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Introduction

This course may be like no other course in mathematics you have ever taken.
We'll discuss in class some of the key differences, and eventually this section will
contain a complete description of how this course works. For now, it’s just a
skeleton.

I received the following email about 6 months after a student took the course:

Hey Brother Woodruff,

I was reading Knowledge of Spiritual Things by Elder Scott. I
thought the following quote would be awesome to share with your
students, especially those in Math 215 :)

Profound [spiritual] truth cannot simply be poured from
one mind and heart to another. It takes faith and dili-
gent effort. Precious truth comes a small piece at a time
through faith, with great exertion, and at times wrenching
struggles.

Elder Scott’s words perfectly describe how we acquire mathematical truth, as
well as spiritual truth.
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Chapter 1

Vectors

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Define, draw, and explain what a vector is in 2 and 3 dimensions.

2. Add, subtract, and scalar multiply vectors. Be able to illustrate each
operation geometrically.

3. Compute the dot product and use it to find angles, lengths, projections,
and work.

4. Decompose a vector into parallel and orthogonal components.
5. Give equations of lines in both vector and parametric form.

You’ll have a chance to teach your examples to your peers prior to the exam.

1.1 The Mars Rover - Curiosity

The Curiosity Rover left Florida in November 2011, and arrived on the surface
of Mars in August 2012. Since then, NASA scientists have been using this rover
to explore the surface of mars. The rover has a solar panel array that provides
a limited amount of power during each Martian day, so activities are limited
greatly by power consumption. Let’s imagine that we are the scientists who
control the movement of the rover. Here are some of our jobs.

1. Get the rover from point A to point B safely, calculating distance, speed,
time needed, location at any point in time, etc.

2. Rotate scanners, solar arrays, cameras, etc., as the rover moves.

3. Determine the energy needed to make a trip, and relay the information on
to other teams so they know how much power they have to perform other
actions.

In this chapter, we’ll tackle all the problems above and more. Let’s get started.
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1.2 Straight Line Motion

Once the Curiosity Rover landed, it started moving around the surface. For
simplicity, let’s put the landing site at the origin (0,0) in a 2D grid looking
down upon the surface of mars. A north-south-east-west grid has been imposed
on the grid (which we may change later, but for now let’s just assume it has
been given). The numbers we’ll use in most of our examples are for simplicity
in calculation, and unless otherwise stated, all distances will be given in meters.

Problem 1.1 | The Curiosity Rover is currently 20m east, and 10 m north,

of the landing site (so at location (20,10)). The rover is on flat land and starts
moving at a constant speed. Its position after 1 minute is (15,12). After 2
minutes it’s at (10, 14). After 3 minutes it’s at (5, 16).

e Each minute, how far does the rover move?
e Where will the rover be after 4 minutes?

e Where will the rover be after ¢ minutes?

Problem 1.2 Suppose for a short time the rover follows a path given by See 12.2: 1.

(z,y) = (1t + 3, —2t + 4). This is the same as writing (z,y) = (1, —2)t + (3,4).

e Construct a plot that shows the location of the rover at time ¢t = 0,1, 2,
and add some arrows as well as a line to illustrate the rover’s path.

e What is the speed of the rover?

e When we write the path in the form (z,y) = (1, —2)t + (3,4), what do the
quantities (1, —2) and (3,4) have to do with the path?

You encountered an expression of the form (z,y) = (a,b)t + (¢,d). The
quantity (z,y) represents a point, but the quantity (a,b) represents a change,
rather than a point. Both are examples of what we call vectors. They represent
a magnitude (for example a distance) in a direction. As one of our main goals
in this course is to learn the language used in the sciences, let’s formally make
some definitions.

Definition 1.1. A vector is a magnitude in a certain direction. If P and @
are points, then the vector P_Q is the directed line segment from P to (). This
definition holds in 1D, 2D, 3D, and beyond. If V' = (v1,v2,v3) is a point in
space, then to talk about the vector ¥’ from the origin O to V we’ll use any of

the following notations: Most textbooks use a bold font to
write vectors. When writing
v vectors by hand, it’s common to
ﬁ_V_O" —<U v U>—(’U v 1})— v use an arrow above a letter to
- — VL V2, V3 = VL, V2, B3 2 represent that it’s a vector.
U3
= ’L)1i+1}2j+1)3k = v1i+v2y+v32.
common in engineering common in physics

We call vy, v9, and vz the x, y, and z components of the vector, respectively.

