always interpret as the
reciprocal of the natural frequency, T = 1/f .
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Observation 6.4. If c = 0 and w = ω0 =
√
k/m, then the modification rule

applies and we use the method of undetermined coefficients to find a and b in
yp = t(a cos(ω0t) + b sin(ω0t)) (notice the t in front). The solution is

yp(t) =
F0

2mω0
t sin(ω0t).

The t in this solution causes the amplitude of the vibration to grow, increasing
without bound in a linear fashion. In this setting, any system will destroy itself
as the oscillations will become too large to physically keep the system together.

Anytime a mechanical system is built, the builders must study the internal
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When ω0 = ω and friction is
negligible, a system will oscillate
with an amplitude that grows
without bound. Beware of this
situation, as any mechanical
system which undergoes this kind
of oscillation will self destruct.

frequencies of the system and make sure that they will not match external forces
applied to the system. Soldiers marching across a bridge have collapsed a bridge
in the past, so now it is common for soldiers to stop marching and shuffle across
a bridge to prevent it from collapsing. The Tacoma Narrows bridge collapsed
from forces due to resonance. Engineers must pay attention to both internal
and external forces, making sure to avoid resonance.

6.5 Electric circuits

(This section is largely a summary of page 116 from Schaum’s Outlines.) Kir-
choff’s Voltage law states that the voltage (electromotive force) impressed on a
closed loop is equal to the sum of the voltage drops across the other elements
of the loop. We use the expression I(t) to represent the current in a loop. The
following table illustrates summarizes the three types of voltage drops we will
study.

Component Voltage drop Other

Resistor RI Ohm’s law, where R is in ohms

Inductor LI ′ = L(dI/dt) L is in henrys

Capacitor Q/C Q is in coulombs, C in farads.

Here Q is the charge on the capacitor, related to the current by I(t) = dQ
dt , or

Q =
∫
I(t)dt.

In a circuit with one resistor, one inductor, and one capacitor (an RLC

E R

i

L

C

An RLC-circuit

E R

i

C

An RC-circuit

E R

i

L

An RL-circuit

circuit), if the electromotive force is E(t), then Kirchoff’s Voltage law gives the
integro-differential equation

LI ′ +RI +
1

C
Q(t) = E(t) or LI ′ +RI +

1

C

∫
I(t)dt = E(t).

Differentiating both sides removes the integral and gives

LI ′′ +RI ′ +
1

C
I(t) = E′(t),

which is a 2nd order non homogeneous linear differential equation with constant
coefficients. If the electromotive force is sinusoidal (such as E(t) = E0 sin(ωt)),
then we can solve this differential equation to find the current exactly the
same way we did in the last section. Notice however that initial conditions
will most often be given in terms of initial charge Q(0) and initial current
I(0). To solve the differential equation, you will have to use the first equation
LI ′(t) +RI(t) + 1

CQ(t) = E(t) to obtain a value for I ′(0)
Due to time constraints, I will let you read the examples in the text for

examples involving specific RLC, RC, and RL circuits. When working with
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RC-circuits, you differentiate both sides to obtain a first order ODE, and initial
conditions are generally given as initial charge. When working with an RL-
circuit, you don’t need to differentiate E(t), and the initial current is generally
given for initial conditions. One key observation to make is that when you are
given initial conditions for the charge and current, you use these to find initial
conditions for the current’s derivative. Even when Q(0) = 0 and I(0) = 0, we
may find that I ′(0) 6= 0. Use the equation involving Q to find I ′(0). (Problem
14.13 provides an excellent example of how this can occur.)

6.6 Comparing the two models - saving money

Mechanical models are expensive to build. Electrical models are fairly simple
to build and measure. If you need to create a mechanical system, it may
prove beneficial financially to start with an electrical model. Engineers spend
another semester on this idea in system dynamics. Hydraulic systems are also
very closely related. In bridging between mechanical and electrical systems, we
compare the following variables.

Mechanical System m c k r(t) = F0 cosωt y(t)

Electrical System L R 1/C E′(t) = E0ω cosωt I(t)

Solving a problem in one system (either mechanical or electrical) can provide
useful results in the other.
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6.7 Preparation

This chapter covers the following ideas. When you create your lesson plan, it should contain examples which
illustrate these key ideas. Before you take the quiz on this unit, meet with another student out of class and
teach each other from the examples on your lesson plan.

1. Explain Hooke’s Law in regards to mass-spring systems, where there is an external force. Construct
and solve differential equations which represent this physical model, with or without the presence of a
damper and be able to interpret how solutions change based on changes in the model.

2. Understand the theory which relates solutions of homogeneous linear ODE’s to non homogeneous
ODEs.

3. Use the method of undetermined coefficients to solve non homogeneous linear ODEs.

4. Explain Kirchhoff’s voltage law, Ohm’s law, and how to model electrical circuits using 2nd order non
homogeneous linear ODEs. Illustrate how results about circuits can be translated into results about
mass-spring systems.

Here are the preparation problems for this unit. All of these problems come from Schaum’s Outlines.

Preparation Problems

Day 1 8.21, 11.1, 11.2, 11.3

Day 2 11.9,10, 13.7, 14.10

Day 3 14.12, 14.13, 14.46, 14.54

Day 4 Lesson Plan, Quiz

Here are the homework problems which line up with the material we are learning. Remember your
assignment is to do at least 7 per day (2 of those with Mathematica). On the application problems, graph
your solutions so that you can see what is going on.

Concept Sec Suggestions Relevant Problems

Theory 8 21,65 21-23,65-67

Undetermined Coef 11 1,2,3,8,10,24,26,34,36,41,46,47,48 All

IVP 13 1,7,14 1,3,7,8,10,11,14

Applications 7 19,76 19-22,71-81

Applications 14 10,11,13,14,17,46,50,51,52,54,57 9-18,44-65



Chapter 7

Laplace Transforms

This chapter covers the following ideas. When you create your lesson plan, it
should contain examples which illustrate these key ideas. Before you take the
quiz on this unit, meet with another student out of class and teach each other
from the examples on your lesson plan.

1. Explain how to compute Laplace transforms and inverse Laplace trans-
forms. Explain and use both shifting theorems, and be able to prove
them.

2. Use Laplace transforms to solve IVP’s.

3. Describe the Dirac delta function, and use it in solving ODEs. Illustrate
what the Dirac delta function does to a system by applying it to examples
in mass-spring systems and electrical networks.

4. Explain what a convolution is, and how it relates to Laplace transforms.
Be able to use the Transform theorems related to differentiating and in-
tegrating functions or their transforms.

7.1 The big idea

The Laplace transform is a tool which became popular in the last 100 years
because of the work of engineers. The Laplace transform has the ability to
convert a differential equation into an algebraic equation which can be solved
purely with algebra. The Laplace transform can be applied to functions which
are not continuous, which makes it extremely useful in real world applications.
For example, if a hammer hits a mass-spring system, or an electrical switch
is turned on or off, the Laplace transform can handle the complications which
these simple changes bring to an ODE. The methods we have learned before
require that our driving forces are continuously differentiable functions.

The big idea in this unit is a three step process.

1. Convert and ODE into an algebraic equation using the Laplace transform.

2. Solve the corresponding algebraic equation (which often means you have
to use a partial fraction decomposition and completing the square).

3. Use an inverse Laplace transform to find the solution of the ODE.

The first part of this unit will focus on finding Laplace transforms and their
inverses. The second part will focus on solving ODEs. The third part will focus

92
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on what happens when we apply impulses to a system (such as a hammer blow,
or a bolt of lightning). The fourth part will focus on some theoretical aspects
of the Laplace Transform.

7.2 Finding Laplace Transforms and Their In-
verses

The Laplace transform of a function f(t) defined for t ≥ 0 is F (s) = L(f(t)) =∫∞
0
e−stf(t)dt. The function f(t) is called the inverse Laplace transform of

F (s), and we write f(t) = L−1(F (s)). As a notational convenience, we use
lower case letters and t to describe original functions, and the same capital
letter and s to represent the Laplace transform. Provided the function f is
“nice” (of exponential order, see pg 448), it will have a Laplace transform for
large enough s.

7.2.1 Finding the Laplace Transform

If f(t) = 1, then F (s) =
∫∞

0
e−st1dt = e−st

−s
∣∣∞
0

= 1
s , provided s > 0. If

f(t) = eat, then F (s) =
∫∞

0
e−steatdt =

∫∞
0
e−(s−a)tdt = e−(s−a)t

−(s−a)

∣∣∞
0

= 1
s−a ,

provided s > a. The improper integral computed with the Laplace transform
will normally exist only for certain values of s.

Since integration can be done term by term, we have L(af + bg) = aL(f) +
bL(g) for functions f, g and constants a, b. We can use this to find many
other Laplace transforms without having to do any more integration. We

have L(cosh at) = 1
2L(eat + L(e−at)) = 1

2

(
1
s−a + 1

s+a

)
= s

s2−a2 . Similarly

L(sinh at) = a
s2−a2 .

D I

+ cosωt e−st

− −ω sinωt e−st/(−s)
+ −ω2 cosωt e−st/s2

Integration by parts twice yields L(cosωt) =
s

s2+ω2 and L(sinωt) = ω
s2+ω2 . To see

this, write L(cosωt) =
∫∞

0
e−st cosωtdt.

The tabular method gives
∫∞

0
e−st cosωtdt =(

cosωte−st/(−s) + ω sinωte−st/s2
) ∣∣∞

0
−
∫∞

0
ω2 cosωte−st/s2dt =

1/s − ω2/s2
∫∞

0
e−st cosωtdt, which means L(cosωt) = 1/s − ω2/s2L(cosωt).

This means (1 + ω2/s2)L(cosωt) = 1
s , or (s2 + ω2)L(cosωt) = s or L(cosωt) =

s
s2+ω2 . Integration by parts also shows that L(tn) = n!

sn+1 for integers n.
For convenience, the following table summarizes the Laplace Transforms we

will use most often.

f(t) tn t0 = 1 eat cos(wt) sin(wt) cosh(wt) sinh(wt) u(t− a)

F(s) n!/sn+1 1/s 1/(s− a) s/(s2 + w2) w/(s2 + w2) s/(s2 − w2) w/(s2 − w2) e−as/s
s > 0 s > 0 s > a s > 0 s > 0 s > |w| s > |w| s > 0

7.2.2 Finding an Inverse Laplace Transform

If the Laplace transforms of two functions are the same, then the two function
must be the same as well. This allows us to invert the Laplace transform and
obtain the only function with a given Laplace transform. Inverting a Laplace
transform often involves matching the transformed function up with a function
from a table, and then using the table to invert the transform.
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To find the inverse Laplace transform of F (s) = 7
s3 , first notice that 2

s3 is

the transform of t2. We rewrite F (s) = 7
s3 = 7

2
2!
s3 , and then find the inverse

transform as L−1(F (s)) = 7
2 t

2.
To find the inverse Laplace transform of F (s) = 3s+4

s2+25 , we notice that

the transforms of cos(5t) and sin(5t) are s/(s2 + 52) and 5/(s2 + 52). We
rewrite F (s) = 3s+4

s2+25 = 3 s
s2+25 + 4

5
5

s2+25 , and then the inverse transform is

3 cos(5t) + 4
5 sin(5t).

To find the inverse Laplace transform of F (s) = 3s+1
s2+3s+2 , we start by fac-

toring the denominator as (s2 + 3s+ 2) = (s+ 2)(s+ 1). We then use a partial
fraction decomposition to write 3s+1

s2+3s+2 = A
s+2 + B

s+1 . Multiplication on both

sides by s2 +3s+2 gives (3)s+(1) = A(s+1)+B(s+2) = (A+B)s+(A+2B).
Since the left and right sides are both linear equations of s, the coefficients must
be equal so we must have 3 = A+B and 1 = A+ 2B. The solution is B = −2
and A = 5. This means that F (s) = 5 1

s+2 − 2 1
s+1 , which means the Laplace

inverse is f(t) = 5e−2t − 2e−t.

7.2.3 Shifting Theorems and The Heaviside Function

s-shifting: Multiplication by eat

The s-shifting theorem states that

F (s− a) = L(eatf(t))

or alternatively L−1(F (s−a)) = eatf(t). For example, L(e3t cos(πt)) = s−3
(s−3)2+π2 .

In other words, multiplication of the function f(t) by eat means that you first
find the Laplace transform of f and the replace each s with s − a. As a quick
example, we compute L(t2e−5t) = 2!

(s+5)3 (start by finding L(t2) = 2!
s3 and the

replace the s with s− (−5)).
The inverse Laplace transform of 3

(s−4)3 is related to the inverse transform

of 3
s3 . The transform of t2 is 2

s3 , so the inverse transform of 3
s3 = 3

2
2
s3 is 3

t t
2.

Because there was an s− 4 in the original denominator, we have to multiply by
e4t to obtain the inverse Laplace transform of 3

(s−4)3 as 3
t t

2e4t.

The inverse Laplace transform of s−2
(s−4)2+1 is found by first obtaining an s−4

in the numerator and then breaking the fraction into two parts, s−4+4−2
(s−4)2+1 =

s−4
(s−4)2+1 + 2 1

(s−4)2+1 . We then compute the inverse transform as e4t cos(t) +

2e4t sin(t).
To use the s shifting theorem, you have to get good at adding zero to a

problem (as I did in the previous example with −4 + 4). You may have to
complete the square in the denominator, as s+2

s2+4s+13 = s+2
(s+2)2+9 has Laplace

inverse e−2t cos 3t. The reason the shifting theorem is true is because (here’s
the 3 step short proof)

L(eatf(t)) =

∫ ∞
0

e−st(eatf(t))dt =

∫ ∞
0

e−(s−a)tf(t)dt = F (s− a).

The Heaviside function and t-shifting (Multiplication by e−as)

The Heaviside function u(t) =

{
0 t < 0

1 t ≥ 0
can be though of as a function which

turns other functions on and off. For example, the function t2u(t) is zero to
the left of 0, and then the function t2 is turned on at t = 0. The function
t2(u(t) − u(t − 3)) turns on the function t2 at t = 0 and then turns it off
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at t = 3. The Heaviside function can be used to piece together piecewise
continuous functions by using this “on-off” approach. For example, the function

f(t) =


0 t < 0

t2 0 ≤ t ≤ 1

2− t 1 < t ≤ π
cos t π < t

can be written using the Heaviside function as f(t) =

t2[u(t) − u(t − 1)] + (2 − t)[u(t − 1) − u(t − π)] + cos t[u(t − π)]. This section
describes how to compute Laplace transforms and inverse transforms of such
piecewise defined functions. Such functions are needed to model turning on
a switch in an electrical network, modifying the driving force in a mechanical
spring system, and many other practical applications.

The t-shifting theorem states

L(f(t− a)u(t− a)) = e−asF (s)

or L−1(e−asF (s)) = f(t − a)u(t − a), where F (s) = L(f(t)). This theorem is
easiest to use when computing inverse transforms, as it says that multiplication
of F (s) by e−as means that you multiply the inverse of F (s) by u(t) and then
replace all the t’s with t− a. For example we can find the inverse transform of
F (s) = 2

s2+4e
−3s by first noting that the inverse transform of 2

s2+4 is sin(2t),

and so we multiply by u(t) and replace each t with t−3 to obtain L−1(F (s)) =
sin(2(t − 3))u(t − 3). This is just the curve sin(2t) which has been shifted 3
units to the right and turned on at t = 3.

Notice that the t-shifting theorem has an e−as, while the s shifting the-
orem has an eat. Pay attention to this sign difference. The reason the t-
shifting theorem is true is because

∫∞
0
f(t − a)u(t − a)e−stdt =

∫∞
a
f(t −

a)e−stdt. By the substitution w = (t − a), this becomes
∫∞

0
f(w)e−sw+adw =

e−as
∫∞

0
f(w)e−swdw = e−asF (s). Again it is a fairly short proof.

To use the t-shifting theorem to compute forward Laplace transforms, you
have to rewrite f(t) in terms of t−a. For example, the function t2 for t > 1 and
0 otherwise is written f(t) = t2u(t−1). To use the second shifting theorem, we
write f(t) = t2u(t−1) = ((t−1)+1)2u(t−1) = ((t−1)2 +2(t−1)+1)2u(t−1).
Notice how I purposefully inserted a −1+1 next to the t. The shifting theorem
then gives F (s) =

(
2
s3 + frac2s2 + 1

s

)
e−s. Our function f(t − 1) = (t − 1)2 +

2(t − 1) + 1 is simply f(t) = t2 + 2t + 1 whose transform is 2
s3 + frac2s2 + 1

s ,
which we then multiply by e−s to complete the transform. An alternate version
of this transformation uses the formula

L(f(t)u(t− a)) = e−asL(f(t+ a))

(meaning replace each t with t + a and then find the transform and multiply
by e−as). This formula shows that L(t2u(t− 1)) = e−sL((t+ 1)2) = e−sL(t2 +
2t+ 1)) = e−s

(
2
s3 + 2

s2 + 1
s

)
as before.

Both shifting theorems can be applied simultaneously. If F (s) = (s−3)e−2s

(s−3)2+ω2 ,

then without the e−2s the inverse transform would be e3t cos(ωt) by the s-
shifting theorem. The t-shifting theorem says that the inverse transform is
e3(t−2) cos(ω(t − 2))u(t − 2) (multiply by u(t) and then replace each t with
t − 2). Remember that with the s shifting theorem you change the sign, but
with the t shifting theorem you do not. This is the most common mistake.
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7.3 Solving IVPs

7.3.1 The Transform of a derivative

The Laplace transform of a derivative is, using integration by parts,

L(f ′) =

∫ ∞
0

e−stf ′(t)dt = (e−stf(t))
∣∣∞
0

+ s

∫ ∞
0

e−stf(t)dt = sL(f)− f(0).

We can use this formula to get

L(f ′′) = sL(f ′)− f ′(0) = s[sL(f)− f(0)]− f ′(0) = s2L(f)− sf(0)− f ′(0).

These two formulas can be used to find new Laplace transforms and (most
importantly) solve ODEs.

7.3.2 Solving IVPs - Lots of examples

We can use the differentiation theorem to solve IVPs. Given an ODE, take the
Laplace transform of each side, giving what is called the subsidiary equation.
This equation can be solved for L(y) = Y (s) using only algebra. You then
compute L−1(Y (s)) to find the solution to the IVP y(t). This may involve
finding a partial fraction decomposition. Laplace transforms reduce many IVPs
to a 3 step process (1) convert to the subsidiary equation, (2) use algebra to
solve for Y , performing a partial fraction decomposition if needed, (3) find
inverse Laplace transform.

To solve the homogeneous IVP y′ + 2y = 0, y(0) = 1 we start by taking
the Laplace transform of each side. This gives the subsidiary equation sL(y)−
y(0) + 2L(y) = 0, or using the notation L(y) = Y , we have sY − 1 + 2Y = 0.
Solving for Y gives the equation Y = 1

s+2 . The inverse Laplace transform of

both sides gives y(t) = e−2t.
To solve the nonhomogeneous IVP y′ + 2y = 3, y(0) = 1, take the Laplace

transform of each side. This gives the subsidiary equation sY − 1 + 2Y = 3
s .

Solving for Y gives the equation Y = s+3
s(s+2) . The partial fraction decomposition

s+3
s(s+2) = A

s + B
s+2 requires we solve s+ 3 = A(s+ 2) +Bs, or 1 = A+B, 3 = 2A

giving A = 3/2 and B = −1/2. Our subsidiary equation is now Y = 3
2

1
s−

1
2

1
s+2 .

The inverse Laplace transform of both sides gives y(t) = 3
2 −

1
2e
−2t. These two

examples represent the basic ideas used to solve pretty much every Laplace
transform problem.

Now for a problem with a Heaviside function. Consider the IVP y′′ + 4y =
u(t − 5), y(0) = 0, y′(0) = 1, which represents a mass-spring system with no
friction which has a constant driving force of magnitude 3 applied at time t = 5.
Take the Laplace transform of each side to obtain. s2Y − sy(0)− y′(0) + 4Y =
e−4s

s or (s2 + 4)Y = 1 + e−5s

s . Solving for Y gives the equation Y = 1
s2+4 +

1
s(s2+4)e

−5s. The partial fraction decomposition 1
s(s2+4) = A

s + Bs+C
s2+4 becomes

0s2 +0s+1 = A(s2 +4)+Bs2 +Cs = (A+B)s2 +(C)s+(4A). We obtain the 3
equations 0 = A+B, 0 = C, 1 = 4A whose solution is A = 1/4, B = −1/4, C =

0. Our subsidiary equation is now Y = 1
2

2
s2+4 +

[
1
4

1
s −

1
4

s
s2+4

]
e−5s. The inverse

Laplace transform of both sides gives y(t) = 1
2 sin(2t)+[ 1

4−
1
4 cos(2(t−5))]u(t−

5), using the t-shifting theorem.
For a more involved example, to solve the IVP y′′+ 4y′+ 3y = 30e2t, y(0) =

1, y′(0) = 3, take the Laplace transform of each side. This gives the subsidiary
equation s2Y − sy(0) − y′(0) + 4(sY − y(0)) + 3Y = 30

s−2 . Solving for Y gives
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us (s2 + 4s+ 3)Y = s+ 7 + 30
s−2 or

Y (s) =
s+ 7

s2 + 4s+ 3
+

30

(s2 + 4s+ 3)(s− 2)
=

(s+ 7)(s− 2) + 30

(s+ 1)(s+ 3)(s− 2)
=

s2 + 5s+ 16

(s+ 1)(s+ 3)(s− 2)
.

A partial fraction decomposition gives A
s+1 + B

s+3 + C
s−2 . Multiplying both sides

by (s+ 1)(s+ 3)(s− 2) gives s2 + 5s+ 16 = A(s+ 3)(s− 2) +B(s+ 1)(s− 2) +
C(s+ 1)(s+ 3) = A(s2 + s− 6) +B(s2− s− 2) +C(s2 + 4s+ 3). We equate the
coefficients of x2, x, and the constants on each side to get the three equations
1 = A + B + C, 5 = A − B + 4C, 16 = −6A − 2B + 3C. The solution to this
system is A = −2, B = 1, C = 2, which means Y (s) = −2

s+1 + 1
s+3 + 2

s−2 . The

inverse Laplace transform of Y (s) is L−1(Y ) = y(t) = −2e−t + e−3t + 2e2t. An
alternate way to do a partial fraction decomposition would be to consider the
equation s2 + 5s + 16 = A(s + 3)(s − 2) + B(s + 1)(s − 2) + C(s + 1)(s + 3)
and let s = −3, 2,−1, which gives 10 = B(10), 30 = C(15), 12 = A(−6), which
gives the same numbers for A,B,C as equating the coefficients.