Note that (v1,ve,v3) could refer to either the point V' or the vector ¥. The
context of the problem we are working on will help us know if we are dealing
with a point or a vector.
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Definition 1.2. Let R represent the set real numbers. Real numbers are actually
1D vectors. Let R? represent the set of vectors (z1,x2) in the plane. Let R?
represent the set of vectors (z1,z2,z3) in space. There’s no reason to stop at 3,
so let R™ represent the set of vectors (z1, o, ...,z,) in n dimensions.

In first semester calculus and before, most of our work dealt with problem
in R and R2. Most of our work now will involve problems in R? and R3. We've
got to learn to visualize in R3.

To find the distance between the two points (x1,y1) and (x2,y2) in the
plane, we create a triangle connecting the two points. The base of the triangle
has length Az = (22 — 1) and the vertical side has length Ay = (y2 — y1).
The Pythagorean theorem gives us the distance between the two points as
V(AZ)2 + (Ay)2 = /(22 — 21)2 + (y2 — y1)2. What about two points in 3D?

The distance between two points (21,y1, 21) and (z2, ya, 22) in
3-dimensions is /(Az)2 + (Ay)2 + (Az)2 = \/(z2 —21)2 + (y2 — y1)2 + (22 — 21)2.
Construct an appropriate picture and show how to use the Pythagorean theorem
repeatedly to prove this fact about distance in 3D.

The curiosity rover needs to climb a hill. It’s currently sitting See 12.1:41-58.
at a point P = (2,3, —4) and needs to get to the point @ = (0,—1,1) (we could

add units and adjust numbers to make this completely realistic, but doing so

would complicate the computations).

e What is the distance between these two points?

e Give an equation of the sphere passing though point ) whose center is at
P. Hint: suppose (z,y, z) is another point ()2 that is the same distance
away from point P. What does the distance formula say?

Problem 1.5| For each of the following, construct a rough sketch of the set See 12.1:1-40.

of points in space (3D) satisfying:
1. 2<2<5
2. x=2,y=3

3. 22 +y2+22=25

Now that we can compute distances in 3D, we can formally define the
magnitude of a vector with a formula.

Definition 1.3. The magnitude, or length, or norm of a vector ¥ = (v, vy, v3)
is |0] = \/v¥ + v3 + v3. It is just the distance from the point (v1,v2,v3) to the
origin (0,0, 0).

A unit vector is a vector whose length is one unit. We commonly place a
hat above unit vectors, as in ¥ or v, The standard unit vectors are vectors of
length one that point in the positive z, y, and z directions, namely

i:<17070>:i7 j:<0?170>:y7 k:<07071>:2'

Note that in 1D, the length of the vector (—2) is simply | —2| = \/(—2)? = 2,
the distance to 0. Our use of the absolute value symbols is appropriate, as it
generalizes the concept of absolute value (distance to zero) to all dimensions.
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Definition 1.4. Suppose T = (21,2, 23) and ¥ = (y1, y2, y3) are two vectors in
3D, and c is a real number. We define vector addition and scalar multiplication
as follows:

e Vector addition: &+ § = (1 + y1,22 + y2, 3 + y3) (add component-wise).
e Scalar multiplication: ¢& = (cz1, cxa, cx3).

Consider the vectors @ = (1,2) and ¢ = (3,1). Start by
computing @ + ¥ and @ — ¥. Then draw @ and ¢ with their tails placed at the
origin. Finish by adding arrow to your drawing to show how @ + ¢ and @ — ¥
are related to the original two vectors. Come ready to explain what connections
you found.

The previous problem focused on a geometric understanding of vector addi-
tion and vector subtraction. The next problem focuses on a geometric under-
standing of scalar multiplication.

Problem 1.7| Consider the vector ¥ = (3, —1).

e Start by drawing the three vectors v, —v, and 3v.

e Suppose that the Curiosity Rover travels along the path given by (z,y) =
ot = (3, —1)t, where ¢ represents time. Draw the rover’s path, placing
markers to show the location at time ¢t =0, 1, 2.

e How fast the rover is traveling? What property of the vector v did you
use to answer this question?

Problem 1.8| Consider the two points P = (1,2,3) and Q = (2,—1,0).

Write the vector P_Q in component form (a, b, ¢). Find the length of vector P_Q.
Then find a unit vector in the same direction as Pz). Finally, find a vector of
length 7 units that points in the same direction as P_Q [If you don’t recall what
“unit” vector means, please head back up to the definitions and reread them.]

We’ve encountered several expressions of the form (z,y) = (a,b)t + (¢, d).
This is a function where the input is a number ¢ and the output is a vector
(z,y). For each input parameter ¢, we get a single vector output (z,y). Such a
function we often call a parametrization, as we use a parameter ¢ to describe
something. Because the output is a vector, we also call this function a vector-
valued function. Often, we’ll use the variable 7 to represent the radial vector
(z,y), or (z,y,2) in 3D, which points from the origin outwards. So we could
rewrite the position of the rover as 7(t) = (a,b)t + (¢, d). We use 7 instead of r
to remind us that the output is a vector.

Problem 1.9| The rover is no longer on flat ground, rather is sitting at

point P = (0,2,3). It starts to climb in the direction ¢ = (1, —1,2).

e Write a vector equation (z,y,z) = (7,7,7) for the line that passes through
the point P and is parallel to v.

e Modify your equation to give the position of the rover at any time ¢,
provided you know the rover is moving 4 m per minute.

e Generalize your work to give an equation of the line that passes through
the point P = (z1,y1, 21) and is parallel to the vector ¥ = (vy,ve,v3).

See 12.2:23-24.

See 11.1: 3,4.

See 12.2: 9,17,25,33 and
surrounding.

See 12.5: 1-12.
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Problem 1.10| This problem has you connect the equations you have used
for lines in 2D to parametrizations in vector form.

e Give a parameterization (z,y) = (?,?)t + (?,7?) of the line y = maz + b.

e Suppose a line has slope m and passes through the point (a,b). Give an
equation of the line in the vector form (x,y) = (7,?7)t + (7, 7).

‘ Problem 1.11 ‘ Suppose the Curiosity Rover is at P = (3,1) and needs to
get to Q = (—1,4).

e Write a vector equation 7(t) = (7,?) for (i.e, give a parametrization of)
the line that passes through P and @, with #(0) = P and 7(1) = Q.

e Write a vector equation for the line that passes through P and @, with
7(0) = P but whose speed is twice the speed of the first line.

e Write a vector equation for the line that passes through P and @, with
7(0) = P but whose speed is one meter per minute.

1.3 Rotating Cameras - Angles, Dot Products

We now have the ability to accurately describe straight line motion in both 2D
and 3D. When we tell the rover to start moving in a specific direction, we know
how to track its position. Let’s now tackle the issue of rotating the onboard
camera. We'll start by assuming the rover is stopped, but eventually we’ll want
to rotate the camera as the rover moves. We’ll need the law of cosines.

Theorem (The Law of Cosines). Consider a triangle with side lengths a, b,
and c. Let 0 be the angle between the sides of length a and b. Then the law of
cosines states that

& =a®+b* — 2abcos .

If 8 = 90°, then cos = 0 and this reduces to the Pythagorean theorem.

‘ Problem 1.12 ‘ Assume that the rover is located at the origin. Currently
the rover is pointed in the direction (—1,2). The camera needs to be rotated to
look in the direction of (3,5). Sketch an appropriate diagram and then use the
law of cosines to find the angle between the vectors.

In the next two problems, we’ll develop a simplified version of the law of
cosines that will make our work much simpler. We can then return to the above
problem while the rover is moving.

Problem 1.13| Consider the two vectors @ and ¥ in the plane (so @, 7 € R?)
shown in margin to the right.

1. Add the vector 4 — v’ to the picture to the right.

2. Use the law of cosines to explain why | — @|? = |@|? + |§]? — 2|i||7] cos 6.

See 12.5: 13-20.

See 12.3: 9-12.
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Notice that in your work on the previous problem, the fact that |7 — ¢|? =
|@|? + |0|% — 2|@]|¥] cos @ did not require ever referring to the fact that the vectors
were in R2. This fact is true for vectors in general.

‘Problem 1.14‘ Let @ = (uy,us,u3) and ¥ = (vy,v2,v3) be vectors in R3
(which we write as @, 7 € R3).

1. First use the result of the previous problem to explain why

@l + |o]” — i — o2

1] cos ) —
||| 7] cos 5

2. Now use the coordinates (u1,u2,us) and (v1, v, vs) to simplify the right
hand side of the equation above. For example, you'll replace |i|?> with
2
(«/u% +u + u%) = u? + u3 + u3. For the difference | — 9], you'll need
to subtract coordinates and then compute the magnitude, which gives

something like |#—0| = \/(u; — v1)% + - - -. When you are done simplifying

you should end up with something quite simple.