Let’s consider an example where a factor appears more than once in the
denominator of a partial fraction decomposition. To solve the ODE IVP y′′ +
4y′ + 4y = 0, y(0) = 1, y′(0) = 3, take Laplace transforms of both sides to
obtain the subsidiary equation s2Y − sy(0)− y′(0) + 4(sY − y(0)) + 4Y = 0 or
s2Y −s−3+4(sY −1)+4Y = 0. Solving for Y gives Y = s+7

s2+4s+4 = s+7
(s+2)2 . Since

we have a double factor in the denominator, our partial fraction decomposition
is s+7

(s+2)2 = A
s+2 + B

(s+2)2 , or s+7 = A(s+2)+B = As+(2A+B). The solution to

the system A = 1, 2A+B = 7 is A = 1, B = 5. Hence our subsidiary equation
is Y = 1

s+2 + 5 1
(s+2)2 . The t-shifting theorem gives us the inverse transform

y = e−2t + 5te−2t. This is yet another reason why you multiply by t when you
get a repeated factor.

In solving the ODE y′′ + 4y′ + 5y = e−2t cos t, y(0) = 0, y′(0) = 1, our
subsidiary equation would be s2Y − 1 + 4sY + 5Y = s+2

(s+2)2+1 . Solving for

Y gives Y = 1(s2+4s+5)+(s+2)
((s+2)2+1)2 = s2+5s+7

((s+2)2+1)2 . A partial fraction decomposition

would be s2+5s+7
((s+2)2+1)2 = As+B

(s+2)2+1 + Cs+D
((s+2)2+1)2 , or s2+5s+7 = (As+B)(s2+4s+

5)+(Cs+D) = (A)s3 +(4A+B)s2 +(5A+4B+C)s+(5B+D). This gives the
system of equations 0 = A, 1 = 4A+B, 5 = 5A+4B+C, 5B+D = 7 which has
solutions A = 0, B = 1, C = 1, D = 2. The subsidiary equation is hence Y =

1
(s+2)2+1 + s+2

((s+2)2+1)2 which has Laplace inverse y = e−2t sin(t) + e−2t t
2 sin(t)

using the table of Laplace transforms on the front cover of your book. I would
not expect you to carry out this last inverse without access to a table.

7.3.3 How to handle initial conditions that are not at t = 0

If the initial conditions are not stated in terms of t0 = 0, then change variables
t̂ = t − t0 so that the initial conditions are at t̂0 = 0. For example, to solve
the IVP y′′ + y = 3, y(2) = 0, y′(2) = 1, let t̂ = t− 2, y(t̂) = ŷ so that the IVP
becomes ŷ′′+ ŷ = 1, ŷ(0) = 0, ŷ′(0) = 3 where derivatives in this latter equation
are with respect to t̂. The subsidiary equation is (taking Laplace transforms)
s2Ŷ −0s−1+Ŷ = 3

s , or Ŷ = 1
s2+1 + 3

(s2+1)s . A partial fraction decomposition of

the latter term 3
(s2+1)s = A

s +Bs+C
s2+1 gives the equation 3 = A(s2+1)+(Bs+C)s.

Equating coefficients gives 0 = A + B, 0 = C, 3 = A, so Ŷ = 1
s2+1 + 3

s + −3s
s2+1 .

The inverse Laplace transform is (looking at a short table of transforms which
you should either memorize or put on your 3 by 5 card) ŷ = sin t̂+ 3− 3 cos t̂.
Change variables back to obtain y(t) = sin(t− 2) + 3− 3 cos(t− 2).
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7.4 Impulses and the Dirac Delta function δ(t−
a)

The Dirac delta function is defined as the “function” δ(t − a) =

{
0 t 6= a

∞ t = a
,

which satisfies
∫∞

0
δ(t − a)dt = 1, and has the sifting property

∫∞
0
g(t)δ(t −

a)dt = g(a). I put “function” in quotes because Dirac delta is really a “distri-
bution,” and is technically studied using limits. Consider the function fk(t−a)
which has value k for a < t < t + 1

k , yet is zero elsewhere. The integral∫∞
0
fk(t)dt =

∫ a+1/k

a
kdt = 1 for all k, so the function fk(t − a) is essentially

a short impulse of magnitude k over a time interval of length 1/k (so that the
total area under the curve is 1). The Dirac delta distribution is studied by
considering limits of fk as k → ∞. The limit lim

k→∞
fk(t − a) is point-wise the

zero function, so it should have no area underneath. The Dirac delta function
is defined so that it behaves like the limit of the fk functions, but has a posi-
tive area under it when your integral bounds include a. The reason we study
this function is because it is used to describe events which happen instanta-
neously as in a hammer blow, flickering a light switch, when lightning strikes,
or if a driving force is applied instantaneously at t = a. In other words, if
the force is turned on and then off essentially instantaneously, then the Dirac
delta “function” is used instead of the Heaviside function. The Laplace trans-
form of the Dirac delta distribution comes easily from the “sifting” property,
as
∫∞

0
e−stδ(t− a)dt = e−as.

One way of thinking about the Dirac delta distribution is that it represents
derivative of the unit impulse function. The IVP y′ = δ(t − 3), y(0) = 0 has
subsidiary equation sY = e−3s or Y = 1

se
−3s. The Laplace inverse is y(t) =

u(t−3). In other words, at time 3 a hammer hits the constant solution y(t) = 0
and causes a jump upwards of 1 unit. The derivative of such a jump is undefined
in terms of what we learned in first semester calculus, but the Dirac delta
distribution allows us to define the “derivative” of a jump discontinuity. The
IVP y′ = 4δ(t − 3), y(0) = 0 would have solution y = 4u(t − 3) which would
result in a jump upwards of 4 units.

As an example, the IVP y′′+ 2y′+ 2y = (1−u(t− 3))et + 30δ(t− 6), y(0) =
0, y′(0) = 0 has an input force equal to et for 0 < t < 3, and then at t = 6
it receives an impulse of 30 units. The corresponding subsidiary equation is
s2Y −0s−0 + 2sY −0 + 2Y = 1

s−1 + e−3sL(et+3) + 30e−6s, or (s2 + 2s+ 2)Y =
1
s−1−e

−3se3 1
s−1 +30e−6s. Since the zeros of s2+2s+2 are imaginary, we cannot

factor it any further and so we complete the square to obtain s2 + 2s + 2 =
(s+ 1)2 + 1. We have

Y (s) =
1

(s− 1)((s+ 1)2 + 1)
−e−3se3 1

(s− 1)((s+ 1)2 + 1)
+30e−6s 1

(s+ 1)2 + 1
.

Partial fractions gives
1

(s− 1)((s+ 1)2 + 1)
=

A

s− 1
+
B(s+ 1) + C

(s+ 1)2 + 1
, where I

purposefully wrote B(s + 1) + C as we will have to get a multiple of s + 1
in the numerator anyways when we compute the inverse transform which will
involve the first shifting theorem and a cosine. Multiplying both sides by the
denominator on the left gives 1 = A(s2 + 2s + 2) + (B(s + 1) + C)(s − 1) =
s2(A + B) + s(2A + B + C) + (2A − B − C), which means 0 = A + B, 0 =
2A + C, 1 = 2A − B − C. So B = −A,C = −2A, and the solution is A =
1/5, B = −1/5, C = −2/5. This means we can write
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Y (s) =
(

1
5(s−1) −

(s+1)
5((s+1)2+1) −

2
5((s+1)2+1)

)
y(t) =

(
1
5e
t − 1

5e
−t cos(t)− 2

5e
−t sin(t)

)
−e−3se3

(
1

5(s−1) −
(s+1)

5((s+1)2+1) −
2

5((s+1)2+1)

)
−e3u(t− 3)

(
1
5e
t−3 − 1

5e
−(t−3) cos(t− 3)− 2

5e
−(t−3) sin(t− 3)

)
+30e−6s 1

(s+1)2+1 +30e−(t−6) sin(t− 6)

I will be creating more problems for you to practice these ideas. Once the
problems are made, I will email you and let you know where to get them. Most
of the problems related to the Dirac delta distribution will involve mass spring
systems, or electrical networks.

7.5 Convolutions, and Transfer Theorems

7.5.1 Convolutions

The Laplace transform of the product f · g of two functions is not the product
of the Laplace transforms of each (L(fg) 6= L(f)L(g)). Instead, the Laplace

inverse of H(s) = L(f)L(g) is equal to a quantity h(t) = f ∗g(t) =
∫ t

0
f(p)g(t−

p)dp called the convolution of f and g (the proof involves interchanging the
order of integration on a double integral). The variable p is a dummy variable
of integration, and could be called anything else (some books uses τ , but I find
it really hard to distinguish between t and τ when I’m writing on paper, so
I use p instead). The convolution satisfies various properties (commutative,
distributive, associative), however f ∗ 1 6= f , and f ∗ f may be negative.

If H(s) = 1
s2(s−1) = 1

s2
1
s−1 = F (s)G(s), where f(t) = t and g(t) =

et, then the inverse Laplace transform of H(s) is the convolution of f and

g. We compute h(t) =
∫ t

0
pet−pdp = et

∫ t
0
pe−pdp = et (−pe−p − e−p)

∣∣t
0

=
et (−te−t − e−t + 1) = −t−1+et. The convolution is an alternate approach (in-
stead of a partial fraction decomposition) to finding inverse Laplace transforms.
A mass-spring system with ODE my′′ + cy′ + ky = f(t), y(0) = 0, y′(0) = 0
has subsidiary equation s2mY + scY + kY = F (s) or Y = 1

ms2+cs+kF (s) =
W (s)F (s), where W (s) is called the transfer function of the system. Engineers
often study mass-spring systems by letting w(t) = L−1(W (s)) (called the weight
function) and then writing the solution using the convolution y(t) = w(t)∗f(t).
This gives an extremely easy way to represent the solution of a mass-spring
system, with a single integral (though the integral may be rather complex).
This formula is called Duhamel’s principle for the system.

7.5.2 Transform Theorems

The transfer theorems we will focus on essentially give us rules for computing
transforms and inverse transforms of derivatives an integrals. The key transform
theorem we have already been using is L(y′) = sY − y(0). We will now look at
L(
∫
ydt), L−1(F ′(s)), and L−1(

∫
F (s)ds).

The Laplace transform of f ∗ 1 =
∫ t

0
f(p)1dp is F (s)

s , which is immedi-

ate by the convolution theorem since L(1) = 1
s . This can be used to find

transforms of integrals, namely L(
∫ t

0
f(t)dt) = F

s (remember that the trans-
form of a derivative resulted in multiplying by s, so it seems reasonable the
transform of an integral should involve division by s). Remember that the

voltage drop due to a capacitor is V = Q
C , where Q(t) =

∫ t
0
I(t)dt for the

current I(t). Hence the charge is Q(t) = I(t) ∗ 1, the convolution of i and

1, which means that Q(s)
C = I

sC . Hence the subsidiary equation of the ODE
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LI ′+RI+ Q
C = E(t) for a power source supplying E(t) volts with I(0) = 0 and

Q(0) = 0 is L(sI − I(0)) +RL(I) + L(I)
sC = L(E).

The derivative of a transform satisfies the rule L(−tf(t)) = F ′(s). This can

be used to show that L(−t cos(t)) = d
ds

s
s2+1 = 1−s2

(s2+1)2 , or that L(−t sin(wt)) =
d
ds

w
s2+w2 = 2ws

(s2+w2)2 (which we used in one of the examples early on in the unit).

The integral of a transform satisfies the rule L
(
f(t)
t

)
=
∫∞
s
F (p)dp, pro-

vided limt→0+
f(t)
t exists and is finite. I will provide more examples of this as

time goes on.
There are many other things known about Laplace transforms. This is

just an introduction to the subject. Laplace transforms replace ODEs with
equations which can be solved algebraically. Some people argue that for this
reason Laplace transforms are more advantageous than the classical methods
we previously learned. You trade the method of undetermined coefficients for a
partial fraction decomposition. You trade solving the homogeneous system for
factoring the denominator before performing the partial fraction decomposition.
Initial values are automatically taken care of which is nice when using Laplace
transforms. In addition, Laplace transforms increase the types of functions you
can include as inputs to an ODE, so that non continuous functions and impulses
can be included.
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7.6 Preparation

This chapter covers the following ideas. When you create your lesson plan, it should contain examples which
illustrate these key ideas. Before you take the quiz on this unit, meet with another student out of class and
teach each other from the examples on your lesson plan.

1. Explain how to compute Laplace transforms and inverse Laplace transforms. Explain and use both
shifting theorems, and be able to prove them.

2. Use Laplace transforms to solve IVP’s.

3. Describe the Dirac delta function, and use it in solving ODEs. Illustrate what the Dirac delta function
does to a system by applying it to examples in mass-spring systems and electrical networks.

4. Explain what a convolution is, and how it relates to Laplace transforms. Be able to use the Transform
theorems related to differentiating and integrating functions or their transforms.

Here are the preparation problems for this unit. Chapter numbers precede the problems from Schaum’s.

Preparation Problems (click for Chp 23, Chp 24, and Book solutions. )

Day 1 24.26, 24.28, 24.29, 24.31,

Day 2 23.8, 23.14, 23.6, 23.33

Day 3 Book 1-3, Book 7, 24.33, Book 20

Day 4 Book 22, Book 23, Book 25, Book 27

Day 5 Lesson Plan, Quiz

Your homework comes from chapters 21 -24 in Schaum’s, and the problems in this online book. Do
enough of each type that you feel comfortable with the ideas.

f(t) F (s) provided

1
1

s
s > 0

tn
n!

sn+1
s > 0

eat
1

s− a
s > a

y′ sY − y(0)

y′′ s2Y − sy(0)− y′(0)

y′′′ s3Y − s2y(0)− sy′(0)− y′′(0)

eatf(t) F (s− a)

f(t) ∗ g(t) F (s)G(s)

f(t) F (s) provided

cos(wt)
s

s2 + ω2
s > 0

sin(wt)
ω

s2 + ω2
s > 0

cosh(wt)
s

s2 − ω2
s > |ω|

sinh(wt)
ω

s2 − ω2
s > |ω|

u(t− a) 1
se
−as

δ(t− a) e−as

f(t− a)u(t− a) L(f(t))e−as

f(t)u(t− a) L(f(t+ a))e−as

Note that the s shifting theorem L(eatf(t)) = F (s− a) has a positive a in the exponent, while the t
shifting theorem L(f(t− a)u(t− a)) = L(f(t))e−as has a negative a in the exponent.

You must practice lots of problems to gain a feel for patterns. The problems in 21 and 22 are fast. Do
way more than 7 problems a night. You may be able to finish 7 problems in 5 minutes or less. Try to do
them all in less than an hour. If you can’t, then try again the next day. If one stumps you, skip it and come

https://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/07-Laplace-Transforms-23-Solutions.pdf
https://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/07-Laplace-Transforms-24-Solutions.pdf
https://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/07-Laplace-Transforms-Book-Solutions.pdf
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back later. Once you feel confident, chapters 23 (on convolutions and the heaviside function) and 24 (solving
IVPS) will help you use the Laplace transforms to solve ODEs. The online book contains some additional
problems to help you cement your understanding. I’ve included a table that summarizes the transforms we
use most often.

7.7 Problems

Make sure you try some of each type of problem from chapters 21-24 (except for the last set of problems in
23). The new ideas involve convolutions and the Heaviside (unit step) function in 23. Once you have tried
some of each of these, use this page to give you more practice.

I Find the Laplace transform of each of the following, and use Mathematica to check your answer.

1. f(x) = 8e−3x cos 2x− 4e4x sin 5x+ 3e7xx5

2. f(x) = xu(x− 4) + δ(x− 6)

3. f(x) = e3xu(x− 2) + 7δ(x− 4)

II Find the inverse Laplace transform of each of the following, and use Mathematica to check your answer.
Many of these will require you to use a partial fraction decomposition.

4.
s

(s+ 3)2 + 25
+

2

(s− 2)4
e−3s

5.
s

s2 + 4s+ 13
e−4s

6.
1

s(s2 + 1)
e−5s

7.
1

s2(s2 + 1)
e−3s

8.
2s+ 1

(s− 1)2(s+ 1)
e−7s

9.
1

(s− 1)(s+ 2)(s− 3)
e−4s

III Use Laplace transforms to find the position y(t) of an object or current current I(t) in each of the
following scenarios. I will give you the constants m, c, k and the driving force r(t), or I will give you
the inductance L, resistance R, capacitance C, and voltage source E(t), as well as any relevant initial
conditions. Your job is to use Laplace transforms to find the solution. Use Mathematica to check
your solution, and draw the graph of y(t) or I(t) and the steady-state (steady periodic) solution to see
how the Heaviside and Dirac delta functions affect the graph. The point here is to see these two new
functions affect solutions. I suggest that you do all of these problems with the computer, so you can
quickly see the effects of a Heaviside function or Dirac delta distribution.

10. m = 1, c = 0, k = 4, r(t) = u(t− 1), y(0) = 1, y′(0) = 0

11. m = 1, c = 0, k = 4, r(t) = δ(t− 3), y(0) = 1, y′(0) = 0

12. m = 1, c = 0, k = 4, r(t) = 7u(t− 3), y(0) = 1, y′(0) = 0

13. m = 1, c = 0, k = 4, r(t) = 7u(t− 3) + 11δ(t− 5), y(0) = 1, y′(0) = 0

14. m = 1, c = 0, k = 4, r(t) = 7tu(t− 3), y(0) = 1, y′(0) = 0

15. m = 1, c = 0, k = 4, r(t) = 7, y(0) = 1, y′(0) = 0
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16. m = 1, c = 0, k = 4, r(t) = 7, y(π) = 1, y′(π) = 0

17. m = 1, c = 3, k = 2, r(t) = u(t− 2), y(0) = 0, y′(0) = 0

18. m = 1, c = 3, k = 2, r(t) = δ(t− 2), y(0) = 0, y′(0) = 0

19. m = 1, c = 3, k = 2, r(t) = 4u(t− 1), y(0) = 0, y′(0) = 0

20. m = 1, c = 3, k = 2, r(t) = 4u(t− 1) + 10δ(t− 2), y(0) = 0, y′(0) = 0

21. m = 1, c = 3, k = 2, r(t) = 4tu(t− 1), y(0) = 0, y′(0) = 0

22. L = 0, R = 2, C = 1/5, E(t) = 12u(t− 2), Q(0) = 0 (use first order ODE)

23. L = 1, R = 2, C = 0, E(t) = 12u(t− 2), I(0) = 0 (use first order ODE)

24. L = 1, R = 2, C = 1/5, E(t) = 12, Q(0) = 0, I(0) = 0 (first find I ′(0).)

25. L = 1, R = 2, C = 1/5, E(t) = 12u(t− 2), Q(0) = 0, I(0) = 0

26. L = 1, R = 2, C = 1/5, E(t) = e3tu(t− 2), Q(0) = 0, I(0) = 0

27. L = 1, R = 2, C = 1/5, E(t) = 4 cos(3t), Q(0) = 0, I(0) = 0

28. L = 1, R = 4, C = 1/4, E(t) = u(t− 3), Q(0) = 0, I(0) = 0

29. L = 1, R = 4, C = 1/4, E(t) = e−2t, Q(0) = 0, I(0) = 0

IV Find transforms and inverse transforms of the following, using the transform theorems.

30. We will skip this section. Don’t worry about this objective.



Chapter 8

Power Series

This chapter covers the following ideas. When you create your lesson plan, it
should contain examples which illustrate these key ideas. Before you take the
quiz on this unit, meet with another student out of class and teach each other
from the examples on your lesson plan.

1. Find and explain the use of Taylor polynomials, Talyor series, and Maclau-
rin series. Give examples for various common functions.

2. Explain how to use the ratio test to find the radius of convergence of a
power series.

3. Derive Euler’s formula, and use it to explain why complex roots a± bi of
2nd order ODE result in the solutions eax cos(bx) and eax sin(bx).

4. Explain how to differentiate, integrate, add, multiply, compose, and shift
indices of power series.

5. Use the power series method to solve ODEs at ordinary points.

8.1 Taylor Polynomials and Series

Recall that the tangent line to a function f(x) at x = c is a line through
(c, f(c)) with slope f ′(c). An equation of this line (obtained using the point-
slope form y − y0 = m(x− x0))is y − f(c) = f ′(c)(x− c), or in slope intercept
form y = f(c) + f ′(c)(x − c). The tangent line provides an approximation to
the function for values of x close to c. As x gets far from c, the approximation
gets worse. In this section our main goal is to learn how to create better
approximations to a function, using polynomials. Calculators use these ideas
to evaluate numbers such as π, e, and ln 2.

Rather than use a line to approximate a function, we could instead use a
parabola, a cubic function, or a polynomial of any degree. If we use a parabola
(which we will call P2(x)) to approximate f(x) at x = 0, then we want the
parabola to pass through (0, f(0)), have the same slope at 0 as f , and have the
same concavity at 0 as f . This means we need to satisfy the three equations
P2(0) = f(0), P ′2(0) = f ′(0), P ′′2 (0) = f ′′(0). Since P2(x) is a parabola, we
can write P2(x) = a0 + a1x + a2x

2 for the three unknowns a0, a1, a2. We now
have three equations and three unknowns, so we solve this system of equations.
Since P2(0) = f(0), we have a0 + 0 + 0 = f(0). The derivative of P2 is P ′2(x) =
a1 + 2a2x, which at 0 needs to equal f ′(0). This means a1 + 0 = f ′(0). The
second derivative is P ′′2 (x) = 2a2, and so we have 2a2 = f ′′(0). From these three

104
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equations we find that the coefficients of the parabola are a0 = f(0), a1 = f ′(0),

and a2 =
f ′′(0)

2
, which means that P2(x) = f(0) + f ′(0)x +

f ′′(0)

2
x2. If we

had instead used a cubic function, we would have found that P3(x) = f(0) +

f ′(0)x +
f ′′(0)

2
x2 +

f ′′′(0)

3 · 2
x3, where a3 =

f ′′′(0)

3 · 2
. For a degree 4 polynomial,

we would have a4 =
f ′′′′(0)

4 · 3 · 2
. In general, we find that an = f(n)(0)

n! , where

n! = n(n − 1) · · · 3 · 2 · 1 is called the factorial function. Using summation

notation, we can write Pn(x) =

n∑
m=0

f (m)(0)

m!
xm. This is called the Taylor

polynomial of degree n centered at x = 0 of f(x). If we want to approximate
a function at a point other than 0, say x = c, then a similar calculation shows

that Pn(x) =

n∑
m=0

f (m)(c)

m!
(x − c)m. If we let m → ∞, the result is called a

Taylor series (an infinite sum of terms). When we center our Taylor polynomials
at x = 0, the Taylor Series is called a MacLaurin series. Let’s look at some
examples.