Definition 1.5: The Dot Product. Let @ = (u1,us2,u3) and ¢ = (v1, ve, v3)
be vectors in R3. We define the dot product of these two vectors to be

U= U1V1 + UV + U3V3.

S

A similar definition holds for vectors in R™, where @-¥ = u1v1 +usvs+- + - +UpUp.
We just multiply corresponding components together and then add.

Theorem (The Law of Cosines - Dot Product Version). With the definition of
the dot product, we can rewrite the law of cosines as

—

- U= |u]|V] cosh.

Problem 1.15| Use our new rule @- ¢ = |i||0] cos § to find the angle between
each pair of vectors below. If the angle is messy, first write the answer in terms
of arccos and then use a calculator to approximate the angle.

1. 1i+2j+ 3k and —2i + 1j + 4k
2. (1,2,3) and (-2, 1,0)

In the previous problem, you should have found that one of the pairs of
vectors had a dot product that was zero.

Definition 1.6. We say two vectors ¢ and v are orthogonal when « - ¥ = 0.

Problem 1.16 ‘ Find two vectors orthogonal to (1,2). Then find 4 vectors
orthogonal to (3,2,1).

The dot product provides a really easy way to determine when two vectors
meet at a right angle. The dot product is precisely zero when this happens. The
next problem has you justify this fact.

See page 693 if you are struggling.

See 12.3: 9-12.
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Problem 1.17‘
then the angle between them is 90°. Then show that if the angle between them
is 90°, then the vectors are orthogonal.

Note: There are two things to show above. First, assume that the vectors

are orthogonal (so their dot product is zero) and use this to compute the angle.

Then second, assume that the angle between them is 90° and use this to compute
the dot product.

We invented a new operation. Let’s see what properties the dot product has.

Problem 1.18| Mark each statement true or false. Then make up an example

to illustrate why you gave your answer. I have done the first as an example.

You can assume that i, 7, € R? and that ¢ € R.

1. 4-7=7-4.
Solution: This is true. If @ = (a,b) and ¥ = (c¢,d), then we know
-0 = (a,b)-(c,d) =ac+bd and 7- 4 = (a,b) - (¢,d) = ca + db. Since
ab = ba and cd = dc, we see that i - ¥ = U - 4 is true.

2. 4 (0-w)=(a-0) &

3. ¢(d-?) = (ct) -0 =1u-(cv)

4. 44 (V- W) = (@ + ) - (4 + W).

5. 4 (V+ W) = (d-0)+ (4 - 0)

6. @i = |a|*

The last property above is extremely important, namely it connects the
length of a vector to the dot product. Any time we are working with either
lengths or angles, there is a dot product hiding in the background.

‘ Problem 1.19‘ Suppose that the rover is moving in the straight line path
given by (x,y) = (a,b)t + (¢,d), where the landing site is located at position
(0,0). One of the science teams wants you to capture footage of an anomaly
located at position (m,n), ideally they’d like several shots from multiple angles
as the rover moves. Your job is to make sure the camera is properly rotated,

throughout the drive, so that the camera is constantly pointing at the anomaly.

Give a formula, 6(t), for the angle between the direction the rover is headed,
and the direct line of sight to the anomaly. In addition, give a formula for the
distance d(t) from the rover to the anomaly.

1.4 Energy, Work, Vector Projections

How much energy does it take to get the rover from point A to point B? In this
last section, we’ll tackle this question.

To start, we first need to discuss the concept of work - a transfer of energy.
When our bodies process food into mechanical energy, work is done (energy is
transferred from chemical to mechanical). We’ll mostly be examining the work
that occurs as a force acts on a object through a displacement. As Curiosity
moves along the surface of Mars, there are several forces acting on the rover.
Two of these forces are gravity and surface friction. As the rover rises, negative
work is done by gravity which means we must supply positive work to enable the

Show that if two nonzero vectors @ and ¥ are orthogonal,

See page 694.