The function f(x) = 1
1−x has as its first three derivatives f ′(x) = 1

(1−x)2 , f
′′(x) =

2
(1−x)3 , f

(3)(x) = 3·2
(1−x)4 . It should become apparent that the mth derivative is

f (m)(x) = m!
(1−x)m+1 . Evaluating each of these functions at x = 0, we see that

f(0) = f (0)(0) = 1, f ′(0) = 1, f (2)(0) = 2!, f (3)(0) = 3!, . . . , f (m)(0) = m!, . . ..
To obtain the coefficient am, we divide by m! to obtain am = 1 for all m. Hence
we see that the Taylor polynomials for f(x) = 1

1−x are P1(x) = 1 + x, P2 =

1 + x+ x2, P3 = 1 + x+ x2 + x3, . . . , Pn =

n∑
m=0

xm. The calculations above for

f(x) = 1/(1− x) can be organized into a table as shown below:

m f (m)(x) f (m)(0) am = f (m)(0)/m! amx
m

0 (1− x)−1 1 1/0! 1

1 (−1)(1− x)−2(−1) 1 1/1! x

2 (−1)(−2)(1− x)−3(−1)2 2 2/2! = 1 x2

3 (−1)(−2)(−3)(1− x)−3(−1)2 3! 3!/3! = 1 x3

...
...

...
...

...

Once you have created this table, you can obtain a Taylor polynomial of any
degree by summing the terms on the right of the table. The third degree Taylor
polynomial is P3(x) = 1 + x + x2 + x3. The Taylor series centered at x = 0
(called the MacLaurin series) is 1 + x+ x2 + x3 + · · ·+ xn + · · · =

∑∞
m=0 x

m.
Let’s use the table format to find the 6th degree Taylor polynomial for

f(x) = cosx, centered at x = 0.
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m f (m)(x) f (m)(0) am = f (m)(0)/m! amx
m

0 cosx 1 1/0! = 1 1

1 − sinx 0 0/1! = 0 0

2 − cosx −1 −1/2! − 1
2!x

2

3 sinx 0 0/3! = 0 0

4 cosx 1 1/4! 1
4!x

4

5 − sinx 0 1/5! = 0 0

6 − cosx −1 −1/6! − 1
6!x

6

Summing the right column give the 6th degree Taylor polynomial as P6(x) =
1− 1

2x
2 + 1

4!x
4 − 1

6!x
6. Notice that 1

6! is extremely small, so the 6th order term
doesn’t change the value of P6(x) much for small values of x.

What if we want to center the Taylor polynomial at a point other than zero.
The table format below illustrates this for the 3rd degree Taylor polynomial of
f(x) = sinx, centered at x = π.

m f (m)(x) f (m)(π) am = f (m)(π)/m! am(x− π)m

0 sinx 0 0/1! = 0 0

1 cosx −1 −1/1! − 1
1! (x− π)1

2 − sinx 0 0/2! = 0 0

3 − cosx 1 1/3! 1
3! (x− π)3

Summing the last column means the 3rd degree Taylor polynomial centered at
x = π is P3(x) = − 1

1! (x− π)1 + 1
3! (x− π)3.

The graphs of several Taylor polynomials centered at x = 0 for the func-
tions ex, 1

1−x , cosx, and sinx are shown below. The higher the order of the
polynomial, the closer it is to the actual function.

f(x) = ex f(x) = 1
1−x f(x) = cosx f(x) = sinx

As you increase the degree of a Taylor polynomial, you should expect to see
that your accuracy of approximating a function increases. This is true for
cosx, sinx, ex, polynomials, and combination of these functions obtained through
addition, subtraction, or multiplication. You can also divide any two of these
function and still obtain good approximations, but vertical asymptotes pose a
problem.

The function 1
1−x has a vertical asymptote at x = 1. When we create Taylor

polynomials centered at x = 0, those polynomials follow the function up the left
hand side of the vertical asymptote, causing the polynomials to tend toward
infinity at x = 1 as you increase the degree of the polynomial. In the picture
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above, none of the polynomials do a good job of approximating the function to
the right of x = 1. Also, none of the functions do a good job of approximating
the function to the left of x = −1. This is because Taylor polynomials are
symmetric about where they are centered. When approximations break down
on one side, they break down on the other side as well. We can only obtain
useful approximations of 1/(1 − x) for values of x in the interval (−1, 1). The
center of this interval is x = 0, where we centered our Taylor polynomial. The
distance from the center x = 0 to the asymptote at x = 1 is called our radius
of convergence, and the interval of convergence (−1, 1) is obtained by moving
1 unit (the radius) to the right and left of 0 (the center).

8.1.1 Radius of convergence

The Taylor series of a function involves adding infinitely many terms. In some
cases, the infinite sum will converge to a finite number. In other cases, the
infinite sum will diverge. As an example, the Taylor series for f(x) = 1

1−x is
∞∑
m=0

xm. If x = 1
2 , then the series becomes 1 + 1

2 + 1
4 + 1

8 + 1
16 + · · · = 2 = 1

1−1/2 .

We say this infinite sum converges to 2 because it gets closer and closer to
2 as you add more and more terms. Notice that the Taylor series actually
converges to value of the function at x = 1

2 . However, if you let x = 3, then
the series is 1 + 3 + 9 + 27 + 81 + · · · which diverges. In general, if a Taylor
series converges at x = c, it will converge to f(c). For this reason, we often
write 1

1−x =
∑∞
m=0 x

m, and put an equal sign between the function and it’s
Taylor series. However this equality sign will only hold if the series on the right
converges. The infinite sum

∑∞
m=0 x

m is very closely related to the improper

integral
∫∞

0
xmdm = xm

ln x

∣∣∞
m=1

= limb→∞
xb

ln x −
1

ln x . This improper integral
converges if 0 ≤ x ≤ 1, and diverges otherwise. This integration fact can be
used to show that sums of integer powers of x converge if |x| ≤ 1, and diverge
if |x| ≥ 1. We will use this fact to develop a powerful test called the ratio test
which allows us to tell for which x a power series will converge.

For a series
∑∞
m=0 bm, the limit r = lim

m→∞

|bm+1|
|bm|

compares how quickly a

series grows. Provided the limit r exists, the series is comparable in growth to
the series

∑∞
m=0 r

m which converges if r ≤ 1 and diverges if r > 1. A careful
detailed analysis of this idea would require us to learn the Integral Test, absolute
convergence, and comparison tests for series. For our class, we will just use the
fact that if r < 1, then a series converges. For a Taylor series

∑∞
m=0 am(x−x0)m

to converge, we need to satisfy the inequality limm→∞
|am+1(x−x0)m+1|
|am(x−x0)m| < 1, or

limm→∞
|am+1|
|am| |x−x0| < 1, or |x−x0| < 1/ limm→∞

|am+1|
|am| . We call the quantity

R = 1/ limm→∞
|am+1|
|am| the radius of convergence of the power series because

for |x − x0| < R the series converges. This formula for radius of convergence
is handy if the series does not skip powers of x, however we return to the limit

r = lim
m→∞

|bm+1|
|bm|

< 1 to find the radius of convergence if the power series skips

powers of x. In any case, a power series will have one of these three possible
cases for it’s radius of convergence: (1) R = 0, so that the series only converges
if x = x0, (2) R = ∞, so that the series converges for all x which is extremely
nice, or (3) R > 0, so that the series converges for |x− x0| < R.

The series 1
1−x =

∑∞
m=0 x

m has radius of convergence R = 1/ lim
m→∞

|1|
|1|

= 1,

so if |x| < 1 the series converges. For the function ex =
∑∞
m=0

xm

m! , the radius of
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convergence is R = 1/ lim
m→∞

|1/(m+ 1)!|
|1/m!|

= 1/ lim
m→∞

m

m+ 1
= ∞ which means

that the Taylor series for ex converges for all x. We have the series cosx =∑∞
m=0

1
(2m)!x

2m which skips powers of x. Hence we solve lim
m→∞

|x2(m+1)/(2(m+ 1))!|
|x2m/(2m)!|

<

1 which is equivalent to |x2| limm→∞
(2m)!

(2m+2)(2m+1)(2m)! < 1 or 0 < 1 which is

always true so the radius of convergence is ∞ and the Taylor series converges
for all x. You should show that this is true for sinx as well.

Let’s find the radius of convergence of the power series

∞∑
n=0

(3n+ 2)(−5)n

(n+ 1)(7n2 + 3)23n+1
x2n.

We compute an+1 = (3(n+1)+2)(−5)n+1

((n+1)+1)(7(n+1)2+3)23(n+1)+1x
2(n+1). Dividing by an can

get ugly unless we organize our work, for example by placing common terms
directly above and below each other as shown below.∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣ (3(n+ 1) + 2) (−5)n+1 (n+ 1) (7n2 + 3) 23n+1 x2(n+1)

(3n+ 2) (−5)n ((n+ 1) + 1) (7(n+ 1)2 + 3) 23(n+1)+1 x2n

∣∣∣∣∣
=

∣∣∣∣∣ (3n+ 5) (−5)n(−5) (n+ 1) (7n2 + 3) 23n2 x2nx2

(3n+ 2) (−5)n (n+ 2) (7(n+ 1)2 + 3) 23n24 x2n

∣∣∣∣∣
=

∣∣∣∣∣ (3n+ 5) (−5) (n+ 1) (7n2 + 3) 1 x2

(3n+ 2) 1 (n+ 2) (7(n+ 1)2 + 3) 23 1

∣∣∣∣∣
Recall that the limit of a product can be found by computing each individual
limit and the multiplying the result together. Also, the limit as n → ∞ of
a quotient of two polynomials of the same degree is precisely the quotient of

their leading coefficients. This means we can compute lim
n→∞

(3n+ 5)

(3n+ 2)
= 1,

lim
n→∞

(n+ 1)

(n+ 2)
= 1, and lim

n→∞

(7n2 + 3)

(7(n+ 1)2 + 3)
= 1, which gives

lim
n→∞

∣∣∣∣∣ (3n+ 5) (−5) (n+ 1) (7n2 + 3) 1 x2

(3n+ 2) 1 (n+ 2) (7(n+ 1)2 + 3) 23 1

∣∣∣∣∣ =

∣∣∣∣1(−5)(1)(1)

(
1

8

)
x2

∣∣∣∣ =
5

8
x2.

We then solve the equation 5
8x

2 < 1 for x to obtain |x| ≤
√

8
5 , so the radius of

convergence is
√

8
5 .

8.1.2 Euler’s Formula

We now show eix = cosx + i sinx. We know ex =

∞∑
m=0

1

m!
xm for all x, and it

can be shown that this formula is valid as well for all complex numbers. If we

replace x with ix, then we obtain eix =

∞∑
m=0

1

m!
(ix)m. The powers of i satisfy

i0 = 1, i1 = i, i2 = −1, i3 = −i, i4 = 1, i5 = i, and cycle through the numbers
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1, i,−1,−i. Hence we have for all x Euler’s formula

eix = 1 + ix− 1

2!
x2 − i 1

3!
x3 +

1

4!
x4 + i

1

5!
x5 − 1

6!
x6 − i 1

7!
x7 + · · ·

=

(
1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · ·

)
+ i

(
x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + · · ·

)
=

( ∞∑
m=0

(−1)m

(2m)!
x2m

)
+ i

( ∞∑
m=0

(−1)m

(2m+ 1)!
x2m+1

)
= cos(x) + i sin(x).

Who cares? Well, if the roots of the second order ODE my′′ + cy′ + ky = 0
are complex, i.e. λ = a± bi, then y1 = eax+bix = eax(cos bx+ i sin bx) and y2 =
eax−bix = eax(cos(−bx) + i sin(−bx)) = eax(cos bx − i sin bx) are two complex
solutions of the ODE (recall that cos(−x) = cos(x) [cosine is an even function]
and sin(−x) = − sinx [sine is an odd function]). The superposition principle
for ODEs says that linear combinations are solutions, so y1+y2

2 = eax cos bx

and y1−y2
2i = eax sin bx are two real solutions. This is why we use eax cos bx

and eax sin bx as solutions when the roots of the characteristic equation are
imaginary.

8.2 Power Series

8.2.1 Notation and Calculus

Rather than starting with a function f(x) and calculating the Taylor series,
we now reverse the process. We will define a power series centered at x = c
to be an expression of the form f(x) =

∑
m=0 am(x − c)m, and the domain

of f is all x for which the series converges. We will almost always center
our power series at x = 0, so we write f(x) =

∑
m=0 amx

m. The radius of
convergence is still computed the same. If the power series has a positive or
infinite radius of convergence when centered at x = c, then we say that the
function f(x) =

∑
m=0 am(x− x0)m is analytic at c.

If a power series f(x) =
∑
m=0 am(x − x0)m has a finite radius of conver-

gence, then we can differentiate and integrate the power series term by term.
The resulting power series f ′(x) =

∑
m=0mam(x− x0)m−1 =

∑
m=1mam(x−

x0)m−1 and
∫
f(x)dx = C +

∑
m=0

am
m+1 (x − x0)m+1 have the same radius of

convergence as f . If two power series centered at the same point both converge
at x, then you can add them (by adding their coefficients), and multiply them
(using the distributive laws of multiplication). In addition, you can compose
power series, though this may change the radius of convergence. The most
common composition is to replace x with a(x)k for some constants a and k.

8.2.2 Examples

Since
1

1− x
=

∞∑
m=0

xm has radius of convergence R = 1, we can differentiate

and obtain
1

(1− x)2
=

∞∑
m=1

mxm−1 = 1 + 2x + 3x2 + 4x3 + · · · , which has

radius of convergence R = 1 as well. Replacing x with x = −x gives
1

1 + x
=

∞∑
m=0

(−1)mxm = 1−x+x2−x3 +x4 + · · · . Replacing x with −x2 gives
1

1 + x2
=
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∞∑
m=0

(−1)mx2m = 1− x2 + x4 − x6 + x8 + · · · . Integration of 1
1+x2 gives (notice

that arctan(0) = 0 so the constant is zero) arctanx =

∞∑
m=0

(−1)m

2m+ 1
x2m+1 =

x − 1

3
x3 +

1

5
x5 − 1

7
x7 +

1

9
x9 + · · · , with radius of convergence R = 1. For

homework, find the power series of ln |1 + x|, ln
∣∣∣ 1+x

1−x

∣∣∣ , x
1+x2 , and a few others

that you can find any any calculus textbook.

To find the radius of convergence of the power series arctan 2x =

∞∑
m=0

(−1)m

2m+ 1
(2x)2m+1,

we notice that powers of x are skipped. So we solve lim
m→∞

|(2x)2(m+1)+1/(2(m+ 1) + 1)|
|(2x)2m+1/2m+ 1|

<

1, which is equivalent to lim
m→∞

(2x)2m+3(2m+ 1)

(2x)2m+1(2m+ 3)
< 1 or (2x)2 lim

m→∞

(2m+ 1)

(2m+ 3)
<

1. Taking limits gives (2x)2 < 1 or |2x| < 1 which means |x| < 1
2 . Hence the

radius of convergence is 1/2.
The radius of convergence of the power series f(x) =

∑
m=0

m
8mx

3m can be

found by solving lim
m→∞

|(m+ 1)x3(m+1)/8m+1|
|mx3m/8m|

< 1. The left side simplifies as

lim
m→∞

(m+ 1)x3m+3)/8m8

mx3m/8m
= |x3| lim

m→∞

(m+ 1)/8

m
= |x3/8|. The solution to

|x3/8| < 1 is |x3| < 8 or |x| < 2. Hence the radius of convergence is 2. Notice
that we know this power series converges for |x| < 2, even though we do not
know what it converges to.

8.2.3 Shifting Indices

Often we will find it necessary to shift the indices of a power series. The series
∞∑
m=1

mamx
m−1 is equivalent (letting s = m − 1 or m = s + 1) to the series

∞∑
s=0

(s+ 1)as+1x
s. The variables m and s are just “dummy” variables used as a

place holder. They can be changed as much as you want, just as you can change
the variable of integration in an integration problem. The change s = m− 1 is

called shifting the indices of a series. The series

∞∑
m=3

m+ 1

m− 2
xm−3 can be shifted

to start at 0 by letting s = m−3, and then we write

∞∑
s=0

s+ 4

s+ 1
xs, since m = s+3

(just replace each m with s+ 3 and the result follows).

8.3 Series Solutions to ODEs

Recall that a function which can be represented by a power series centered at
c with a positive radius of convergence is said to be analytic at c. It can be
shown that the 2nd order ODE h(x)y′′ + p(x)y′ + q(x)y = r(x) has a power
series solution centered at c if h, p, q, r are all analytic at c and h(x0) 6= 0.
Alternatively, if we divide by h(x), then the 2nd order ODE y′′+a(x)y′+b(x)y =
c(x) has a power series solution centered at x = c if a(x), b(x), c(x) are all
analytic at x = c. In this case we call x = c an ordinary point of the ODE. The
radius of convergence of the power series solution we obtain for y(x) will be
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at least as big as the smallest radius of convergence of a(x), b(x), c(x). This is
the general theory which motivates everything else we do with regards to series
solutions to ODEs.

The power series method essentially requires that you (1) write y =

∞∑
n=0

anx
n,

(2) take derivatives y =

∞∑
n=0

nanx
n−1 and y =

∞∑
n=0

n(n− 1)anx
n−2, (3) replace

each function or derivative in your ODE with the appropriate power series (com-
puting MacLaurin series of functions which occur) (4) shift the indices on each
sum to obtain a recurrence relation for the unknown constants an, and then (5)
solve the recurrence relation for the largest an and use this relation to generate
the constants. The following 4 examples illustrate how to find solutions using
the power series method. Some of these problems you already can solve without
power series methods, however we will start with simpler problems to which you
already know the answer before we venture into new problems.

Consider the ODE y′ = ky. Let y =

∞∑
m=0

amx
m. Then we compute y′ =

∞∑
m=0

mamx
m−1 =

∞∑
m=1

mamx
m−1. Notice that we can start at m = 1 instead

of m = 0 because when you put m = 0 into the sum you get zero, so why not
just start one term later and skip the 0 term. Inserting these series into the

ODE gives

∞∑
m=1

mamx
m−1 = k

∞∑
m=0

amx
m =

∞∑
m=0

kamx
m. For this equality to

hold, we must have the coefficient of each power x equal on each side of the
equation. To simplify the calculations, we shift the indices on the power series
on the left by letting m− 1 = s, and on the right by letting m = s. This gives
∞∑
s=0

(s + 1)as+1x
s =

∞∑
s=0

kasx
s, which means that (s + 1)as+1 = kas for all s.

This gives the recurrence relation as+1 = kas
(s+1) . The variable a0 can be chosen

to be anything we want, but then a1 = ka0
1 , a2 = k2a0

2! , a3 = k3a0
3! , am = kma0

m! .
So we have our solution as

y(x) = a0+a0
k

1!
x1+a0

k2

2!
x2+· · · = a0

(
1 +

1

1!
(kx)1 +

1

2!
(kx)2 + · · ·

)
= a0

∞∑
m=0

1

m!
(kx)m = a0e

kx,

where the last equality comes because we recognize that this is the Maclaurin
series of ekx.

Consider the ODE y′ = xy. Let y =

∞∑
m=0

amx
m. Then we compute

y′ =

∞∑
m=0

mamx
m−1 =

∞∑
m=1

mamx
m−1 (again we start at 1 because m = 0

just gives us zero). Inserting these series into the ODE gives

∞∑
m=1

mamx
m−1 =

x

∞∑
m=0

amx
m =

∞∑
m=0

amx
m+1. Writing out the first few terms, we have

1a1x
0 + 2a2x

1 + 3a3x
2 + 4a4x

3 + · · · = a0x
1 + a1x

2 + a2x
3 + a3x

4.

Since x0 appears only on the left side of the equation, we have a1 = 0. Hence the

left side can be written

∞∑
m=2

mamx
m−1. We shift indices by letting s = m − 1
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(m = s + 1) on the left side and s = m + 1 on the right side. This gives
∞∑
s=1

(s+ 1)as+1x
s =

∞∑
s=1

as−1x
s. Equating the coefficients of xs (for s ≥ 1) gives

(s + 1)as+1 = as−1, or as+1 = as−1

(s+1) for s ≥ 1. For s = 1, 2, 3, 4, 5, 6, . . . we

have a2 = a0
(2) , a3 = a1

(3) = 0, a4 = a2
(4) = a0

(2·4) , a5 = 0, a6 = a0
(2·4·6) = a0

233! , . . ..

Notice that am = 0 for odd m, and a2m = a0
2mm! . If m = 0, we can still

write a2m = a0
2m,m! = a0, which means we can write y =

∑∞
m=0

a0
2mm!x

2m =

a0

∑∞
m=0

1
m!

(
x2

2

)m
= a0e

x2/2.