There are more forces than just
gravity and surface friction acting
on the rover. Air resistance is
probably negligible on the surface
of mars. However, we cannot
ignore the internal friction from
the moving parts of the rover.
We’ll just focus on the two
external forces, gravity and
surface friction, in this chapter.
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rover to go uphill. Surface friction opposes any motion, and so negative work is
done throughout all movement which means we must supply energy (work) to
counteract the negative work from surface friction. Both of these forces, gravity
and friction, act on the rover throughout its entire path. We now have precisely
the tools needed to understand the work (energy transfer) that occurs because
of these forces.

Experiments show that if a force F acts on an ob ject through a displacement CZ
then the work done by F through the displacement d is W = |F||d], the product
of the magnitudes of the force and the displacement. This basic definition has a
few assumptions.

e The force F must act in the same direction as the displacement. If the
force and displacement oppose each other, then the work done is simply
W = —|F||d|.

e The force F must be constant throughout the entire displacement.

e The displacement must be in a straight line.

We’ll eventually remove all these assumptions and be able to compute work
done by non constant forces as objects move along curved paths. For now, we’ll
keep the paths straight and the forces constant. However, we will use what
we’ve learned about vectors to remove the first assumption about forces and
displacements acting in the same, or opposite, directions.

Suppose a heavy box needs to be lowered down a ramp. The box exerts a
downward force of say 200 Newtons (gravity), which we could write in vector
notation as F = (0, —200). If the ramp was placed so that the box needed to be
moved right 6 m, and down 3 m, then we’d need to get from the origin (0,0) to
the point (6,—3). This displacement can be written as d = (6, —3). The force
F acts straight down, rather than parallel to the displacement. Let’s find out
how much of the force F acts in the direction of the displacement. We are going
to break the force F into two components, one component in the direction of
d and another component orthogonal to d. We'll use the component that is
orthogonal to d to analyze surface friction afterwards.

Problem 1.20| Read the preceding paragraph. Rather than working with

the specific numbers given in that paragraph, please use F and d to represent
any vector, so that when we are done with this problem we’ll have a symbolic
solution.

We want to write F' as the sum of two vectors F = 1f + 7, where w is parallel
to d and 7 is orthogonal to d. Since 1 is parallel to cf, we can write @ = cd for

some unknown scalar ¢. This means that F = cd + 1. Use the fact that 7 is
F-d
d d ~
[Hint: Dot each side of F = cd + i with d and distribute. You'll need to use
the fact that 7 and d are orthogonal to remove 7 - d from the problem. This
should turn the vectors into numbers, so you can use division and solve for ¢
directly. Don’t spent more than 10 minutes on this problem.]

orthogonal to d to show that ¢ =

Problem 1.21| Consider the vectors 4 and ¢ in the diagram to the right.

We can write @ as the sum of a vector that is parallel to ¥ (called @ below) and
a vector that is orthogonal to ¥/ (called 7 below). This gives us 4 = W + 7.

1. Let 6 be the angle between @ and ¢. Use right triangle trigonometry to
explain why the length of @ is given by || = |u| cos 6.

In the diagram below, we have
F= W + 7 where W is parallel to
d and 7 is orthogonal to d.

In the diagram below, we have
% = W + 77 where & is parallel to ¥
and 7 is orthogonal to .

Notice the right angle where
vectors 7 and W meet.



CHAPTER 1. VECTORS 9

=

2. Now that we know the length of W, explain why @ = (|| cosd) — . See

=L

problem 1.8 if you need help.

3. We have a formula that connects the dot product to the cosine of the
angle between two vectors. Show the steps that transform the equation

above into the equation
S u-v\ v
w = = -
[l /) |v
Can you explain why this also means
- u-v
w=|=-=|17
v-U

The previous two problems give us the definition of a projection.

Definition 1.7. The projection of F onto d written proj; ~F is defined as

. F-d\ - F-d\ d
prOJd -F = - d = pry —
d-d |d| ) |d|
. .
quick computation method geometric method

magnitude times direction

Definition 1.8: Vector Decomposition into parallel and orthogonal
components. We can write F as the sum of a vector parallel to d plus a vector
orthogonal to cf, written L .

F=Fjq+ Fuiq,

These two vectors we call the vector component of ﬁ that is parallel to cf and
the vector component of F that is orthogonal to d Note that the projection
of F onto d is precisely the vector component of F that is parallel to d. Also
notice that the orthogonal component is simply the difference Flg=F— F”d

Let’s practice using these new definitions before we return to studying work.

Problem 1.22| Let F = (—=1,2) and d= (3,4). Start by computing F‘”d =
proj JF" and F 4. Then construct a picture that shows the relationship between

d proj; F and F | 4.

Once you have finished the computations and related picture above, change
the force to F = (—2,0). but keep d= (3,4). Then construct a similar picture,
showing the relatlonshlp between F d proj ; F and F 4. Feel free to construct
this picture with, or without, doing any computations.

We’re now ready to return the box on a ramp, described prior to problem
1.20. Gravity exerts a force of F' = (0, —200) N. Gravity will do work on the box
through a displacement of (6, —3) m. This work transfers the potential energy
of the box into kinetic energy (remember that work is a transfer of energy). If
the surface were frictionless and the only force acting on the box were gravity,

then 100% of the work done by gravity would become kinetic energy of the box.

Let’s first find the work done gravity, and then the work done by friction.

\Problem 1.23\ We will find the amount of work done by the force F =
(0, —200) through the displacement d= (6, —3) by doing the following:

See 12.3:1-8 (part d).

See 12.3: 24, 41-44.
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1. Find the projection of F onto d. This tells us how much force acts in the
direction of the displacement. Find the magnitude of this projection.

2. Since work equals W = |F||d|, provided F acts in the direction of d,
multiply |F I 71 by |d| to obtain the work, and simplify your answer.

3. Now simply compute the dot product F.d.

(Hint: Did you get the same answer as the second part, but with a lot
less computat10ns7 You have just shown that the dot product gives work,
W = F-d, when F and d are not in the same direction.)

The dot product gives us the work done by F through a displacement d
when F and d are not in the same direction. Remember that the dot product is
a number, which means it may be hard to visualize. Connecting the dot product
to work done by one vector in the direction of another can often lead to a good
geometric description of the dot product.

Answer each of the following, assuming that none of the vectors
are the zero vector.

1. Suppose @ - ¥ = 0. What do you know about the two vectors?
2. Suppose 4 - ¥ > 0. What do you know about the two vectors?
3. Suppose © - v < 0. What do you know about the two vectors?

See ! for a solution.

Now let’s consider the work done by surface friction. Surface friction is
often classified into two types, kinetic friction and static friction. The only
difference is whether the object is moving (kinetic) at the point of contact, or
is not moving (static) at the point of contact. A box sliding down a ramp
results in kinetic friction. However the tire treads of a rover moving across Mars
result in static friction (the treads don’t actually move while on the surface -
hopefully no skidding). In either case, we can often model surface friction F 't
as a vector whose magnitude is proportional to the force between the surfaces
(often called the normal force N). Symbolically, we write this as |Ff| = u|N|
where p is the proportionality constant (some use py, for kinetic friction, and
for static friction). For a box sliding down a ramp, or a rover traveling across the
surface of mars, the normal force between the two surfaces is just the orthogonal
component of the force from gravity, so N = F - Note that the direction of

friction is always opposite the motion, so in our case —d.

Problem 1.24 ‘ Suppose that the Curiosity rover needs to climb a hill, moving

through a displacement d = (a,b) (so a meters horizontally and b meters
vertically). Gravity on Mars creates a force of F = (0, —myg), where m is the
mass of the rover and ¢ is the gravitational constant associated with mars (about
3.711m/s? - a little more than a third of earth’s).

1When the dot product is zero, we know that the two vectors meet at a 90° angle. Thinking
about this in terms of work, this means that the force has no portion in the direction of the
displacement, hence there is no work done. If the dot product is positive, then the force has a
portion acting in the direction of the displacement. This means that the angle between the
two vectors is acute. Similarly if the dot product is negative then the angle must be obtuse
(greater than 90°.)



CHAPTER 1. VECTORS 11

1. Compute the component of F that is orthogonal to J(i.e. find 1\7) Show
how to simplify your result to obtain

SR mga

N=F 4= m(l% —a).

2. We know that the magnitude of frictional force is proportional to | N|. Use
this fact to obtain the formula
- mga
|Fy| = u282.
|d|

3. We know that the frictional force F' 't points opposite the displacement d.
We also have a formula now for the magnitude of this frictional force. Use
these two pieces of information to give a formula for F.

(Hint: We already know how to give a vector of a length 3 that points in

the direction (1,2), it’s just 3%. We repeat this idea here as we know

the magnitude from the previous part, and the direction is given.)

The previous problem was an introduction to frictional forces. These forces
can get quite complicated, but analyzing them always requires being able to
analyze the vector component of a force that is orthogonal to the point of contact.
You can study this topic more in future courses as it pertains to your major.