Now consider the ODE y′′ + y = 0. Let y =

∞∑
m=0

amx
m. Then we com-

pute y′ =

∞∑
m=0

mamx
m−1 =

∞∑
m=1

mamx
m−1 and y′′ =

∞∑
m=1

m(m − 1)amx
m−2 =

∞∑
m=2

m(m − 1)amx
m−2 (we can start the second derivative at m = 2 because

putting m = 0 or m = 1 into the series gives 0). Inserting these power series into
the ODE gives

∑∞
m=2m(m−1)amx

m−2+
∑∞
m=0 amx

m = 0. Shifting the indices
on the first sum using s = m− 2 (or m = s+ 2) and second sum using m = s
gives

∑∞
s=0(s+2)(s+1)as+2x

s+
∑∞
s=0 asx

s = 0. We need to have the sum of the
coefficients of xs sum to zero, so we have (s+2)(s+1)as+2 +as = 0. This means
as+2 = − as

(s+2)(s+1) for s ≥ 0. This recurrence relation does not specify a0 or

a1, so we have two constants we can choose arbitrarily. For s = 0, 1, 2, 3, . . .,
we have a2 = −a02! , a3 = −a13! , a4 = a0

4! , a5 = a1
5! , a6 = −a06! , a7 = −a17! . . .. The

sign changes in groups of two, which suggests we should split the series into
even and odd powers. This can be summarized as a2m = (−1)m a0

(2m)! and

a2m+1 = (−1)m a1
(2m+1)! . This means that the solution to the ODE is

y(x) = a0 + a1x− a0
1

2!
x2 − a1

1

3!
x3 + a0

1

4!
x4 + a1

1

5!
x5 + · · ·

= a0

(
1− 1

2!
x2 +

1

4!
x4 + · · ·

)
+ a1

(
x− 1

3!
x3 +

1

5!
x5 + · · ·

)
= a0

( ∞∑
m=0

(−1)m

(2m)!
x2m

)
+ a1

( ∞∑
m=0

(−1)m

(2m+ 1)!
x2m+1

)
= a0 cos(x) + a1 sin(x).

The last equality can be discovered by recognizing that the series are the
MacLaurin series for cosine and sine.

As our last example, consider the ODE y′′+2xy′+y = 0. Let y =

∞∑
m=0

amx
m.

Then we compute y′ =

∞∑
m=0

mamx
m−1 =

∞∑
m=1

mamx
m−1 and y′′ =

∞∑
m=1

m(m−

1)amx
m−2 =

∞∑
m=2

m(m−1)amx
m−2. Inserting these power series into the ODE

and multiplying the middle series by 2x gives

∞∑
m=2

m(m− 1)amx
m−2 +

∞∑
m=1

2mamx
m + y =

∞∑
m=0

amx
m = 0.

We shift the index on the first series by letting s = m − 2 and s = m for the
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last two. This gives

∞∑
s=0

(s+ 2)(s+ 1)as+2x
s +

∞∑
s=1

2sasx
s +

∞∑
s=0

asx
s = 0.

Notice that the second series starts at s = 1 whereas the other two start at
s = 0. Hence we look at the coefficients of x0 separately than the rest of the
coefficients. We notice that (2)(1)a2 +a0 = 0, or a2 = −a0

1
2! . For s ≥ 1 we have

(s+2)(s+1)as+2 +2sas+as = 0, or as+2 = −as 2s+1
(s+2)(s+1) . The first few terms

are a2 = −a0
1
2! , a3 = −as 3

(3)(2) , a4 = a0
1·5
4! , a5 = a1

3·7
5! , a6 = −a0

1·5·9
6! ,−a7 =

a1
3·7·11

7! . Since the even and odd coefficients am depend on a0 and a1, we write

a2m = a0(−1)m 1·5·9···(4m−3)
(2m)! and a2m+1 = a1(−1)m 3·7·11···(4m−1)

(2m+1)! . Hence we

have found a solution as

y(x) = a0

(
1− 1

2
t2 +

5

24
t4 − 1

16
t6 +

13

896
t8 + · · ·

)
+ a1

(
t− 1

2
t3 +

7

40
t5 − 11

240
t7 +

11

1152
t9 + · · ·

)
= a0

(
1 +

∞∑
m=1

(−1)m
1 · 5 · 9 · · · (4m− 3)

(2m)!
x2m

)
+ a1

(
x+

∞∑
m=1

(−1)m
3 · 7 · 11 · · · (4m− 1)

(2m+ 1)!
x2m+1

)
.

This is not a simple elementary function for which we know a power series. The
radius of convergence is R =∞. We will learn how to express this function in
terms of Bessel functions and Gamma functions when we start studying special
functions in the next learning module. Hence, we leave our solution in terms of
a power series and cannot continue any further.

As you work problems in the homework, I want you to find general formulas
for the mth coefficient am. Mathematica has code you can use to check if your
answers are correct, as well as show you many of the steps in the computation.
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8.4 Preparation

This chapter covers the following ideas. When you create your lesson plan, it should contain examples which
illustrate these key ideas. Before you take the quiz on this unit, meet with another student out of class and
teach each other from the examples on your lesson plan.

1. Find and explain the use of Taylor polynomials, Talyor series, and Maclaurin series. Give examples
for various common functions.

2. Explain how to use the ratio test to find the radius of convergence of a power series.

3. Derive Euler’s formula, and use it to explain why complex roots a± bi of 2nd order ODE result in the
solutions eax cos(bx) and eax sin(bx).

4. Explain how to differentiate, integrate, add, multiply, compose, and shift indices of power series.

5. Use the power series method to solve ODEs at ordinary points.

Here are the preparation problems for this unit. Chapter numbers precede the problems from Schaum’s.

Preparation Problems (click for solutions)

Day 1 1, 11, 18, 20

Day 2 25, 29, 43, Schaum’s 27:3

Day 3 46, Schaum’s 27:29, Schaum’s 27:36, Schaum’s 27:41

The homework for this unit comes from the Power Series chapter in this online book. Please make
sure you print the appropriate pages from the problem book, as well as the corresponding section from the
textbook.

Make sure you try a few of each type of problem, ASAP. I suggest that the first night you try one of each
type of problem. It’s OK if you get stuck and don’t know what to do, as long as you decide to learn how
to do it and then return to the ones where you got stuck. Eventually do enough of each type to master the
ideas. The only section in Schaum’s with relevant problems is chapter 27.

Most engineering textbooks assume you have seen Taylor series and power series before (in math 113),
but many of you have not. If you have your old Math 215 book, you can find many relevant problems and
explanations from section 11.5 (Ratio Test) and 11.8 (Taylor Series).

For reference, here are a few key functions and their Taylor series centered at x = 0 (so their MacLaurin
series).

1. ex =

∞∑
n=0

1

n!
xn, R =∞

2. cos(x) =

∞∑
n=0

(−1)n

(2n)!
x2n, R =∞

3. sin(x) =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1, R =∞

4.
1

1− x
=

∞∑
n=0

xn, R = 1

5. cosh(x) =

∞∑
n=0

1

(2n)!
x2n, R =∞

6. sinh(x) =

∞∑
n=0

1

(2n+ 1)!
x2n+1, R =∞

https://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/08-Power-Series-Preparation-Solutions.pdf
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8.5 Problems

(I) For each of the following, find a Talyor poly-
nomial of degree n centered at x = c of the
function f(x).

1. e4x, n = 3, c = 0

2. cos(x), n = 4, c = π

3. cos(2x), n = 4, c = 0

4. sin( 1
2x), n = 5, c = 0

5. 1
x , n = 3, c = 1

6. lnx, n = 3, c = 1

7. ln(1− x), n = 4, c = 0

8. ln(1 + x), n = 4, c = 0

(II) Find the radius of convergence of each power
series.

9.

∞∑
n=0

1

3n
xn

10.

∞∑
n=0

(−1)n

4n+1
xn

11.

∞∑
n=0

n

2n
x3n

12.

∞∑
n=0

3n+ 1

n2 + 4
xn

13.

∞∑
n=0

(−4)nn

n2 + 1
x2n

14.

∞∑
n=0

n

2n
x2n

15.

∞∑
n=0

(−1)n

n!
xn

16.

∞∑
n=0

n!

10n
x2n

(III) For each function, find the MacLaurin series
and state the radius of convergence.

17. f(x) = ex

18. f(x) = cosx

19. f(x) = sinx

20. f(x) =
1

1− x

21. f(x) =
1

1 + x

22. f(x) = coshx

23. f(x) = sinhx

(IV) Prove the following formulas are true by con-
sidering power series. These formulas will al-
low us to eliminate complex numbers in future
sections.

24. eix = cosx+ i sinx (called Euler’s formula)

25. cosh(ix) = cosx

26. cos(ix) = coshx

27. sinh(ix) = i sinx

28. sin(ix) = i sinhx

(V) Use MacLaurin series of known functions to find
the MacLaurin series of these functions (by in-
tegrating, differentiating, composing, or multi-
plying together two power series). Then state
the radius of convergence.

29. f(x) = x2e3x

30. f(x) = x2

e3x [hint, use negative exponents]

31. f(x) = cos 4x

32. f(x) = x sin(2x)

33. f(x) = x
1+x

34. f(x) = 1
1+x2

35. f(x) = arctanx [hint, integrate the previous]

36. f(x) = arctan(3x)

(VI) Shift the indices on each sum so that it begins
at n = 0.

37.

6∑
n=3

n+ 2

38.

8∑
n=2

n2

39.

∞∑
n=4

2n

40.

∞∑
n=2

xn

41.

∞∑
n=1

nanx
n

42.

∞∑
n=2

n(n− 1)anx
n−2

(VII) Solve the following ODEs by the power series
method. With some, initial conditions are given
(meaning you know y(0) = a0 and y′(0) = a1).
Identify the function whose MacLaurin series
equals the power series you obtain.

43. y′ = 3y

44. y′ = 2xy

45. y′′ + 4y = 0

46. y′′ − 9y = 0, y(0) = 2, y′(0) = 3

47. y′′ + 4y′ + 3y = 0, y(0) = 1, y′(0) = −1

(VII) Determine whether the given values of x are
ordinary points or singular points of the given
ODE.

48. Chapter 27, problems 26-34 (these are really
quick).

(VIII) Solve the following ODEs by the power series
method. State the recurrence relation used to
generate the terms of your solution, and write
out the first 5 nonzero terms of your solution.

49. Chapter 27, problems 35-47 (or from the worked
problems).

8.6 Solutions

Handwritten solutions are available online. Click for
solutions.

https://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/08-Power-Series-Preparation-Solutions.pdf
https://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/08-Power-Series-Preparation-Solutions.pdf


Chapter 9

Special Functions

This section needs revamping. Until I have time to revamp it, Schaum’s Outlines
provides a great explanation of these topics.
The name of this chapter is “Special Functions.” These are functions which
show up as the solution to problems of real world interest whose solution is a
function which does not appear in regular calculus. Many of these functions can
only be represented using series. This chapter covers the following objectives:

1. Explain the Frobenius method and use it to solve ODEs where zero is a
regular singular point.

2. Solve Legendre’s equation and derive Legendre polynomials.

3. Solve Bessel’s equation giving solutions of the first kind, and write solu-
tions to ODEs in terms of Bessel functions.

4. Describe the Gamma function and how it generalizes the factorial. Be
able to prove various relationships related to the Gamma function.

116



CHAPTER 9. SPECIAL FUNCTIONS 117

9.1 Preparation

The name of this module is “Special Functions.” These are functions which show up as the solution to
problems of real world interest whose solution is a function which does not appear in regular calculus. Many
of these functions can only be represented using series. When you make your lesson plan, make sure that
you have an example illustrating each idea.

1. Explain the Frobenius method and use it to solve ODEs where zero is a regular singular point.

2. Solve Legendre’s equation and derive Legendre polynomials.

3. Solve Bessel’s equation giving solutions of the first kind, and write solutions to ODEs in terms of Bessel
functions.

4. Describe the Gamma function and how it generalizes the factorial. Be able to prove various relationships
related to the Gamma function.

Preparation Problems (click for solutions)

Day 1 28.4, 28.5, 28.6, 28.9

Day 2 27.12, 29.4, 28.10, 28.14

Day 3 30.4, 30.6, 30.8, 30.9

Section numbers correspond to problems from Schaum’s Outlines Differential Equations by Rob Bronson.
The suggested problems are a minimum set of problems to attempt.

Concept Sec. Suggested Relevant

Frobenius Method* 28:1-4, 5-10, 12,14,16,18-20

Legendre Polynomials 27:11-13; 29:4,6,8,11,12,15

Bessel Functions 30:9,11,12,26, 27,

Gamma Functions 30:1-8, 24, 25

Substitutions 28:22-23, 34-38; 30:30,31

Here are some vocabulary reminders to help you.

• Remember, a function is said to be analytic at x = c if it has a power series solution centered at x = c
with a positive radius of convergence. Polynomials, exponentials, trig function, and rational functions
whose denominator is not zero at x = c are all analytic.

• The point x = c is called an ordinary point of the differential equation y′′ + P (x)y′ +Q(x)y = r(x) if
both coefficients P (x) and Q(x) are analytic at x = c. We can solve ODEs at regular points by using
the power series method.

• The point x = c is called a singular point of the ODE y′′ + P (x)y′ +Q(x)y = r(x) if either coefficient
P (x) or Q(x) is not analytic at x = c. In general, we can’t solve ODEs at singular points.

• The point x = c is called a regular singular point of the ODE y′′+P (x)y′+Q(x)y = r(x) it is singular
and if (x − c)P (x) and (x − c)2Q(x) are both analytic. We can use the Frobenius method to solve

ODEs at regular singular points. The big idea is to guess a solution of the form y = xλ
∞∑
n=0

anx
n and

then solve for λ and the remaining coefficients as in the power series method. The indicial equation is
the first equation resulting from matching coefficients, and it’s roots λ1 and λ2 determine the type of
solution.

https://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/09-Special-Functions-Preparation-Solutions.pdf


Chapter 10

Systems of ODEs

This chapter covers the following ideas. When you create your lesson plan, it
should contain examples which illustrate these key ideas. Before you take the
quiz on this unit, meet with another student out of class and teach each other
from the examples on your lesson plan.

1. Explain the basic theory of systems of linear ODEs and the Wronskian
for systems.

2. Convert higher order ODEs to first order linear systems.

3. Explain how to use eigenvalues and eigenvectors to diagonalize matrices.
When not possible, use generalized eigenvectors to find Jordan canonical
form.

4. Find the matrix exponential of a square matrix, and use it to solve linear
homogeneous and nonhomogeneous ODEs.

5. Give applications of systems of ODEs. In particular be able to setup sys-
tems of ODE related to dilution, electricity, and springs (use the computer
to solve complex systems).

10.1 Definitions and Theory for Systems of ODEs

Problems in the real world often involving combining many differential equa-
tions which interact with each other, resulting in a system of ODEs. Before
embarking on a description of the solution techniques and real world applica-
tions, let’s look at an example. In what follows, we will generally let t be the
independent variable, as ~x we’ll use for talking about eigenvectors.

Consider the system of ODE’s y′1(t) = 2y1(t) + y2(t) and y′2(t) = y1(t) +

2y2(t). This system can be written in matrix form as

[
y′1
y′2

]
=

[
2 1
1 2

] [
y1

y2

]
. We

can summarize this in vector and matrix form by writing ~y′ = A~y. Since the
system of ODEs ~y′ = A~y is similar to the ODE y′ = Ay whose solution involves
an exponential function, we can guess that a solution to ~y′ = A~y will be of the

form

[
x1

x2

]
eλt for some constant vector ~x =

[
x1

x2

]
and constant λ. Differentiating

and substituting into the ODE gives λ~xeλt = A~xeλt, or λ~x = A~x. In other
words, we need a scalar λ and a vector ~x such that multiplying ~x on the left by
a matrix A is equivalent to multiplying by a constant λ. This is an eigenvalue

and eigenvector problem. The matrix A =

[
2 1
1 2

]
has eigenvalues λ1 = 1 and
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λ2 = 3, with corresponding eigenvectors ~x1 =

[
1
−1

]
and ~x2 =

[
1
1

]
(check this

is true). Hence, two solutions to the system of ODE’s are

[
y1

y2

]
=

[
1
−1

]
et

and

[
y1

y2

]
=

[
1
1

]
e3t. The general solution to this ODE is found using the

superposition principle, and considering any linear combination of these two

solutions. In other words, the general solution is

[
y1

y2

]
= c1

[
1
−1

]
et+c2

[
1
1

]
e3t =[

c1e
t + c2e

3t

−c1et + c2e
3t

]
.

We now discuss the general case. A first order system of n ODEs can be
written

y′1 = f1(t, y1, . . . , yn), y′2 = f2(t, y1, . . . , yn), . . . , y′n = fn(t, y1, . . . , yn),

or equivalently ~y′ = ~f(t, ~y). It is said to be linear if it can be written in the form
y′1 = a11(t)y1 + a12(t)y2 + · · ·+ a1n(t)yn + g1(t), . . . , y′n = an1(t)y1 + an2(t)y2 +
· · · + ann(t)yn + gn(t), or equivalently ~y′ = A~y + ~g. An initial value problem
for a system consists of a system of ODEs and n given initial conditions of the
form y1(t0) = K1, . . . , yn(t0) = Kn. Provided all fi are continuous, or aij are
continuous, then the solution to an IVP exists and is unique.

We will focus on linear systems. We say a linear system ~y′ = A~y + ~g is
homogeneous if ~g = ~0 (~y′ −A~y = ~0). The superposition principle says that any
linear combination of two solutions to a homogeneous linear system of ODEs is
again a solution. A basis of solutions, written ~y1, ~y2, . . . , ~yn, is a set of n linearly
independent solutions. The general solution is ~y = c1~y1+c2~y2+· · ·+cn~yn = Y ~c,
where Y is a matrix whose columns are the vectors ~yi. The Wronskian of n
solutions is the determinant of Y (the matrix whose columns are the solutions).
If the Wronskian is ever zero on an interval, then it is identically zero and the
solutions are dependent. If it is nonzero at a point in an interval, then the
solutions are linearly independent.

10.1.1 The Eigenvalue approach to Solving Linear sys-
tems of ODEs

If a homogeneous linear system of ODEs has constant coefficients, then the
system can be written in the form ~y′ = A~y, where A is a matrix with constants.
Following the key example in the Definitions and Theory section, we can guess
that a solution is of the form ~xeλt for some λ and vector ~x. Hence we have
λ~xeλt = A~xeλt, or λ~x = A~x, which is an eigenvalue problem. We find that ~xeλt

is a solution of the systems of ODEs for any eigenvalue λ with a corresponding
eigenvector ~x. This is the general theory. In particular, if the eigenvalues
are λ1, . . . , λn (whether there are repeats or not), and there are n linearly
independent eigenvectors ~xi, then the general solution is ~y = c1~x1e

λ1t + · · · +
cn~xne

λnt.

Example 10.1. Consider the system of ODEs y′1 = 2y1 +y2, y
′
2 = y1 +2y2 from

the key example, but add in the initial conditions y1(0) = 3, y2(0) = 4. Since the
eigenvalues are 1 and 3 with eigenvectors [1,−1], [1, 1], the general solution is[
y1

y2

]
= c1

[
1
−1

]
et + c2

[
1
1

]
e3t =

[
1 1
−1 1

] [
et 0
0 e3t

] [
c1
c2

]
. The initial conditions

give us the matrix equation

[
3
4

]
=

[
1 1
−1 1

] [
1 0
0 1

] [
c1
c2

]
=

[
1 1
−1 1

] [
c1
c2

]
, which

can be solved using Cramer’s rule (which we have done for much of the semester)
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or by using an inverse matrix. If we let Q =

[
1 1
−1 1

]
, then the constants c1

and c2 are found by writing ~c = Q−1~y(0), or[
c1
c2

]
=

[
1 1
−1 1

]−1 [
3
4

]
=

1

2

[
1 −1
1 1

] [
3
4

]
=

1

2

[
−1
7

]
,

or c1 = − 1
2 , c2 = 7

2 . Hence the solution to our IVP is

[
y1

y2

]
= − 1

2

[
1
−1

]
et +

7
2

[
1
1

]
e3t =

[
− 1

2e
t + 7

2e
3t

1
2e
t + 7

2e
3t

]
.

10.1.2 Using an Inverse Matrix

In the applications unit (the last page) it gives a formula for the inverse of a 2
by 2 matrix: [

a b
c d

]
=

1

|A|

[
d −b
−c a

]
.

We’ll be using this fact often in most of what follows.
In the previous example, we used the inverse matrix to find our constants

from our initial conditions. Notice that the general solution was written in the
form ~y = QD~c where Q is a matrix whose columns are the eigenvectors of A,
and D is a diagonal matrix with eλt on the diagonals for our eigenvalues λ.
We then wrote ~c = Q−1~y(0), which means we could write our solution in the
form ~y = QDQ−1~y(0). The matrix QDQ−1 is called the matrix exponential of
At, and we will soon show that it equals eAt, where we place a matrix in the
exponent of e. If we are given initial conditions, then we can find a solution to
our IVP system ~y′ = A~y by using the following 4 step process:

1. Find the eigenvalues of A to create D (put eλt on the diagonals).

2. Find the eigenvectors to create Q (put your eigenvectors in the columns).

3. Find the inverse of Q (quick for 2 by 2 matrices, use a computer for
anything larger).

4. Compute the product ~y = QDQ−1~y(0) = eAt~y(0) and you’re done.

This will solve every homogeneous ODE we have encountered all semester,
provided the roots of our characteristic equation are distinct and real. Most of
the rest of this document deals with what to do in the case of a double root,
complex roots, and nonhomogeneous systems. We will use the ideas in the next
section on Jordan form to develop a powerful solution technique which combines
all the ideas we have learned throughout the entire semester.

10.2 Jordan Canonical Form

The matrix

[
2 1
1 2

]
has eigenvalues λ = 1, 3 and eigenvectors

[
−1
1

]
,

[
1
1

]
(check

this). Let Q =

[
−1 1
1 1

]
be a matrix whose columns are linearly independent

eigenvectors of A. Then the product Q−1AQ =

[
1 0
0 3

]
is a diagonal matrix

whose entries are the eigenvalues of A (written in the same order in which
the eigenvectors were listed in Q. This process (finding Q and multiplying
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J = Q−1AQ) is called diagonalizing a matrix, and is always possible for an
n × n matrix which has n linearly independent eigenvectors. Notationally we
often write Q−1AQ = J for the diagonal matrix J , and J is called a Jordan
canonical form for A. 