Gravity is our first example of a vector field. Other important vector fields
arise when we study magnetism, electricity, fluid flow, and more. To analyze
how a river flows, we can construct a plot of the river and at each point in the
river we draw a vector that represents the velocity at that point. This creates a
collection of many vectors drawn all at once, where the base of each velocity
vector is placed at the point where the velocity occurs. For gravity, a similar
picture can be drawn, though all the vectors will point down with the same
magnitude. The next problem has us construct a plot of a vector field.

Problem 1.25: Vector Fields ‘ Consider the function F(z,y) = (x — 2y, + y).
This is a function where the input is a point (x,y) in the plane, and the output

is the vector (z — 2y, x + y). For example, if we input the point (1,0), then the
output is (1 —2(0),1+0) = (1,1). To construct a vector field plot, we draw
the vector (1, 1) with its base located at the input (1,0). In the picture below,
based at (1,0) we draw a vector that points right 1 and up 1.

1. Complete the table below and add the other 7 vectors to the graph.

y) | (r—2y,x+y)
,0) (1,1)
1)

2. Repeat the above for the vector field F(z,y) = (—2y, 3x), constructing a
vector field plot consisting of 8 vectors.
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‘ Problem 1.26 ‘ Suppose a rover is currently moving and has a velocity vector
U =(3,4). A force acts on the rover causing an acceleration of @ = (—1,5). The
rover is currently at the location (2, —3). Start by drawing a picture that shows
the rover’s location along with the velocity and acceleration vectors drawn with
the base at the rover’s location.

1. Find the vector component of the acceleration that is parallel to the
velocity (so find a)).

2. Find the vector component of the acceleration that is orthogonal to the
velocity (so find @, ).

3. Will this acceleration cause the rover to speed up or slow down? Explain.

4. Will this acceleration cause the rover to turn left or right? Explain.

Problem 1.27 ‘ A probe above Mars is currently moving and has a velocity
vector ¥ = (—2,1,2). The onboard thrusters apply a force that causes an
acceleration of @ = (0,2, —3).

1. Find the vector component of the acceleration that is parallel to the
velocity (so find @y).

2. Find the vector component of the acceleration that is orthogonal to the
velocity (so find @, 7).

3. Will this acceleration cause the satellite to speed up or slow down? Explain.

4. How would you interpret @ 37

This final problem has you practice using the new words we developed.

‘Problem 1.28| Let P =(2,5) and Q = (3, —4).

1. Give a vector equation of the line through P and Q.

2. Compute both ]3” oL and P LG Construct a picture that shows these two

vectors and their relationship to P and Cj
3. Compute the work done by P through a displacement Cj
4. What is the angle between P and C_j

1.5 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to I-Learn and download the quiz. Once you have taken the
quiz, you can upload your work back to I-Learn and then download the key to
see how you did. If you still need to work on mastering some of the ideas, please
do so and then demonstrate your mastery though the quiz corrections.



Chapter 2

Curved Motion

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Be able to graph and give equations of parabolas, ellipses, and hyperbolas.

2. Use a change-of-coordinates involving translation and stretching to give
an equation of and graph a curve.

3. Model motion in the plane using parametric equations.

4. Find derivatives and tangent lines for parametric equations. Explain how
to find velocity, speed, and acceleration from a parametrization.

5. Use integrals to find the length of a parametric curve, the work done by a
non constant force along a curve, and related quantities.

You’ll have a chance to teach your examples to your peers prior to the exam.

In the previous chapter, our rover always moved in a straight path. Any
satellite orbiting Mars will clearly not move in straight path. We need the ability
to move in paths that are not straight. In addition, we may need to change our
coordinate system to use a different origin, or adjust the scale we use to measure
things. In this chapter, we’ll add the abilities to move in nonlinear paths, as
well as change one coordinate system into another. Let’s get started.

2.1 A New View - Changing Coordinates

In this first section, we’ll tackle changing the coordinate system. Given a graph
of a function y = f(z), how do we modify the equation y = f(x) to obtain a new
function that has been shifted? You might recall several rules that allow you to
translate functions left and right, up and down, or even rescale (stretch) the
functions vertically and horizontally. For example, if we start with the parabola
y = 22, then the equation y = (z — 2)? + 3, or equivalently y — 3 = (z — 2)2, is
the same parabola except we have shifted it right 2 and up 3.