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 3


If A has an eigenvalue λ which occurs k times (we say it’s

algebraic multiplicity is k), but does not have k linearly inde-
pendent eigenvectors (the geometric multiplicity is less than
k), then we call the eigenvalue defective. In this case, it is
impossible to diagonalize A. However, it is possible to find a
matrix J whose diagonal entries are the eigenvalues and the
only nonzero terms are a few 1’s which are found directly above
the defective eigenvalues. The matrix on the right is a Jordan canonical form
for a matrix whose eigenvalues are 2, 2, 2, and 3 where 2 is a defective eigen-
value. To find this matrix J , we need to find generalized eigenvectors, which
are vectors which satisfy (A − λI)r~x = ~0 for some r. If ~x is a vector which
satisfies this equation for r but not for r − 1, then we call r the rank of the
eigenvector ~x. We will focus our examples on 2× 2 and 3× 3 matrices. It can
be shown that if the algebraic multiplicity of an eigenvector is k, then there
will be k linearly independent generalized eigenvalues, which we can then use
to obtain the Jordan form.

This paragraph explains a method for finding generalized eigenvectors. The
examples which follow illustrate this idea. Skim read this paragraph, try the
examples, and then come back and read it again. A generalized eigenvector
~vr of rank r satisfies (A − λI)r~vr = ~0 but not (A − λI)r−1~vr = ~0. If we
let ~vr−1 = (A − λI)~vr, then ~vr−1 is a generalized eigenvector of rank r − 1.
The equation ~vr−1 = (A − λI)r~vr gives us a way of solving for ~vr based upon
~vr−1. Similarly, we could use ~vr−2 to obtain ~vr−1. If we repeat this process
until we get back to ~v1 (which is an actual eigenvector), then we can write
all of the generalized eigenvectors in terms of a basis of eigenvectors. If ~v1

is an eigenvector, then we solve (A − λI)~v2 = ~v1 to find ~v2. We then solve
(A−λI)~v3 = ~v2 to find ~v3. Continue this process to obtain a chain of generalized
eigenvectors ~v1, ~v2, . . . , ~vr which are then inserted in the matrix Q to obtain
Jordan form.

Example 10.2. LetA =

[
0 1
−1 −2

]
. The characteristic polynomial is

∣∣∣∣−λ 1
−1 −2− λ

∣∣∣∣ =

λ2 + 2λ + 1 = (λ + 1)2. A double eigenvalue is λ = −1. To find the eigenvec-

tors we compute A − λI =

[
1 1
−1 −1

]
. The only eigenvectors are multiples of

~v1 =

[
1
−1

]
. Hence there is only one linearly independent eigenvector for the

double root −1, which means −1 is a defective eigenvalue. In order to find
Jordan Form, we must find a generalized eigenvector of rank 2.

We solve the equation (A−λI)~v2 = ~v1 by row reducing the matrix

[
1 1 1
−1 −1 −1

]
,

which gives the solution x1 + x2 = 1 (notice we just augmented A − λI by
our eigenvector). The vectors [1, 0] and [0, 1] both satisfy this system, so we
can pick either vector as ~v2 (it doesn’t matter which one you pick). Now let

Q =
[
~v1 ~v2

]
. The Jordan form is then Q−1AQ ==

[
−1 1
0 −1

]
.

The example above gives a general method for finding Jordan form. Start
by finding the eigenvalues. For each eigenvalue, find a basis of eigenvectors.
For each eigenvector in this basis, use the equation ~vk−1 = (A − λI)r~vk to
obtain a chain of generalized eigenvectors {~v1, ~v2, . . . , ~vr} corresponding to that
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eigenvector (the chain stops when the equation ~vk−1 = (A − λI)r~vk has no
solution, which will always occur). Once you have completed this, you will find
that the total number of generalized eigenvectors you have obtained matches
the size of the matrix, and that the vectors are linearly independent (proving
this is not difficult, but beyond the scope of our class). Place the vectors into the
columns of Q (keeping the chains together) and then the product Q−1AQ = J
will give you a Jordan form, where each chain of vectors corresponds to a block
matrix on the diagonal whose diagonal entries are the eigenvalue and 1’s above
the main diagonal.

Example 10.3. Consider the matrix A =

4 −4 10
1 0 5
0 0 2

. The characteristic

polynomial is −λ3 + 6λ2 − 12t+ 8 = (2− λ)3, so A has one eigenvalue, namely

λ = 2. We compute A−2I =

2 −4 10
1 −2 5
0 0 0

. Row reduction gives

1 −2 5
0 0 0
0 0 0

,

so two linearly independent eigenvectors are

2
1
0

 and

−5
0
1

. We currently

have only 2 linearly independent vectors, so we have to find a third. We solve

(A−2I)v2 =

2
1
0

 by row reducing

2 −4 10 2
1 −2 5 1
0 0 0 0

 to obtain

1 −2 5 1
0 0 0 0
0 0 0 0

,

which means ~v2 =

1
0
0

 is a generalized eigenvector since 1 − 2(0) + 5(0) = 1.

We now have three independent vectors, so we can use them to form the matrix

Q. We have Q =

2 1 −5
1 0 0
0 0 1

. The inverse of Q is

0 1 0
1 −2 5
0 0 1

 (using a

computer). Matrix multiplication gives Q−1AQ =

2 1 0
0 2 0
0 0 2

 as the Jordan

Form.
As a side note, if we try to find any more generalized eigenvectors, we

will fail because we will get inconsistent systems. Reduction of the matrix2 −4 10 1
1 −2 5 0
0 0 0 0

 gives

1 −2 5 0
0 0 0 1
0 0 0 0

 which means there is no rank 3 eigen-

vector in the first chain. Row reduction of the matrix

2 −4 10 −5
1 −2 5 0
0 0 0 1

 gives1 −2 5 0
0 0 0 1
0 0 0 0

 which has no solution, meaning that the second chain is only

one long, and there are no generalized eigenvectors of rank 2 for the second
eigenvector.

Example 10.4. Consider the matrix

1 2 2
0 1 0
0 0 1

. Because it is upper trian-

gular, the eigenvalues are the entries on the diagonal, namely λ = 1 is an
eigenvalue with algebraic multiplicity 3. To find the eigenvectors, we note that
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the matrix A − I =

0 2 2
0 0 0
0 0 0

 has only 1 pivot, so it has 2 free variable, or

two linearly independent eigenvectors

1
0
0

 and

 0
1
−1

. Since there are only 2

linearly independent eigenvectors, we need to find a third. Row reduction of0 2 2 1
0 0 0 0
0 0 0 0

 shows that

 0
1/2
0

 is a generalized eigenvector. Hence we let

Q =

1 0 0
0 1/2 1
0 0 −1

 and then compute Q−1 =

1 0 0
0 2 2
0 0 −1

. Then a Jordan

Canonical form is J = Q−1AQ =

1 1 0
0 1 0
0 0 1

.

Example 10.5. Consider the matrix A =

1 2 2
0 1 2
0 0 1

. Because it is upper

triangular, λ = 1 is a triple eigenvalue. To find the eigenvectors, we note

that the matrix A − I =

0 2 2
0 0 2
0 0 0

 has 2 pivots, so one linearly independent

eigenvector

1
0
0

. Since there is only one linearly independent eigenvector, we

need to find two linearly independent generalized eigenvectors. Row reduction of0 2 2 1
0 0 2 0
0 0 0 0

 shows that

 0
1/2
0

 is a rank 2 generalized eigenvector. Replacing

the 4th column of the previous calculation with this rank 2 eigenvector gives us

the matrix

0 2 2 0
0 0 2 1/2
0 0 0 0

, which shows that

 0
−1/4
1/4

 is a rank 3 generalized

eigenvector (just reduce the matrix to discover this). Let Q =

1 0 0
0 1/2 −1/4
0 0 1/4


and then compute Q−1 =

1 0 0
0 2 2
0 0 4

. Jordan Canonical form is J = Q−1AQ =1 1 0
0 1 1
0 0 1

.

10.3 The Matrix Exponential

What we are about to learn in this unit is a very powerful tool which essentially
encompasses and explains almost every idea in an introductory ODE class.
Before we start learning about the matrix exponential, let’s first review the
solution of a linear ODE of the form y′ = ay + f(t), where a is a constant.
To solve this ODE, we need to find an integrating factor, so we rewrite the
ODE in differential form as (−ay − f(t))dt + dy = 0. We compute (My −
Nt)/N = −a, so our integrating factor is e

∫
−a dt = e−at. Multiplying both
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sides of our differential equation by this integrating factor gives the exact ODE
(−e−atay − e−atf(t))dt+ e−atdy = 0. A potential is e−aty −

∫
e−atf(t) dt. So

a general solution is e−aty −
∫
e−atf(t) dt = c or

y = eatc+ eat
∫
e−atf(t) dt.

In this unit we will replace the functions y and f with vector-valued functions,
and the constant a with a square matrix A. The system of ODEs ~y′ = A~y+ ~f(t)
will then have as its solution

~y = eAt~c+ eAt
∫
e−At ~f(t) dt.

The proof that this is true can be obtained in essentially the exact same man-
ner, provided you are willing to work with finding potentials of vector-valued
functions. The key thing we need to learn before we can proceed any more with
this discussion is to understand what the matrix exponential eAt means. This
is our first goal.

Recall that the MacLaurin series of ex is

ex =

∞∑
n=0

1

n!
xn = 1 + x+

1

2!
x2 +

1

3!
x3 +

1

4!
x4 + · · · .

We now introduce the exponential of a matrix A by using the exact same idea,
namely we define eA as the infinite series

eA = exp(A) =

∞∑
n=0

1

n!
An = 1 + x+

1

2!
A2 +

1

3!
A3 +

1

4!
A4 + · · · .

We will use the following facts without proof.

1. The matrix exponential exists for every square matrix. In other words,
the infinite sum will always converge.

2. The inverse of the matrix exponential of A is the matrix exponential of
−A, i.e. (eA)−1 = e−A.

3. If two matrices commute (meaning AB = BA), then eA+B = eAeB =
eBeA.

Essentially, these facts mean that the laws of exponents with numbers are the
same as the laws of exponents with matrices.

10.3.1 The Matrix Exponential for Diagonal Matrices -
exponentiate the diagonals

We’ll start by computing the matrix exponential for a few diagonal matrices.

Let’s start with the zero matrix A =

[
0 0
0 0

]
. Every power of A is the zero

matrix, expect the zeroth power which is the identity matrix. Hence we have

eA =

[
1 0
0 1

]
+

[
0 0
0 0

]
+ · · · =

[
1 0
0 1

]
.

This shows us that e0 = I, the identity matrix.
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Now let’s compute the exponential of the identity matrix, A =

[
1 0
0 1

]
Every

power will still be I, so we have

eA =

[
1 0
0 1

]
+

[
1 0
0 1

]
+

[
1
2! 0

0 1
2!

]
+

[
1
3! 0

0 1
3!

]
+· · · =

[
1 + 1 + 1

2! + 1
3! + · · · 0

0 1 + 1 + 1
2! + 1

3! + · · ·

]
.

In summary, we have eI =

[
e1 0
0 e1

]
. For the diagonal matrix A =

[
a 0
0 b

]
,

a similar computation shows that eA =

[
ea 0

0 eb

]
. If we multiply A by t and

then exponentiate, we obtain e(At) =

[
eat 0

0 ebt

]
. The ideas above generalize

immediately to all n × n matrices. If A is a diagonal matrix, then its matrix
exponential is found by exponentiating all the terms on the diagonal.

10.3.2 Nilpotent Matrices - Matrices where An = 0 for
some n

A nilpotent matrix is a matrix for which An = 0 for some n. This means that
the infinite sum involved in the matrix exponential eventually terminates. We
will only look at a few examples of nilpotent matrices, in particular the kinds
that show up when calculating Jordan form.

The matrix A =

[
0 t
0 0

]
is nilpotent because

[
0 t
0 0

]2

=

[
0 0
0 0

]
. The matrix

exponential is hence

eA =

[
1 0
0 1

]
+

[
0 t
0 0

]
+

[
0 0
0 0

]
=

[
1 t
0 1

]
.

The matrixA =

0 t 0
0 0 t
0 0 0

 satisfiesA2 =

0 0 t2

0 0 0
0 0 0

 andA3 =

0 0 0
0 0 0
0 0 0

,

hence it is nilpotent. Its matrix exponential is eA =

1 0 0
0 1 0
0 0 1

+

0 t 0
0 0 t
0 0 0

+

1
2

0 0 t2

0 0 0
0 0 0

 =

1 t 1
2 t

2

0 1 t
0 0 1


The 4 by 4 matrix A =


0 t 0 0
0 0 t 0
0 0 0 t
0 0 0 0

 satisfies A2 =


0 0 t2 0
0 0 0 t2

0 0 0 0
0 0 0 0

 , A2 =


0 0 0 t3

0 0 0 0
0 0 0 0
0 0 0 0

 , and A4 = 0, so it is nilpotent. Its matrix exponential is


1 t 1

2! t
2 1

3! t
3

0 1 t 1
2! t

2

0 0 1 t
0 0 0 1

.

The point to these last few examples is to help you see a pattern. If there are
not all t’s on the upper diagonal, then each block of t’s will contribute a similar
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matrix. For example, the exponential of the matrix



0 t 0 0 0 0 0
0 0 t 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 t 0 0
0 0 0 0 0 t 0
0 0 0 0 0 0 t
0 0 0 0 0 0 0


is



1 t 1
2 t

2 0 0 0 0
0 1 t 0 0 0 0
0 0 1 0 0 0 0

0 0 0 1 t 1
2 t

2 1
3! t

3

0 0 0 0 1 t 1
2 t

2

0 0 0 0 0 1 t
0 0 0 0 0 0 1


10.3.3 Matrices in Jordan Form

If a matrix is in Jordan form, then it can be written as J = D+N , where D is
a diagonal matrix and N is a nilpotent matrix similar to the matrices from the
last section. Since eD+N = eDeN , all we have to do is multiply the two matrix
exponential together to find the matrix exponential of J . We will almost always
be working with matrices of the form Jt, so we need the matrix exponential of
Dt and Nt. Let’s look at an example.

Consider the matrix J =

[
2 1
0 2

]
, which is already in Jordan form. We write

Jt = Dt + Nt as

[
2t t
0 2t

]
=

[
2t 0
0 2t

]
+

[
0 t
0 0

]
. The matrix exponentials are

eDt =

[
e2t 0
0 e2t

]
and eNt =

[
1 t
0 1

]
. The product of these two matrices is

the matrix exponential of Jt, namely eJt =

[
e2t e2tt
0 e2t

]
. Similar computations

shows that the matrix exponential of

2t t 0
0 2t t
0 0 2t

 is

e2t e2tt 1
2e

2tt2

0 e2t e2tt
0 0 e2t

, and

the matrix exponential of


2t t 0 0
0 2t t 0
0 0 2t t
0 0 0 2t

 is


e2t e2tt 1

2e
2tt2 1

3!e
2tt3

0 e2t e2tt 1
2e

2tt2

0 0 e2t e2tt
0 0 0 e2t

.

The pattern that you see continues. If you change the eigenvalues on the diag-
onal, then the 2 in the exponent will change. If there are multiple eigenvalues,
then each block of eigenvalues will contribute a block matrix to the matrix
exponential. For a large example, we compute

exp



3t t 0 0 0 0 0
0 3t t 0 0 0 0
0 0 3t 0 0 0 0

0 0 0 2t t 0 0
0 0 0 0 2t t 0
0 0 0 0 0 2t t
0 0 0 0 0 0 2t


=



e3t e3tt 1
2e

3tt2 0 0 0 0

0 e3t e3tt 0 0 0 0
0 0 e3t 0 0 0 0

0 0 0 e2t e2tt 1
2e

2tt2 1
3!e

2tt3

0 0 0 0 e2t e2tt 1
2e

2tt2

0 0 0 0 0 e2t e2tt
0 0 0 0 0 0 e2t


.
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10.3.4 Jordan form gives the matrix exponential for any
matrix.

We now consider the matrix exponential of any matrix A. Start by finding Q
and J so thatQ−1AQ = J is a Jordan form forA. This means thatA = QJQ−1.
Notice that A2 = QJQ−1QJQ−1 = QJ2Q−1, A3 = QJQ−1QJQ−1QJQ−1 =
QJ3Q−1, and An = QJnQ−1. This means that the matrix exponential of A is

eA =

∞∑
n=0

1

n!
An =

∞∑
n=0

1

n!
QJnQ−1 = Q

( ∞∑
n=0

1

n!
Jn

)
Q−1 = QeJQ−1.

So if we can find the matrix exponential of a matrix in Jordan form, and we can
compute Q and Q−1, then we can find the matrix exponential of any matrix. We
will never go beyond 2 by 2 and 3 by 3 matrices when we do problems in class,
but theoretically you now have the tools for computing matrix exponentials of
any matrix. If we need to find the matrix exponential of At, then we can find
the matrix exponential of Jt and get exp(At) = Q exp(Jt) Q−1.

As an example, let’s consider the matrix A =

[
2 1
1 2

]
whose eigenvalues

are 1 and 3, with eigenvectors [−1, 1], [1, 1]. We then have Q =

[
−1 1
1 1

]
and

J =

[
1 0
0 3

]
so exp(Jt) =

[
et 0
0 e3t

]
and the matrix exponential of At is

exp(At) = QeJtQ−1 =

[
−1 1
1 1

] [
et 0
0 e3t

](
−1

2

)[
1 −1
−1 −1

]
=

(
−1

2

)[
−et − e3t et − e3t

et − e3t −et − e3t

]
For an example with a repeated eigenvalue, let’s consider the matrix A =[

0 1
−9 6

]
. We can compute Q =

[
1 − 1

3

3 0

]
and J =

[
3 1
0 3

]
. The matrix

exponential of Jt is

[
e3t e3tt
0 e3t

]
. We then have

exp (At) = exp

([
0 1t
−9t 6t

])
=

[
1 − 1

3

3 0

] [
e3t e3tt
0 e3t

] [
0 1

3

−3 1

]
=

[
e3t − 3e3tt e3tt
−9e3tt 3e3tt+ e3t

]
.

If the eigenvalues are irrational or complex, the computations are still the
same. When the eigenvalues are complex, Euler’s formula eix = cosx + i sinx
or the identities cosh ix = cosx, sinh ix = i sinx can be used to simplify the
matrix exponential so that it contains no imaginary components. Consider the

matrix A =

[
0 1
−4 0

]
. We can compute Q =

[
1 1
3i −3i

]
and J =

[
3i 0
0 −3i

]
.

The matrix exponential of Jt is

[
eit 0
0 e−it

]
. We then have

exp (At) = exp

([
0 1t
−9t 0

])
=

[
1 1
3i −3i

] [
e3it 0
0 e−3it

]
1

−6i

[
−3i −1
−3i 1

]
=

[
cos(3t) 1

3 sin 3t
−3 sin(3t) cos 3t

]
.

Due to time constraints, we’ll have to finish this example in class.

10.4 Systems of ODEs

10.4.1 Dilution - Tank Mixing Problems

Before we start solving systems, let’s look at an example application to see why
they are useful. Systems are used to understand the motion of moving parts in
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a machine, the flow of electricity in a complex network, and many more places.
Lets focus on a dilution problem with multiple tanks, so we can see how the
systems of ODEs are created. We won’t be solving any of the ODEs below by
hand, rather we will just set them up and let the computer solve them.

Suppose that two tanks are connected via tubes so that the water in the
tanks can circulate between each other. Both tanks contain 50 gallons of water.
The first tank contains 100lbs of salt, while the second tank is pure water. The
tubes connecting the tanks allow 3 gallons of water to flow from the first tank
to the second tank each minute. Similarly, 3 gallons of water are allowed to
flow from tank 2 to tank 1 each minute. As soon as water enters either tank, a
mixing blade ensures that the salt content is perfectly mixed into the tank. The
problem we want to solve is this: how much salt is in each tank at any given
time t. We know that after sufficient time, we should have 50lbs in each tank
(since 100 lbs spread evenly between two tanks will give 50 lbs in each tank).

Let y1(t) be the salt content in lbs in tank 1, and y2(t) be the salt content
in tank 2, where t is given in minutes and y1 and y2 are given in lbs. We
know that 3 gallons of water flows out of each tank each minute, and 3 gallons
flows in each minute. Let’s focus on tank 1 for a minute and determine it’s
outflow and inflow rates. The only water coming into tank 1 each minute
comes from tank 2. We know that 3 out of the 50 gallons from tank 2 will
enter tank 1, so the fraction 3

50 represents the proportion of water leaving
tank 2 and entering tank 1. This means that the inflow rate for tank 1 is
3
50y2. Similarly, the outflow rate for tank 1 is 3

50y2. Combining these gives a
differential equation y′1 = 3

50y2 − 3
50y1. Examining tank 2 gives the equation

y′2 = 3
50y1 − 3

50y2. We now have a system of ODEs

{
y′1 = 3

50y2 − 3
50y1

y′2 = 3
50y1 − 3

50y2

or in matrix form

[
y′1
y′2

]
=

[
−3/50 3/50
3/50 −3/50

] [
y1

y2

]
+

[
0
0

]
, which a first order

homogeneous linear system of ODEs. The intial conditions are y1(0) = 100 and
y2(0) = 0.

Consider a similar problem, with these modifications. Each tank still has 50
galls, with 100 lbs of salt in tank 1. Each minute, 2 gallons of water containing
4lbs per gallon are dumped into tank 1 from an outside source. The pump in
tank 1 causes 5 gallons per minute to leave tank 1 and enter tank 2. The pump
in tank 2 cause only 3 gallons per minute to flow back into tank 1. The extra
2 gallons per minute which flow into tank 2 from the tank 1 pipes flow out of
the system via a drainage pipe. How much water is in each tank at any given
time?

The flow into tank 1 comes from 2 parts. Each minute 2 gallons containing
4 lbs/gal enters the tank, so 8 lbs will enter. In addition, 3/50 ths of the
salt in tank 2 will enter tank 1. The outflow is 5/50 ths the salt in tank
1, since 5 gal are flowing toward tank 2 each minute. This gives the ODE
y′1 = 8+3/50y2−5/50y1. The inflow in the second tank is 5/50 ths of y1, and the
outflow is 3/50 ths of y2 toward tank 1 plus 2/50 ths of y2 toward drainage. This
means we have y′2 = 5/50y1 − 5/50y2. In matrix form we can write the system

as

{
y′1 = 3

50y2 − 3
50y1

y′2 = 3
50y1 − 3

50y2

or in matrix form

[
y′1
y′2

]
=

[
−5/50 3/50
5/50 −5/50

] [
y1

y2

]
+[

8
0

]
, which is a nonhomogeneous linear system of ODEs, with intial conditions

y1(0) = 100 and y2(0) = 0. In general, a non homogeneous system will occur
when the rates of change are influenced by things outside the system, like extra
salt being dumped into the system from somewhere else.

Now let’s change the size of the tanks, to see how size affects the prob-
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lem. Let tank 1 contain 100 gallons and tank 2 contain 50 gallons. Dump 3
gallons, with 5lbs of salt per gallon, into tank 1 each minute. Pumps cause
6 gallons to flow from tank 1 to tank 2, and 3 gallons to flow from tank 2 to
tank 1. This leaves 3 gallons per minute to leave via a drain pipe in tank 2.
The corresponding system of ODEs would be y′1 = (3)(5) + 3/50y2 − 6/100y1

and y′2 = 6/100y1 − 6/50y2. In matrix form we can write this as

[
y′1
y′2

]
=[

−6/100 3/50
6/100 −6/50

] [
y1

y2

]
+

[
15
0

]
.

As a final example, let’s consider 3 tanks. Suppose tank 1 contains 100
gallons with 300 lbs of salt. Tank 2 contains 50 gallons with 20 lbs of salt, and
tank 3 contains 30 gallons of pure water. Pumps allows 2 gallons per minute
to flow each direction between tank 1 and tank 2. Another set of pumps allows
3 gallons per minute to flow between tanks 1 and 3. There are no pumps
connecting tank 2 and tank 3. Let’s set up a system of ODEs in matrix form
whose solution would give us the salt content in each tank at any given time. For
tank 1, we have an inflow of 2/50 y2 plus 3/40 y3. The outflow is 5/100 y1 (2 gal
toward tank 2 and 3 toward tank 3). Continuing in this fashion, we eventually

obtain the matrix equation

y′1y′2
y′3

 =

−5/100 2/50 3/40
2/100 −2/50 0
3/100 0 −3/40

y1

y2

y3

, which is

a homogeneous linear first order system of ODEs.

10.4.2 Solving a system of ODEs

We are now ready to solve systems of ODEs. Recall at the beginning of the
unit that the solution to the ODE y′ = ay+ f(t) is y = eatc+ eat

∫
e−atf(t) dt.

In terms of systems, we can solve the linear system of ODEs with constant
coefficient matrix A given by ~y′ = A~y + ~f(t) using the solution

~y = eAt~c+ eAt
∫
e−At ~f(t) dt.

If the system is homogeneous, meaning ~f(t) = ~0, then the solution is simply
~y = eAt~c. If the initial conditions are ~y(0) = ~y0, then the constant vector ~c
must equal the initial conditions. If the system is nonhomogeneous, then we
will have to use the initial conditions to find ~c. Let’s look at a few examples.

Homogeneous: f~(t) = 0

Let’s start by solving the system of ODEs given by

[
y′1
y′2

]
=

[
3 1
0 3

] [
y1

y2

]
. Since

the coefficient matrix A =

[
3 1
0 3

]
is already in Jordan form, we know the

matrix exponential of A times t is exp(At) =

[
e3t te3t

0 e3t

]
. Hence we have as

a solution to our ODE

[
y1

y2

]
=

[
e3t te3t

0 e3t

] [
c1
c2

]
=

[
c1e

3t + c2te
3t

c2e
3t

]
. Without

using matrix form, a general solution would be y1 = c1e
3t + c2te

3t, y2 = c2e
3t.

To check our solution, we compute y′1 = 3c1e
3t+3c2te

3t+c2e
3t and y′2 = 3c2e

3t.
The system of ODEs requires that y′1 = 3y1 + y2 = 3(c1e

3t + c2te
3t) + (c2e

3t)
(which is correct), and that y′2 = 3y2 = 3(c2e

3t) (which is also correct).
In the previous problem, let’s add the initial conditions y1(0) = 2 and

y2(0) = 7. Recall that e0 = I, so plugging in t = 0 into our vector equation
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~y = eAt~c means

[
y1(0)
y2(0)

]
= I

[
c1
c2

]
, or

[
2
7

]
=

[
c1
c2

]
. Hence the solution of

our initial value problem is simply the matrix exponential times the initial

conditions, i.e.

[
y1

y2

]
=

[
e3t te3t

0 e3t

] [
2
7

]
.

The only complication which occurs with homogeneous ODEs is finding the
matrix exponential.

Nonhomogeneous: f~(t) 6= 0

To see what happens in the nonhomogeneous case, let’s look at the same ex-
ample from the previous section, but add on a nonzero vector. We will solve

the nonhomogeneous system of ODEs given by

[
y′1
y′2

]
=

[
3 1
0 3

] [
y1

y2

]
+

[
t
2

]
. We

already know that exp(At) =

[
e3t te3t

0 e3t

]
, however we will need the inverse of

this matrix as well, which is exp(−At) =

[
e−3t −te−3t

0 e−3t

]
(just replace each t

with a −t).
We now use the formula ~y = eAt~c+ eAt

∫
e−At ~f(t) dt. This gives us[

y1

y2

]
=

[
e3t te3t

0 e3t

] [
c1
c2

]
+

[
e3t te3t

0 e3t

](∫ [
e−3t −te−3t

0 e−3t

] [
t
2

]
dt

)
.

Before integrating, we compute the product

[
e−3t −te−3t

0 e−3t

] [
t
2

]
=

[
te−3t − 2te−3t

2e−3t

]
=[

−te−3t

2e−3t

]
. We can now integrate each entry in this matrix to obtain (using in-

tegration by parts)

[∫
−te−3tdt∫
2e−3tdt

]
=

[
te−3t/3 + e−3t/9
−2e−3t/3

]
. Currently we have our

general solution as[
y1

y2

]
=

[
e3t te3t

0 e3t

] [
c1
c2

]
+

[
e3t te3t

0 e3t

]([
te−3t/3 + e−3t/9
−2e−3t/3

])
=

[
c1e

3t + c2te
3t

c2e
3t

]
+

[
1 t
0 1

] [
t/3 + 1/9
−2/3

]
=

[
c1e

3t + c2te
3t

c2e
3t

]
+

[
t/3 + 1/9− 2t/3

−2/3

]
[
y1

y2

]
=

[
c1e

3t + c2te
3t − t/3 + 1/9

c2e
3t − 2/3

]
.

We can check our solution by calculating y′1 = 3c1e
3t + 3c2te

3t + c2e
3t− 1/3

and y′2 = 3c2e
3t. We then compute 3y1 + y2 + t = 3(c1e

3t + c2te
3t − t/3 +

1/9) + (c2e
3t − 2/3) + t = 3c1e

3t + 3c2te
3t − t+ 1/3 + c2e

3t − 2/3 + t = y′1, and
3y2 + 2 = 3(c2e

3t − 2/3) + 2 = 3c2e
3t = y′2.

If the initial conditions are y1(0) = 1 and y2(0) = 0, then to find c1 and c2

we have to solve the system of equations

[
1
0

]
=

[
c1 + 1/9
c2 − 2/3

]
. We immediately

see that c1 = 8/9 and c2 = 2/3.
You have all the tools you need to solve ODEs. We now just need to practice.

10.4.3 Higher Order ODEs - Solved via a system

A second order linear ODE can always be converted to a first order linear system
of two ODEs. Similarly a third order ODEs can be converted to a system of
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3 ODEs. In this section I will illustrate how this is done, by considering a few
examples.

Consider the 2nd order homogeneous linear ODE y′′ + 3y′ + 2y = 0. Make
the substitutions y1 = y and y2 = y′1. Since y′2 = y′′, we can now remove the
2nd order derivative from the problem. The 2nd order ODE can now be written
in the form y′2+3y2+2y1 = 0, or y′2 = −2y1−3y2. Combining this equation with

the equation y′1 = y2, we have the matrix equation

[
y′1
y′2

]
=

[
0 1
−2 −3

] [
y1

y2

]
.

Let’s convert the 2nd order ODE y′′+ ty′− 5y = sin t to a system of ODEs.
We use the substitution y1 = y and y2 = y′1 (this second equation becomes
the first row in our matrix). Substitution gives us y′2 + xy2 − y1 = sin t or

y′2 = 5y1 − xy2 + sin t. In matrix form we write

[
y′1
y′2

]
=

[
0 1
5 −t

] [
y1

y2

]
+

[
0

sin t

]
.

For a higher order ODE such as y(4) − 2y′′′ + 7y′ − 4y = 0, we use the
substitutions y1 = y, y2 = y′1 = y′, y3 = y′2 = y′′, y4 = y′3 = y′′′ (essentially you
just rename each of the derivatives of y except for the highest one). Substitution
into the ODE gives us y′4 = y(4) = 4y1 − 7y2 + 2y4. The other 3 equations we
need are y′1 = y2, y

′
2 = y3, y

′
3 = y4. Combining these 4 ODEs into matrix format

gives us


y′1
y′2
y′3
y′4

 =


0 1 0 0
0 0 1 0
0 0 0 1
4 −7 0 2



y1

y2

y3

y4

. Notice the pattern of 1’s which occur

above the diagonal of the matrix. This pattern will occur any time you convert
a higher order ODE into a system.

If we have a system of higher order ODEs, such as y′′1 = 2y1 − 3y′2 and
y′′2 = 4y1 + 5y2, then we can convert this to a system of first order ODEs
in a similar fashion. Since both functions y1 and y2 have 2nd order terms,
we’ll create new variables for the 0th and 1st derivatives of each, namely a1 =
y1, a2 = y′1, b1 = y2, b2 = y′2. We then have a′1 = a2, a

′
2 = y′1 = 2a1 − 3b2, b

′
1 =

b2, b
′
2 = y′2 = 4a1 + 5b1. In matrix form we can write

a′1
a′2
b′1
b′2

 =


0 1 0 0
2 0 0 −3
0 0 0 1
4 0 5 0



a1

a2

b1
b2

 .
The solution to this system ~y′ = A~y is simply ~y = eAt~c.

10.4.4 Spring Systems

When two or more springs are connected to each other in a system, how do we
model the corresponding motion? The answer is to simply use a system.

Suppose we attach a spring with spring constant k1 from the ceiling. Attach
to the free end of this spring an object with mass m1. Then attach to the
object another spring with spring constant k2. Attach to the end of this spring
an object with mass m2. Let y1 and y2 be the displacement of objects 1 and 2
from equilibrium (with positive yi representing downward displacement). We’ll
assume for now that there is no friction on the spring. The spring forces on the
first spring are precisely m1y

′′
1 = −k1(y1) + k2(y2 − y1). The spring forces on

the second spring are precisely m2y
′′
2 = −k2(y2 − y1). This is a system of 2nd

order ODEs. making the substitutions a1 = y1, a2 = y′1, b1 = y2, b2 = y′2, we
then have a′1 = a2, a

′
2 = − k1

m1
a1 + k2

m1
(b1 − a1), b′1 = b2, b

′
2 = − k2

m2
(b1 − a1). In
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matrix form we can write
a′1
a′2
b′1
b′2

 =


0 1 0 0

− k1
m1
− k2

m1
0 k2

m1
0

0 0 0 1
k2
m2

0 − k2
m2

0



a1

a2

b1
b2

 .
The solution to this system ~y′ = A~y is simply ~y = eAt~c. The process above
generalizes to any mass spring system.

10.4.5 Electrical Systems

When multiple loops occur in an electrical system involving resistors, inductors,
and capacitors, how do we model the corresponding current? We use a system.
Remember that Kirchoff’s current law states that at each node, the current in
equals the current out. In addition, Kirchoff’s voltage laws states that along
each loop, the voltage supplied equals the voltage suppressed. Each resistor
contributes a voltage drop of RI ohms, each capacitor a drop of 1

C

∫
Idt farads,

and each inductor a voltage drop of LI ′ Henrys.
Consider the electrical network on the right, where R1 = 1, R2 = 2, R3 =

3, L = 4, C = 1
5 , E = 12. Kirchoff’s current law states that I1 = I2 + I3. On

the left loop, Kirchoff’s voltage law states that E = R1I1+R2I2+LI ′1 or using
the given numbers we have 12 = I1 + 2I2 + 4I ′1. On the right loop, Kirchoff’s
voltage law states that 0 = I3R3 + 1

C

∫
I3dt−R2I2 or differentiating and using

the given numbers we have 0 = 3I ′3+5I3−2I ′2. We now need to solve this system
for I ′1, I

′
2, and I ′3. Solving the second equation for I ′1 gives I ′1 = 1

4 (12−I1−2I2).
Taking derivatives of the first equation gives I ′1 = I ′2 + I ′3, which means we can
replace I ′2 in the third equation with I ′2 = I ′1− I ′3 = 1

4 (12− I1− 2I2)− I ′3. This
gives us the equation 0 = 3I ′3 +5I3−2I ′2 = 3I ′3 +5I3−2

(
1
4 (12− I1 − 2I2)− I ′3

)
.

Solving for I ′3 gives us I ′3 = 1
5

(
−5I3 + 1

2 (12− I1 − 2I2)
)
. Since I ′2 = I ′1− I ′3, we

now use the information we have for I ′1 and I ′3 to write I ′2 = 1
4 (12− I1− 2I2)−

1
5

(
−5I3 + 1

2 (12− I1 − 2I2)
)
. This gives us the system of ODEs in matrix form

as
I ′1 = 1

4 (12− I1 − 2I2)

I ′2 = 1
4 (12− I1 − 2I2)− 1

5

(
−5I3 + 1

2 (12− I1 − 2I2)
)

I ′3 = 1
5

(
−5I3 + 1

2 (12− I1 − 2I2)
)

I ′1I ′2
I ′3

 =

 − 1
4 − 1

2 0

− 1
4 + 1

10 − 1
2 + 1

10 1

− 1
10 − 1

5 −1

I1I2
I3

+

 3

3− 6
5

6
5


Since we have written our ODE in the form ~y′ = A~y+ ~f , the solution is simply
~y = eAt~c+ eAt

∫
e−At ~fdt. A computer can quickly solve this system.
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10.5 Preparation

This chapter covers the following ideas. When you create your lesson plan, it should contain examples which
illustrate these key ideas. Before you take the quiz on this unit, meet with another student out of class and
teach each other from the examples on your lesson plan.

1. Explain the basic theory of systems of linear ODEs and the Wronskian for systems.

2. Convert higher order ODEs to first order linear systems.

3. Explain how to use eigenvalues and eigenvectors to diagonalize matrices. When not possible, use
generalized eigenvectors to find Jordan canonical form.

4. Find the matrix exponential of a square matrix, and use it to solve linear homogeneous and nonhomo-
geneous ODEs.

5. Give applications of systems of ODEs. In particular be able to setup systems of ODE related to
dilution, electricity, and springs (use the computer to solve complex systems).

Preparation Problems (click for solutions)

Day 1 1, 2a, 2b, 3a

Day 2 3d, 4cghj, 5a, 5c

Day 3 6a, 7ag, 8b, 8c,

Day 4 9a, 9b, 10a, 11a

The accompanying problems will serve as our problems set for this unit. Handwritten solutions to most
of these problems area available online (click for solutions). You can use the technology introduction to check
any answer, as well as give a step-by-step solution to any of the problems. However, on problems where the
system is not diagonalizable, the matrix Q used to obtain Jordan form is not unique (so your answer may
differ a little, until you actually compute the matrix exponential QeJtQ−1 = eAt).

10.6 Problems

1. Solve the linear ODE y′ = ay(t) + f(t), where
a is a constant and f(t) is any function of t.
You will need an integrating factor, and your
solution will involve the integral of a function.

2. For each system of ODEs, solve the system us-
ing the eigenvalue approach. Find the Wron-
skian and compute its determinant to show that
your solutions are linearly independent.

(a) y′1 = 2y1 + 4y2, y
′
2 = 4y1 + 2y2, y1(0) =

1, y2(0) = 4

(b) y′1 = y1 + 2y2, y
′
2 = 3y1, y1(0) = 6, y2(0) =

0

(c) y′1 = y1 + 4y2, y
′
2 = 3y1 + 2y2, y1(0) =

0, y2(0) = 1

(d) y′1 = y2, y
′
2 = −3y1 − 4y2, y1(0) =

1, y2(0) = 2

3. (Jordan Form) For each matrix A, find matrices

Q,Q−1, and J so that Q−1AQ = J is a Jordan
canonical form of A.

(a)

[
1 2
0 3

]
(b)

[
0 1
−1 −2

]

(c)

1 2 2
0 1 2
0 0 1



(d)

1 2 2
0 1 0
0 0 1


(e)

[
0 1
−1 0

]

4. For each of the following matrices A which are
already in Jordan form, find the matrix expo-
nential. Note that if t follows a matrix, that
means you should multiply each entry by t.

https://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/10-Systems-of-ODEs-Preparation-Solutions.pdf
https://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/10-Systems-of-ODEs-Preparation-Solutions.pdf
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(a)

[
2 0
0 3

]
(b)

[
2 0
0 3

]
t

(c)

2 0 0
0 3 0
0 0 4


(d)

2 0 0
0 3 0
0 0 4

t

(e)

[
0 1
0 0

]
t

(f)

[
4 1
0 4

]
t

(g)

0 1 0
0 0 1
0 0 0

t

(h)

5 1 0
0 5 1
0 0 5

t

(i)


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

t

(j)


3 1 0 0 0
0 3 1 0 0
0 0 3 0 0
0 0 0 −2 1
0 0 0 0 −2

t

5. For each of the following matrices, find the ma-
trix exponential. You will have to find the Jor-
dan form.

(a)

[
0 1
−3 4

]
(b)

[
0 1
−6 −5

]
(c)

[
0 1
−1 −2

]
(d)

[
0 1
−4 −4

]

(e)

[
0 1
−1 0

]
(f)

[
0 1
−4 0

]
(g)

[
0 1
0 3

]
(h)

[
2 4
4 2

]
6. Set up an initial value problem in matrix for-

mat for each of the following scenarios (mixing
tank, dilution problems). Solve each one with
the computer.

(a) Tank 1 contains 30 gal, tank 2 contains 40.
Pumps allow 5 gal per minute to flow in
each direction between the two tanks. If
tank 1 initially contains 20lbs of salt, and
tank 2 initially contains 120 lbs of salt,
how much salt will be in each tank at any
given time t. Remember, you are just sup-
posed to set up the IVP, not actually solve
it (the eigenvalues are not very pretty).

(b) Three tanks each contain 100 gallons of
water. Tank 1 contains 400lbs of salt
mixed in. Pumps allow 5 gal/min to circu-
late in each direction between tank 1 and

tank 2. Another pump allows 4 gallons of
water to circulate each direction between
tanks 2 and 3. How much salt is in each
tank at any time t?

(c) Four tanks each contain 30 gallons. Be-
tween each pair of tanks, a set of pumps
allows 1 gallon per minute to circulate in
each direction (so that each tank has a to-
tal of 3 gallons leaving and 3 gallons enter-
ing). Tank 1 contains 50lbs of salt, tank 2
contains 80 lbs of salt, tank 3 contains 10
lbs of salt, and tank 4 is pure water. How
much salt is in each tank at time t?

(d) Tank 1 contains 80 gallons of pure water,
and tank 2 contains 50 gallons of pure wa-
ter. Each minute 4 gallons of water con-
taining 3lbs of salt per gallon are added to
tank 1. Pumps allow 6 gallons per minute
of water to flow from tank 1 to tank 2,
and 2 gallons of water to flow from tank
2 to tank 1. A drainage pipe removes 4
gallons per minute of liquid from tank 2.
How much salt is in each tank at any time
t?

7. Convert each of the following high order ODEs
(or systems of ODEs) to a first order linear sys-
tem of ODEs. Which are homogeneous, and
which are nonhomogeneous?

(a) y′′ + 4y′ + 3y = 0

(b) y′′ + 4y′ + 3y = 4t

(c) y′′ + ty′ − 2y = 0

(d) y′′ + ty′ − 2y = cos t

(e) y′′′ + 3y′′ + 3y′ + y = 0

(f) y′′′′ − 4y′′′ + 6y′′ − 4y′ + y = t

(g) y′′1 = 4y′1 + 3y2, y
′
2 = 5y1 − 4y2.

(h) Chapter 17, problems 1-20, in Schaum’s

8. Solve the following homogeneous systems of
ODEs, or higher order ODEs, with the given
initial conditions.

(a) y′1 = 2y1, y
′
2 = 4y2, y1(0) = 5, y2(0) = 6

(b) y′1 = 2y1 + y2, y
′
2 = 2y2, y1(0) =

−1, y2(0) = 3

(c) y′′ + 4y′ + 3y = 0, y(0) = 0, y′(0) = 1

(d) y′′ + 2y′ + y = 0, y(0) = 2, y′(0) = 0

(e) y′1 = 2y1 + y2, y
′
2 = y1 + 2y2, y1(0) =

2, y2(0) = 1

(f) y′1 = y2, y
′
2 = −y1, y1(0) = 1, y2(0) = 2
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9. Solve the following nonhomogeneous systems of
ODEs, or higher order ODEs, with the given
initial conditions. Use the computer to solve
each of these problems, by first finding the ma-
trix exponential and then using using the for-
mula ~y = eAt~c + eAt

∫
e−At ~f(t)dt. You’ll have

to find the matrix A and function f .

(a) y′1 = 2y1 + t, y′2 = 4y2, y1(0) = 5, y2(0) = 6

(b) y′1 = 2y1 + y2, y
′
2 = 2y2 − 4, y1(0) =

−1, y2(0) = 3

(c) y′′ + 4y′ + 3y = cos 2t, y(0) = 0, y′(0) = 1

(d) y′′ + 2y′ + y = sin t, y(0) = 2, y′(0) = 0

(e) y′1 = 2y1 +y2−2, y′2 = y1 +2y2 +3, y1(0) =
2, y2(0) = 1

(f) y′1 = y2, y
′
2 = −y1 + t, y1(0) = 1, y2(0) = 2

10. Mass-Spring Problems - To be added in the fu-
ture.

11. Electrical Network Problems - To be added in
the future.



Chapter 11

Fourier Series

This chapter covers the following ideas. When you create your lesson plan, it
should contain examples which illustrate these key ideas. Before you take the
quiz on this unit, meet with another student out of class and teach each other
from the examples on your lesson plan.

1. Define period, and how to find a Fourier series of a function of period 2π
and 2L.

2. Explain how to find Fourier coefficients using Euler formulas, and be able
to explain why the Euler formulas are correct.

3. Give conditions as to when a Fourier series will exist, and explain the dif-
ference between a Fourier series and a function at points of discontinuity.

4. Give examples of even and odd functions, and correspondingly develop
Fourier cosine and sine series. Use these ideas to discuss even and odd
half-range expansions.

11.1 Basic Definitions

A function f(x) is said to be periodic with period p if f(x + p) = f(x) for all
x in the domain of f . This means that the function will repeat itself every p
units. The trig functions sinx and cosx are periodic with period 2π, as well
as with period 4π, 6π, 8π, etc. The fundamental period is the smallest positive
period of a function. The function sinnx is periodic, with fundamental period
2π
n , though it also has period 2π.

If two functions are period with the same period, then any linear combina-
tion of those functions is periodic with the same period. In particular, the sum
a0 +

∑∞
n=1(an cosnx + bn sinnx) has period 2π. This sum is called a Fourier

series, where ai, bi are called Fourier coefficients. Given a function f(x) which
has period 2π, we write

f(x) = a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

where the Fourier coefficients of f(x) are given by the Euler formulas

a0 =
1

2π

∫ π

−π
f(x)dx, an =

1

π

∫ π

−π
f(x) cos(nx)dx, bn =

1

π

∫ π

−π
f(x) sin(nx)dx

136
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for n ≥ 1. This is another way of expressing a function in terms of an infinite
series. A Fourier series will converge to the function f(x) for a function which
is piecewise continuous and has a left and right hand derivative at each point
of the domain. At a point of discontinuity, the Fourier series will converge to
the average of the left and right limits at that point. One main use of Fourier
series is in solving partial differential equations.

If the function has period 2L instead of period 2π, then we make a substi-
tution in the formulas above. Replace every x above with X, and then perform
the substitution X

2π = x
2L , or X = π

Lx. The function sin πx
L has period 2L, and

the Fourier series becomes

a0 +

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
where the Fourier coefficients are given by

a0 =
1

2L

∫ L

−L
f(x)dx, an =

1

L

∫ L

−L
f(x) cos

nπx

L
dx, bn =

1

L

∫ L

−L
f(x) sin

nπx

L
dx.

11.1.1 Examples

Let f(x) =

{
1 0 < x < π

−1 −π < x < 0
. The function f(x) has period 2π. We compute

a0 = 1
2π

∫ π
−π f(x)dx = 1

2π

(∫ 0

−π −1dx+
∫ π

0
1dx

)
= 1

2π (−π + π) = 0. Also, we

have

an = 1
π

∫ π
−π f(x) cos(nx)dx

= 1
π

(∫ 0

−π − cos(nx)dx+
∫ π

0
cos(nx)dx

)
= 1

π

(
− sinnx

n

∣∣0
−π + sinnx

n

∣∣π
0

)
= 1

π (0− 0 + 0− 0)
= 0

bn = 1
π

∫ π
−π f(x) sin(nx)dx

= 1
π

(∫ 0

−π − sin(nx)dx+
∫ π

0
sin(nx)dx

)
= 1

π

(
cosnx
n

∣∣0
−π −

cosnx
n

∣∣π
0

)
= 1

π ( 1
n −

cosnπ
n − cosnπ

n + 1)

= 1
nπ (2− 2 cosnπ)

If n is even then cosnπ = 1. If n is odd then cosnπ = −1. Hence bn = 4
nπ if n

is odd and bn = 0 if n is even. This means that we can write

f(x) =

{
1 0 < x < π

−1 −π < x < 0
= 0+

∞∑
n=0

4

nπ
sinnπ =

4

π

(
sinx+

1

3
sin 3x+

1

5
sin 5x+

1

7
sin 7x+ · · ·

)
.

The Fourier series of f(x) = af1(x) + bf2(x) is found by computing the
Fourier series of f1 and f2, multiplying by a and b and then adding. The

function f(x) =

{
2 0 < x < π

0 −π < x < 0
is the same as f1(x) + f2(x), where f1(x) ={

1 0 < x < π

−1 −π < x < 0
and f2(x) = 1. The Fourier series of f1(x) was computed

above, and the Fourier series f2 has coefficients a0 = 1, an = bn = 0, so its
Fourier series is simply f2(x) = 1. Hence this gives the Fourier series{

2 0 < x < π

0 −π < x < 0
= 1+

∞∑
n=0

4

nπ
sinnπ = 1+

4

π

(
sinx+

1

3
sin 3x+

1

5
sin 5x+

1

7
sin 7x+ · · ·

)
.
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Division by 2 gives the Fourier series{
1 0 < x < π

0 −π < x < 0
=

1

2
+

∞∑
n=0

2

nπ
sinnπ =

1

2
+

2

π

(
sinx+

1

3
sin 3x+

1

5
sin 5x+

1

7
sin 7x+ · · ·

)
.

We now consider a function with period 8 defined by the f(x) =


0 −4 < x < −2

1 −2 < x < 2

0 2 < x < 4

.

This function is 1 for −2 < x < 2, 6 < x < 10, etc. It is a regular pulse which
is on for 4 units of time, and then off for four units of time. Since the period
is not 2π, but instead 2L = 8, we have L = 4. The Fourier coefficients are

a0 = 1
2(4)

∫ 4

−4
f(x)dx = 1

8

∫ 2

−2
1dx = 1

2 , and

an = 1
L

∫ 4

−4
f(x) cos nπx4 dx

= 1
4

∫ 2

−2
cos nπx4 dx

= − 1
4

4
nπ sin nπx

4

∣∣2
−2

= − 1
nπ sin nπx

4

∣∣2
−2

= − 1
nπ

(
sin 2nπ

4 − sin −2nπ
4

)
= 1

nπ (2 sin nπ
2 )

bn = 1
L

∫ 4

−4
f(x) sin nπx

4 dx

= 1
4

∫ 2

−2
sin nπx

4 dx

= − 1
4

4
nπ cos nπx4

∣∣2
−2

= − 1
nπ cos nπx4

∣∣2
−2

= − 1
nπ

(
cos nπ2 − cos −nπ2

)
= 1

nπ (0) = 0

If n is even, then an = 0 as sine is 0 at integer values. We have a1 = 2
nπ = a5 =

a9 = · · · , and a3 = − 2
nπ = a7 = a11 = · · · . Hence the Fourier series is

f(x) =


0 −4 < x < −2

1 −2 < x < 2

0 2 < x < 4

=
1

2
+

2

π

(
cos

πx

4
− 1

3
cos

3πx

4
+

1

5
cos

5πx

4
− 1

7
cos

7πx

4
+ · · ·

)
.

11.2 Orthogonality of Trigonometric functions

For any integersm 6= n, we have
∫ π
−π cosnx cosmxdx = 0,

∫ π
−π sinnx sinmxdx =

0,
∫ π
−π sinnx cosmxdx = 0. In addition, if m = n then

∫ π
−π sinnx cosnxdx = 0.

Because these integrals are zero, we say that sinnx, cosmx forms an orthog-
onal system of functions. This is proved using the trigonometric identities
cosnx cosmx = 1

2 (cos(n + m) + cos(n −m)), sinnx sinmx = 1
2 (cos(n −m) −

cos(n+m)), sinnx cosmx = 1
2 (sin(n+m) + sin(n−m)), together with the fact

that n ± m 6= 0 is an integer, and so
∫ π
−π cos(n ± m)dx = 0 and

∫ π
−π sin(n ±

m)dx = 0. If n = m, then cosnx cosnx = 1
2 (cos(2nx) + 1) and sinnx sinnx =

1
2 (1 − cos 2nx), so we can compute

∫ π
−π cosnx cosnxdx = 1

2

∫ π
−π(cos(2nx) +

1)dx = 1
2 (sin(2nx)/2n + x)

∣∣π
−πdx = π and

∫ π
−π sinnx sinnxdx = 1

2

∫ π
−π(1 −

cos(2nx))dx = 1
2 (x− sin(2nx)/2n)

∣∣π
−πdx = π. These facts are used derive Eu-

ler’s formulas for the Fourier coefficients. If we multiply both sides of f(x) =
a0+

∑∞
n=1(an cosnx+bn sinnx) by cosmx, and then integrate term by terms, we

have
∫ π
−π f(x) cos(mx)dx =

∫ π
−π a0 cos(mx)dx+

∑∞
n=1(an

∫ π
−π cosnx cos(mx)dx+

bn
∫ π
−π sinnx cos(mx)dx) = 0 + amπ. Hence am = 1

π

∫ π
−π f(x) cos(mx)dx. The

other coefficients are derived similarly.

11.2.1 Half-Wave Rectifier

A half wave rectifier clips off the negative portion of a trigonometric function.

The function f(x) =

{
0 −π

ω < x < 0

sinωx 0 < x < π
ω

, where p = 2L = 2π
ω has had the
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negative portion of the sine wave clipped off (hence has passed through a half
wave rectifier). The Fourier coefficients are (using the same trig identities as
above)

a0 =
ω

2π

∫ π/ω

0

sinωxdx = − 1

2π
cosωx

∣∣π/ω
0

=
1

π
,

and

an =
ω

π

∫ π/ω

0

sinωt cosnωtdt

=
ω

2π

∫ π/ω

0

sin(1 + n)ωt+ sin(1− n)ωtdt

= − 1

2π

(
cos(1 + n)ωt

(1 + n)
+

cos(1− n)ωt

(1− n)ω

) ∣∣πω
0

= − 1

2π

(
cos(1 + n)π

(1 + n)
+

cos(1− n)π

(1− n)
− 1

1 + n
− 1

1− n

)
.

If n is odd, this is zero. If n is even, then an = 1
2π

(
2

1+n + 2
1−n

)
= − 2

(n−1)(n+1)π .

You can also calculate b1 = 1/2 and bn = 0 for all n ≥ 2. This gives the Fourier
series as

f(x) =
1

π
+

1

2
sinωx− 2

π

(
1

1 · 3
cos 2ωx+

1

3 · 5
cos 4ωx+

1

5 · 7
cos 6ωx+ · · ·

)
.

11.3 Even and Odd Functions

We often use the facts that cos(−x) = cos(x) and sin(−x) = − sin(x) in some
of the work above. Any function f(x) which satisfies f(−x) = f(x) is called an
even function (polynomials with only even powers of x are even functions). An
odd function satisfies f(−x) = −f(x) (and polynomials with only odd powers
of x are odd functions). Even functions are symmetric about the y-axis. Odd
functions are symmetric about the origin. The Fourier coefficients of an even

function are simply a0 = 1
L

∫ L
0
f(x)dx, an = 2

L

∫ L
0
f(x) cos nπxL dx, bn = 0, and

the corresponding Fourier series is called a Fourier cosine series. Similarly, for

an odd function the coefficients are a0 = 0, an = 0, bn = 2
L

∫ L
0
f(x) sin nπx

L dx,
and the corresponding Fourier series is called a Fourier sine series. This comes
because the product of two even functions is even, the product of two odd
functions is even, and the product of an even and an odd function is odd. In
addition, integration from −L to L of an odd function is zero, while integration
from −L to L of an even function is twice the integral of 0 to L.

The sawtooth wave is the function f(x) = x + π for −π < x < π, and
f(x+ 2π) = f(x). It can be written as the sum of an even function f1(x) = π
and an odd function f2(x) = x. The corresponding Fourier cosine and sine series
are f1 = π and f2 = 2

(
sinx− 1

2 sin 2x+ 1
3 sin 3x− 1

4 sin 4x+ · · ·
)
. Addition

of series gives f(x) = π + 2
(
sinx− 1

2 sin 2x+ 1
3 sin 3x− 1

4 sin 4x+ · · ·
)
. (The

coefficients bn are obtained using integration by parts and bn = − 2
n cosnπ.)

If a function is defined on the interval [0, L], then it is possible to expand the
function periodically onto the interval [−L, 0] by either using an even expansion
(reflection about the y axis), or an odd expansion (reflection about the origin).
Both expansions are called half-range expansions. The Fourier series of an even
half-range expansion is the Fourier cosine series, and the Fourier series of an
odd half-range expansion is the Fourier sine series.
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Consider the triangle f(x) =

{
x 0 ≤ x ≤ L/2
L− x L/2 ≤ x ≤ L

. The Fourier cosine

series has coefficients

a0 =
1

L

∫ L/2

0

xdx+
1

L

∫ L

L/2

(L−x)dx =
1

2
, an =

2

L

∫ L/2

0

x cos
nπx

L
dx+

2

L

∫ L

L/2

(L−x) cos
nπx

L
dx.

Integration by parts gives∫ L/2

0

x cos
nπx

L
dx =

(
x
L

nπ
sin

nπx

L
+

L2

n2π2
cos

nπx

L

) ∣∣∣∣L/2
0

=

(
L2

2nπ
sin

nπ

2
+

L2

n2π2
cos

nπ

2

)
−
(

L2

n2π2

)
and∫ L

L/2

(L− x) cos
nπx

L
dx =

(
(L− x)

L

nπ
sin

nπx

L
− L2

n2π2
cos

nπx

L

) ∣∣∣∣L
L/2

=

(
0− L2

n2π2
cosnπ

)
−
(
L2

2nπ
sin

nπ

2
− L2

n2π2
cos

nπ

2

)
.

This means

an =
2

L

(
L2

2nπ
sin

nπ

2
+

L2

n2π2
cos

nπ

2
− L2

n2π2
− L2

n2π2
cosnπ − L2

2nπ
sin

nπ

2
+

L2

n2π2
cos

nπ

2

)
=

2L

n2π2

(
2 cos

nπ

2
− 1− cosnπ

)
.

We have a0 = 1
2 , a2 = −8L/(22π2), a6 = −8L/(62π2), a10 = −8L/(102π2), . . .,

and an = 0 for all n which are odd or multiples of 4. Hence the even expansion
of f has Fourier series

f(x) =
1

2
− 8L

π2

(
1

22
cos

2πx

L
+

1

62
cos

2πx

L
+

1

102
cos

2πx

L
+ · · ·

)
.

Similar computations show that if we use a half-range odd expansion, then
bn = 4L

n2π2 sin nπ
2 , which means bn = 0 for all even n, and we have

f(x) =
4L

π2

(
1

12
sin

πx

L
− 1

32
sin

3πx

L
+

1

52
sin

5πx

L
− · · ·

)
.

11.4 Identities

Fourier series can be used to prove various identities. For example, the Fourier
series of sin2 x is 1

2 −
1
2 cos(2x), a familiar identity. Fourier series also give

sin4 x = 3
8 −

1
2 cos 2x+ 1

8 cos 4x. Essentially you can use Fourier series to derive
a power reduction formula for any power of sinx or cosx.

In addition, Fourier series when evaluated at a point can yield interesting
results. The function f(x) = x2 on the interval −1 < x < 1 has Fourier
coefficients a0 = 1

3 , an = 4
n2π2 cosnπ, bn = 0. This means

x2 =
1

3
− 4

π2

(
1

12
cosπx− 1

22
cos 2x+

1

32
cos 3x− 1

42
cos 4x+ · · ·

)
.

Evaluation at 0 gives a formula for π2/12. Evaluation at 1/2 and 1 gives
additional expressions involving π2. These identities can lead to powerful ways
of giving numerical approximations to π, and other numbers.
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11.5 Where do people use Fourier Series

Besides mathematicians who like studying infinite series for fun, Fourier series
have an extremely useful application in the telecommunications and graphics
industry (cell phones, internet, land lines, JPG, MP3, radio communication,
etc.). Radio waves can be thought of as periodic vibrations of space, sent
by a radio transmitter. These vibrations are sent out in all directions, and
are captured by antennae. Your radio receiver computes Fourier integrals to
compute the coefficients of the signal received. The FCC dictates at what
frequency people are allowed to broadcast. We will discuss this more in class
with an animation.

In addition, Fourier series play a major role in modeling heat transfer. Engi-
neers use Fourier series to model the transfer of heat in jet engines, car engines,
space craft, and any other device which could fail because it overheats. You can
learn more about this topic in a course on partial differential equations. We’ll
take up a brief study of partial differential equations in the next chapter, and
briefly show where Fourier series appear.
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11.6 Preparation

This chapter covers the following ideas. When you create your lesson plan, it should contain examples which
illustrate these key ideas. Before you take the quiz on this unit, meet with another student out of class and
teach each other from the examples on your lesson plan.

1. Define period, and how to find a Fourier series of a function of period 2π and 2L.

2. Explain how to find Fourier coefficients using Euler formulas, and be able to explain why the Euler
formulas are correct.

3. Give conditions as to when a Fourier series will exist, and explain the difference between a Fourier
series and a function at points of discontinuity.

4. Give examples of even and odd functions, and correspondingly develop Fourier cosine and sine series.
Use these ideas to discuss even and odd half-range expansions.

Preparation Problems (click for solutions)

Day 1 1a, 3f, 3i, 4c

Day 2 4e, 6a, 7f, 8f

Day 3 7m, 9m, 10b, 11b

Use the Mathematica technology introduction from the course website to check all your answers. I will
create a solutions guide as time permits. Make sure you complete some of each type of problem.

11.7 Problems

1. Find the fundamental period of the following functions.

(a) sinx, sin 2x, sin x
3 , sin kx, sin nπx

2

(b) tanx, tan 2x, tan x
3 , tan kx, tan nπx

2

2. Show y = c is p-periodic for each positive p, but has no fundamental period.

3. Compute the Fourier series of each function below (assume the function is 2π-periodic). Write your
solution using summation notation. Then graph at least 3 periods of the function and compare the
graph of the function with a graph of a truncated Fourier series.

(a) f(x) = sin 2x

(b) f(x) = cos 3x

(c) f(x) = sin 2x+ cos 3x

(d) f(x) = 4

(e) f(x) = 4 + 5 sin 2x− 7 cos 3x

(f) f(x) =

{
0 −π < x < 0

1 0 < x < π

(g) f(x) =

{
−1 −π < x < 0

1 0 < x < π

(h) f(x) =

{
−2 −π < x < 0

3 0 < x < π

(i) f(x) = x for −π < x < π

(j) f(x) = |x| for −π < x < π

(k) f(x) = x for 0 < x < 2π

(l) f(x) = x2 for −π < x < π

(m) f(x) =


0 −π < x < −π/2
1 −π/2 < x < π/2

0 π/2 < x < π

(n) f(x) =

{
0 −π < x < 0

x 0 < x < π

(o) f(x) =

{
π + x −π < x < 0

π − x 0 < x < π

https://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/11-Fourier-Series-Preparation-Solutions.pdf
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4. Compute the Fourier series of each function below (assume the function is p-periodic). Write your
solution using summation notation. Then graph at least 3 periods of the function and compare the
graph of the function with a graph of a truncated Fourier series.

(a) f(x) =

{
−1 −2 < x < 0

1 0 < x < 2
, p = 4

(b) f(x) =

{
0 −2 < x < 0

2 0 < x < 2
, p = 4

(c) f(x) = x for −1 < x < 1, p = 2

(d) f(x) = |x| for −1 < x < 1, p = 2

(e) f(x) = 1− |x| for −1 < x < 1, p = 2

(f) f(x) = x2 for −1 < x < 1, p = 2

(g) f(x) = x2 for −2 < x < 2, p = 4

(h) f(x) = 1− x2 for −1 < x < 1, p = 2

(i) f(x) = x3 for −1 < x < 1, p = 2

(j) f(x) = sin(πx) for 0 < x < 1, p = 1

(k) f(x) = cos(πx) for − 1
2 < x < 1

2 , p = 1

(l) f(x) =

{
0 −1 < x < 0

x 0 < x < 1
, p = 2

(m) f(x) =


0 −2 < x < 0

1 0 < x < 1

0 1 < x < 2

, p = 4

5. Decide if each function is even, odd, or neither.

(a) x, x2, x3, x4,
√
x, 3
√
x, x2 + x+ 1, x3 + x, x2 + 1, x4 + x5.

(b) sinx, cosx, cos 3x, tanx, cotx, secx, cscx, sinx cosx, sin2 x, sinx+ cos 3x.

(c) If f is even and g is odd, f2, g2, f3, g3, fg, f + g, 3f, xf, xg, fngm (where n and m are integers).

6. Rewrite each function f as the sum of an even fe and an odd fo function, so that f = fe + f0. Make
sure you show that fe(−x) = fe(x) and fo(−x) = −fo(x). Then plot f , fe, and fo on the same axes.

(a) f(x) = ex (your answer should involve hyperbolic functions).

(b) f(x) = x2 + 3x+ 2

(c) f(x) =
1

x− 1
(since f(1) is undefined, the even and odd functions are not defined at x = −1).

7. For each function defined on [0, L], find the Fourier cosine series of the even periodic extension to
[−L,L]. Write your solution using summation notation. Then graph at least 3 periods of the function
and compare the graph of the function with a graph of a truncated series.

(a) f(x) = 1 for 0 < x < 1

(b) f(x) = 1 for 0 < x < π

(c) f(x) = x for 0 < x < 1

(d) f(x) = x for 0 < x < π

(e) f(x) = 1− x for 0 < x < 1

(f) f(x) = 2− x for 0 < x < 2

(g) f(x) = π − x for 0 < x < π

(h) f(x) = x2 for 0 < x < 1

(i) f(x) = x3 for 0 < x < 1

(j) f(x) =

{
0 0 < x < 1

1 1 < x < 2

(k) f(x) =

{
1 0 < x < 1

2 1 < x < 2

(l) f(x) =

{
1− x 0 < x < 1

0 1 < x < 2

(m) (Sawtooth Wave) f(x) =

{
x 0 < x < 1

2− x 1 < x < 2

8. For each function from 7, find the Fourier sine series of the odd periodic extension to [−L,L]. Write
your solution using summation notation. Then graph at least 3 periods of the function and compare
the graph of the function with a graph of a truncated series.

9. For a function f(x) defined on [0, L], a half wave rectifier extends f to be 0 on [−L, 0), and then
periodically extends the function to all real numbers. If fe and fo represent the even and odd periodic

extentsions, then g =
fe + fo

2
represents the half wave rectifier. For each function from 7, find the
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Fourier series of the half wave rectifier of f . Write your solution using summation notation. Then
graph at least 3 periods of the half wave rectifier and compare it to a graph of a truncated series.

10. Compute the following integrals, where n and m are positive integers. You will need the product to
sum trig identitites.

(a)

∫ π

−π
cos(nx) sin(mx)dx.

(b)

∫ π

−π
sin(nx) sin(mx)dx.

(c)

∫ π

−π
cos(nx) cos(mx)dx.

11. Use Fourier series to prove the following identities.

(a) sin2 x =
1

2
− 1

2
cos(2x)

(b) sin3 x =
3

4
sinx− 1

4
sin(3x)

(c) sin4 x =
3

8
− 1

2
cos(2x) +

1

8
cos(4x)

(d) cos2 x =
1

2
+

1

2
cos(2x)

(e) cos3 x =
3

4
cosx+

1

4
cos(3x)

(f) cos4 x =
3

8
+

1

2
cos(2x) +

1

8
cos(4x)

12. (Gibb’s Phenomenon) Pick a discontinuous function from any of the previous exercises. Use a computer
to graph the partial sums

fk(x) = a0 +

k∑
n=1

(
an cos

(nπx
L

)
+ bn cos

(nπx
L

))
for k = 5, 10, 50, 100. What do you notice happening near the point where f is discontinuous? Does
increasing k make this “bump” disappear? Try letting k be 1000 (it may take little while for the
computer to construct your solution).



Chapter 12

Partial Differential
Equations

This chapter covers the following ideas. When you create your lesson plan, it
should contain examples which illustrate these key ideas. Before you take the
quiz on this unit, meet with another student out of class and teach each other
from the examples on your lesson plan.

1. What is a PDE? What is a solution to a PDE? Be able to solve PDE’s
which are reducible to ODE’s.

2. Derive the one dimensional wave equation, utt = c2uxx.

3. Describe the three step process used to solve both the one dimensional
wave equation and the one dimensional heat equation.

4. Use Fourier series to solve the wave equation and heat equation with
varying intial conditions.

12.1 Basic Definitions

A PDE is an equation involving a function u and its independent variables.
Some examples are utt = c2uxx (the one dimensional wave equation), ut =
c2uxx, uxx+uyy = 0, etc. Partial differential equations appear often in applica-
tions. The order of the PDE is the highest partial derivative of u which appears
in the equation. The PDE is said to be linear if u and its partial derivatives
appear no more than once in each term. The PDE ut + uxx − u = 0 is linear,
whereas utu − uxx = 0 is not. A PDE is said to be homogeneous if each term
contains either u or a partial derivative.

A solution of a PDE on some region R is a function u defined on an open
region containing R which satisfies the PDE everywhere on R. The key thing
is that a solution is a function of multiple variables. If a linear PDE is homo-
geneous, then the superposition principle applies, which means that the sum of
two solutions to a linear homogeneous PDE is again a solution. The functions
u(x, y) = x2− y2, u(x, y) = arctan(y/x), u(x, y) = ex cos y, u(x, y) = ln(x2 + y2)
are all solutions of the PDE uxx + uyy = 0 which is called Laplace’s equation.
You can verify this yourself by differentiating. Hence any linear combination of
these four solutions is also a solution. Notice however that u(x, y) = arctan(y/x)
is only a solution on a region R in the xy plane which does not contain the y-
axis, as the function is not defined at x = 0. Similarly u(x, y) = ln(x2 + y2) is
only a solution on regions which do not contain the origin (0,0).

145
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Some PDEs can be solved by ODE methods. The PDE uxy = 3ux can
be solved as follows. If we let ux = p, then we have py = 3p. A solution is
p = Ce3y, where C is a constant with respect to y. That means that C could be
any function of x. Hence we have ux = p = C(x)e3y. Integration with respect
to x gives u(x, y) =

∫
C(x)dxe3y + D(y), where the constant D could be a

function of y. As another example, uyy−u = 0 does not involve any derivatives
with respect to x. A solution using ODE techniques is u = A cos y + B sin y.
However A and B are constants with respect to y, which means they could be
any functions of x. A solution in general is thus u(x, y) = A(x) cos y+B(x) sin y
where A(x), B(x) are any functions of x. We will use this basic idea in the
homework to review solution techniques for every type of ODE.

12.2 Derivation of the one dimensional wave equa-
tion

We now derive the one dimensional wave equation utt = c2uxx. This PDE
models the motion of a vibrating string of length L which is fixed at two end-
points. The function u(t, x) will give the vertical position of a vibrating string
at any t for any x along the string. We require that the string is fixed at
u(t, 0) = u(t, L) = 0 for all time (these two conditions are called boundary
conditions). In order to know the position of the string for all time, we need to
know its initial position u(0, x) = f(x) and initial velocity ut(0, x) = g(x) for
all x. The boundary and initial conditions should give us enough information
to find the position for all t, x. We now make three simplifying assumptions so
that we can model the motion of a vibrating string using PDEs. (1) The den-
sity of the string is constant and the string is perfectly elastic. (2) The tension
in the string created by the attachment at the endpoints is so strong that the
force due to gravity can be neglected. (3) Motion is always perpendicular to
the segment connecting the endpoints, so that the bit of string x units away
from the left endpoint will only move vertically, never horizontally.

Pick two points at distances x and x + ∆x away from the left endpoint.
Since motion is always vertical, the horizontal components of tension in both
directions are the same in magnitude throughout the entire wire. Call this
magnitude T . Let ~T1 be the tension pulling the string at x toward the left
endpoint and ~T2 the tension pulling the string at x + ∆x toward the right
endpoint. Let α be the acute angle between ~T1 and the horizontal, so that
the horizontal component of the tension is |T1| cosα. Similarly let β be the

acute angle between ~T2 and the horizontal, so that the horizontal component of
the tension is |T2| cosβ. This means T = |T1| cosα = |T2| cosβ. Now Newton’s
second law of motion says that F = ma. The vertical components of force acting
on the segment of string between x and x+ ∆x are approximately −|T1| sinα+
|T2| sinβ, which by Newton’s second law is the mass ρ∆x (where ρ is the density
per unit length) times the acceleration utt at some point between x and x+∆x.
We have the equation |T2| sinβ − |T1| sinα = ρ∆xutt. Divide both sides by
T = |T1| cosα = |T2| cosβ, giving the equation tanβ − tanα = ρ∆x

T utt. Recall
that tanα is the slope of the curve at x, which equals ux

∣∣
x=x

. Similarly tanβ =

ux
∣∣
x=x+∆x

. Division by ∆x gives the equation 1
∆x (ux

∣∣
x=x+∆x

−ux
∣∣
x=x

) = ρ
T utt.

The limit as ∆x → 0 of the quantity on the left is precisely the definition of
the partial derivative of ux with respect to x. Hence taking limits gives us
uxx = ρ

T utt. This is commonly written utt = T
ρ uxx = c2uxx, where c2 reminds

us that the constant T
ρ must be positive.
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12.3 Solution of the wave equation

The following solution of the wave equation is a general technique which is useful
in various places in modeling. It involves three steps: (1) separate variable, (2)
solve multiple ODEs, (3) combine the solutions using superposition. Recall the
boundary conditions u(t, 0) = u(t, L) = 0 and initial conditions u(0, x) = f(x),
ut(0, x) = g(x) from before. We seek a solution u(t, x) of utt = c2uxx which
satisfies all of these conditions.

12.3.1 Separate Variables

We assume that our solution satisfies u(t, x) = G(t)F (x), i.e. the variables t
and x can be separated. If this is true, then the PDE utt = c2uxx becomes
FGtt = c2FxxG or FG̈ = c2F ′′G, where the dots mean derivative with respect
to t and the primes mean derivatives with respect to F . We can rewrite the

equation as G̈
c2G = F ′′

F . The left side of this equation does not change if x
changes, and the right side does not change if t changes, which means that it

must be constant, or G̈
c2G = F ′′

F = p for some constant k. This gives us two

equations G̈
c2G = k and F ′′

F = k, or G̈ = kc2G and F ′′ = kF , which are both
ODEs.

12.3.2 Solve Multiple ODEs

We first solve F ′′ = kF , or F ′′ − kF = 0, and along the way show that k < 0.
The characteristic equation is λ2 − k = 0. If k = 0, then the solution is
F (x) = ax+b. However the conditions u(t, 0) = u(t, L) = 0 require that F (0) =
0 = F (L), which means that both a and b are 0, or F (x) = 0 which is a useless

solution. Similarly, if k > 0 then the solution is F (x) = Ae−
√
kx +Be

√
kx. The

boundary conditions F (0) = 0 = F (L) give the system of equations A+B = 0

and Ae−
√
kL + Be

√
kL = 0 which has solution A = 0 = B, which again gives

the useless solution F (x) = 0. If k < 0, then letting k = −p2 the solution
is F (x) = A cos(px) + B sin(px). The boundary conditions F (0) = 0 = F (L)
give 0 = A and 0 = B sin(pL). This means that pL = nπ or p = nπ

L , as the
sine function is zero at any integer multiple of π. This means that for every
integer n we have a solution Fn(x) = B sin nπx

L of the first ODE. Recall also
that k = −p2

n must be negative. Because it simplifies our work later on, we let
B = 1 and write Fn(x) = sin nπx

L , though any multiple of Fn would also be a
solution.

The second ODE G̈ = kc2G can be rewritten G̈ + p2
nc

2G = 0, or letting
λn = pnc we have G̈+λ2

nG = 0. Solutions to this ODE are Gn(t) = An cosλnt+
Bn sinλnt for arbitrary constants An andBn. For each n we thus have a solution
un(t, x) = Gn(t)Fn(t) of the original PDE.

12.3.3 Combine the solutions using superposition

The solution un(t, x) = Gn(t)Fn(t) of the wave equation in general will not sat-
isfy the initial conditions u(0, x) = f(x), ut(0, x) = g(x). So to find a solution
which does, we add together these solutions and then solve for the constants
An and Bn. A finite sum of solutions will always be a solution, and the in-
finite sum u(t, x) =

∑∞
n=1 un(t, x) =

∑∞
n=1Gn(t)Fn(t) =

∑∞
n=1(An cosλnt +

Bn sinλnt) sin nπx
L will be a solution under suitable convergence and differen-

tiability conditions. Letting t = 0 and recalling u(0, x) = f(x), we now solve
f(x) =

∑∞
n=1An sin nπx

L which is a Fourier sine series of f(x). This means that

we can solve for An = 2
L

∫ L
0
f(x) sin nπx

L dx. Taking a derivative with respect to



CHAPTER 12. PARTIAL DIFFERENTIAL EQUATIONS 148

t gives
∑∞
n=1(−λnAn sinλnt+ λnBn cosλnt) sin nπx

L . Let t = 0 to obtain from
the initial condition ut(0, x) = g(x) the equation g(x) =

∑∞
n=1 λnBn sin nπx

L ,
the Fourier sine series of g(x). From the Euler formulas we obtain λnBn =
2
L

∫ L
0
g(x) sin nπx

L dx, or Bn = 2
ncπ

∫ L
0
g(x) sin nπx

L dx. We now have a solution
u(t, x) =

∑∞
n=1(An cosλnt + Bn sinλnt) sin nπx

L , where λn = nπ
L c and An and

Bn are obtained from Euler formulas. This solution is only valid under certain
circumstances, which we will not take time to discuss in detail here. A course
in analysis would provide enough details.

12.3.4 Summary

Notice how we separated the PDE, solved individual ODEs, and then used
superposition and Fourier series to come up with a complete solution. This
technique is a standard tool which you should become familiar with. You will
be able to practice it one more time as you solve the heat equation in the next
section.

When the initial velocity g(x) is zero, the solution u(t, x) =
∑∞
n=1(An cosλnt+

Bn sinλnt) sin nπx
L can be written in a much nicer manner. Since g(x) = 0, we

have Bn = 0. Using the trig identity cos(A) sin(B) = 1
2 (sin(A+B)+sin(A−B)),

we write

∞∑
n=1

An cosλnt sin
nπx

L
=

1

2

( ∞∑
n=1

An sin
nπ

L
(x+ ct) +

∞∑
n=1

An sin
nπ

L
(x− ct)

)
=

1

2
(f∗(x+ ct) + f∗(x− ct)) ,

where f∗ is the odd periodic extension of f . So a solution of the wave equation
when the initial velocity is zero is found by simply creating the odd periodic
extension of f , and then moving the wave left and right where c determines the
speed at which the waves travel, and then halving the sum of these two waves.

12.4 Solution of the heat equation

The one dimensional heat equation is the PDE ut = c2uxx. It models the
temperature of a one dimensional object at any time t. There are two problems
we will solve. First, suppose the rod is L units long, is kept at temperature 0
at both endpoints u(t, 0) = u(t, L) = 0, and has initial temperature u(0, t) =
f(x) for 0 ≤ x ≤ L. Second, suppose the rod has insulated endpoints (no
heat can escape through the endpoints) and has initial temperature u(0, x) =
f(x). Experiments show that the boundary conditions for an insulated rod are
ux(t, 0) = 0 = ux(t, L). As hints for solutions, your solution should involve
a Fourier sine series for the first problem, and a Fourier cosine series for the
second one. I will provide solutions for these problems online.
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12.5 Preparation

This chapter covers the following ideas. When you create your lesson plan, it should contain examples which
illustrate these key ideas. Before you take the quiz on this unit, meet with another student out of class and
teach each other from the examples on your lesson plan.

1. What is a PDE? What is a solution to a PDE? Be able to solve PDE’s which are reducible to ODE’s.

2. Derive the one dimensional wave equation, utt = c2uxx.

3. Describe the three step process used to solve both the one dimensional wave equation and the one
dimensional heat equation.

4. Use Fourier series to solve the wave equation and heat equation with varying intial conditions.

Preparation Problems (click for solutions)

Day 1 2, 21, 22

Day 2 23-26

Day 3 27, 28

You find the the homework problems below. I strongly suggest that you use your homework time to
organize how you solve ODEs using the various methods we have learned all semester long. Hence, spend a
bunch of time with problem 22. A good lesson plan for this unit would consist of a flow chart of some sort
which tells you how to determine an appropriate method to use to solve and ODE.

12.6 Problems

(I) Verifying a function satisfies an ODE. Verify that the functions below satisfy the given PDE.

1. u(x, y) = x2 − y2 satisfies Laplace’s equation uxx + uyy = 0

2. u(x, y) = arctan(y/x) satisfies Laplace’s equation uxx + uyy = 0

3. u(x, y) = ex cos y satisfies Laplace’s equation uxx + uyy = 0

4. u(x, y) = ln(x2 + y2) satisfies Laplace’s equation uxx + uyy = 0

5. u(x, t) = cos(3x) sin(t) satisfies the wave equation utt = c2uxx (what is c?)

6. u(x, t) = cos(Ax) sin(Bt) satisfies the wave equation utt = c2uxx (what is c?)

(II) Solving PDEs by reducing them to ODEs. Solve each of the following ODEs by using an appropriate
technique from earlier in the semester. For simplicity, we will assume that u(x, y) is our function in
each case. You can solve each of these using the technology introduction to get a solution. The key
here is to learn to recognize what type of technique to use with each problem.

7. uy = xy2u

8. ux = xy2u

9. uy = 3u− x

10. ux = 3u− x

11. uxy = 2ux + 1

12. uy + 2u = u2

13. uxx + 3ux + 2u = 0

14. uyy + 3uy + 2u = x

15. uyy + 3uy + 2u = y

16. ux + 4u = 12δ(x− 3)

17. ux + 4u = 12δ(y − 3)

18. ux = 2u − v, vx = −u + 2v (v is a function of x
and y)

19. uxx + 2xux + 4u = 0

20. y2uyy + 2yuy + (y2 − 4)u = 0

https://ilearn.byui.edu/bbcswebdav/institution/Physical_Sci_Eng/Mathematics/Personal%20Folders/WoodruffB/316/12-PDEs-Preparation-Solutions.pdf
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21. For each of the problems above, write the type of technique you need to use to solve it. Write a guide
for yourself to know what method you should use based on what you see in the PDE.

22. Construct an example of a PDE which needs each of the following ODE solution techniques to solve.
Then solve the PDE. You can count each technique a homework problem: Separable, Exact, Integrating
Factor, Linear, Bernoulli, Homogeneous with constant coefficients, Nonhomogeneous with constant
coefficients, Laplace Transforms, Power Series, Frobenius Method, Matrix exponential.

(IV) Solving the Wave Equation. The first 4 problems in this section ask you to repeat the derivation of
the wave equation. The solutions are in the lecture notes. The last few problems ask you to solve the
wave equation using some given initial conditions.

23. Derive the one dimensional wave equation utt = c2uxx, with boundary conditions u(t, 0) = u(t, L) = 0
and initial conditions u(0, x) = f(x), ut(0, x) = g(x).

24. Separate variables on the 1D wave equation to obtain 2 ODEs.

25. Solve both of the ODEs from the previous step.

26. Use superposition and Fourier series to obtain a general solution to the wave equation.

27. If the length of the string is L = 1, its initial position is u(0, x) = x(1− x), and the initial velocity is
ut(0, x) = 0 (meaning the string is released with no initial velocity), find and graph the position of the
string at any time t.

28. If L = 2, u(0, x) =

{
x 0 ≤ x ≤ 1

2− x 1 ≤ x ≤ 2
, and ut(0, x) = 0, repeat the previous problem.

12.7 Solutions

(I) Verifying a function satisfies an ODE.

1. Just take derivatives.

2. Just take derivatives.

3. Just take derivatives.

4. Just take derivatives.

5. Just take derivatives. c = 1/3

6. Just take derivatives. c = B/A

(II) Solving PDEs by reducing them to ODEs. I’ll list the technique as well as the solution.

7. Separate variables, then integrate both sides. u(x, y)→ e
xy3

3 c1[x]

8. Separate variables, then integrate both sides. u(x, y)→ e
x2y2

2 c1[y]

9. Find an integrating factor, or find yh and guess yp = A, where the constant A could be a function of x.
u(x, y)→ e3yc1[x] + x

3

10. Find an integrating factor, or find yh and guess yp = Ax+B, where the constants A and B could be functions
of y. u(x, y)→ e3xc1[y] + x

3
+ 1

9

11. Let z = ux, and then solve zy = 2x + 1. After that, solve z = ux. z = u(x, y) → e2yc1[x] − 1
2

and
u(x, y)→ e2y

∫
c1[x]dx− 1

2
x+ c2[y] = e2yc3[x]− 1

2
x+ c2[y].

12. Use a Bernoulli substitution. This will require that you let w = u1−2. u(x, y)→ − 2

e2c1[x]+2y−1

13. Find yh by getting the roots of the characteristic polynomial. u(x, y)→ e−2xc1[y] + e−xc2[y]

14. Find yh and then guess yp = A, where A is a function of x. u(x, y)→ e−2yc1[x] + e−yc2[x] + x
2

15. Find yh and then guess yp = Ay+B, where A and B are functions of x. u(x, y)→ e−2yc1[x]+e−yc2[x]+ 1
4
(2y−3)

16. Use Laplace transforms, just remember that all your constants are functions of y. The transform of δ(x− 3) is
e−3s. u(x, y)→ c(x)e−4x + 12e−4(x−3)u(x− 3)
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17. Use Laplace transforms, and notice that δ(y − 3) is a constant here, so its transform is δ(y−3)
s

u(x, y) →
c(x)e−4x + 12e−4(x−3)u(x− 3)

18. This is a system where y is just assumed to be a constant. Find the matrix exponential. The matrix exponential

is

(
et

2
+ e3t

2
et

2
− e3t

2
et

2
− e3t

2
et

2
+ e3t

2

)
The solution is

(
u(x, y)→ c1[y]e

x

2
+ 1

2
c1[y]e3x + c2[y]e

x

2
− 1

2
c2[y]e3x

v(x, y)→ c1[y]e
x

2
− 1

2
c1[y]e3x + c2[y]e

x

2
+ 1

2
c2[y]e3x

)
19. uxx + 2xux + 4u = 0 Use a power series, since the coefficients depend on variable we are differentiating with

respect to. Your solution will look like u(x, y) =
∑∞
n=1 an(y)xn, where an is a function of y.

20. y2uyy + 2yuy + (y2 − 4)u = 0 Use the Frobenius method. We have variable coefficients and the y2 in front
of uyy causes this to not be ordinary at y = 0, but it is regular singular at y = 0. Your series will look
like u1(x, y) = yλ

∑∞
n=1 an(x)yn where each coefficient an is a function of x. This is Bessel’s equation, where

p = 2. The solution in general is c1(x)B1[y, 2] + c2(x)B2[y, 2] where B1 and B2 are the two independent Bessel
equations that come from the Frobenius method, and the constants c1 and c2 could be any function of x.

21. For each of the problems above, write the type of technique you need to use to solve it. Write a guide for
yourself to know what method you should use based on what you see in the PDE.

22. Construct an example of a PDE which needs each of the following ODE solution techniques to solve. Then
solve the PDE. You can count each technique a homework problem: Separable, Exact, Integrating Factor,
Linear, Bernoulli, Homogeneous with constant coefficients, Nonhomogeneous with constant coefficients, Laplace
Transforms, Power Series, Frobenius Method, Matrix exponential.

(IV) Solving the Wave Equation. The first 4 problems in this section ask you to repeat the derivation of the wave
equation. The solutions are in the lecture notes. The last few problems ask you to solve the wave equation
using some given initial conditions.

23. Derive the one dimensional wave equation utt = c2uxx, with boundary conditions u(t, 0) = u(t, L) = 0 and
initial conditions u(0, x) = f(x), ut(0, x) = g(x).

24. Separate variables on the 1D wave equation to obtain 2 ODEs.

25. Solve both of the ODEs from the previous step.

26. Use superposition and Fourier series to obtain a general solution to the wave equation.

27. If the length of the string is L = 1, its initial position is u(0, x) = x(1−x), and the initial velocity is ut(0, x) = 0
(meaning the string is released with no initial velocity), find and graph the position of the string at any time t.

28. If L = 2, u(0, x) =

{
x 0 ≤ x ≤ 1

2− x 1 ≤ x ≤ 2
, and ut(0, x) = 0, repeat the previous problem.
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