In this section, we’ll revisit the concepts of translating and stretching func-
tions. All of these ideas are part of a bigger picture which we’ll refer to as
changing coordinates. In the example above we had two curves, namely y = 2
and the translated y — 3 = (z — 2)2. To simplify our work, let’s use the variables
u and v for the starting equation and x and y for the translated equation. Notice
then that we have v = u? and y — 3 = (z — 2)%. If we just let v = y — 3 and
u = x — 2, or equivalently x = v+ 2 and y = v + 3, then we have equations

13

In practice, we generally don’t use
new variables but might instead
write the change-of-coordinates as
Tn =Zo+ 2 and yp = Yo + 3
where n stands for “new” and o
stands for “old”. After making the
change, we just drop subscripts.
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that allow us to change between uv and xy coordinates. We call each pair of
equations a change-of-coordinates. We’ll often write our changes of coordinates
by solving for z and y, as the equations z = u + 2 and y = v + 3 clearly show
us that the z-values should be the old u-values shifted 2 units right and the
y-values should be the old v-values shifted 3 units up.

Problem 2.1| Consider the circle u? + v? = 1 and the change-of-coordinates

given by z = 2u + 1 and y = 3v 4+ 4. If you didn’t read the paragraphs above
this problem, please do so before you start working on this problem.

1. Draw the curve 4% 4+ v? =1 in the uv plane.

2. The change of coordinates given above allows us to construct a graph of
this curve in the zy plane. Once simple way to do this is make a u, v, z,y
table. We know the circle above passes through the points (+1,0) and
(0,+£1), so we can use the change-of-coordinates equations = 2u + 1 and
y = 3v +4 to find the corresponding points in the xy plane, as seen on the
right. Use this table to construct a graph of the curve in the zy plane.

3. Solve the change-of-coordinate equations for v and v and use substitution
to give an equation of the curve using x and y coordinates.

4. Use the same change-of-coordinates with the curve v = u? to graph the
curve in both the uv and zy plane. Then state an equation of the curve
in the z and y coordinates. You may find the table to the right helpful.

5. How would you describe the connection between the graphs you made in
the uv plane and their corresponding graph in the zy plane?

In the previous problem you were given a curve using uv coordinates, and

then asked to use a change-of-coordinates to construct a graph in the zy plane.

The next problem has you do this in reverse, namely gives you curve in the zy
plane and asks you to state the change of coordinates that would reduce the
curve to a simple object in the uv plane.

Problem 2.2| Start by graphing the parabola y = 3(z — 1)? + 2.

1. Give a change-of-coordinates of the form =z =7u+7, y =7v+7? that will

transform the curve v = u? in the uv plane to the parabola y = 3(z—1)?+2.

-2
2. Which of y = 3(z — 1) + 2 or Y = (2 — 1) makes it easier to see the
change of coordinates?
2
1 -3
3. Construct a graph of the parabola y—;— = (glj 1 ) . Optionally, state

the change-of-coordinates you used.

Problem 2.3| Consider the curve 22 — y? = 1, which we call a hyperbola.

1. Show that y = +x4/1— m%, and then use this fact to explain why y
approaches the lines y = +x as x gets large. We call these two lines the
asymptotes of the hyperbola, and any good graph of a hyperbola should

include them.

wo) | @)

(_27 4)
(717 1)
(0,0)
(1,1)
(2,4)

(—3,16)
(%7

(%7
(3,7)
(.7
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2. We’ll now construct a graph of the hyperbola. One simple way to draw -
the asymptotes is to start by constructing a rectangular box with corners
at (1,+1) and (—1,%1). Connecting opposing corners of this box gives
the asymptotes y = +x. The circle 22 4+ y? = 1 should fit nicely inside
your box (see the picture on the right). Now use software to view a graph
of the hyperbola 22 — y? = 1 and add it to your picture, making sure the
hyperbola follows the asymptotes as |z| gets large. When you construct

your graph on your paper, make sure your sketch includes the box, lines, L N
and circle, as well as the hyperbola. o N
x—1)2 —4)2
3. Now construct a graph of ( ) — y ) = 1, including an appropriate

box and asymptotes. If you want to find the box easily, start by drawing
(0-1? (- 17

and finally the hyperbola.

the ellipse =1, and then add the box, the asymptotes,

Problem 2.4| Consider the parabola v = u? and the hyperbola u? — v? = 1.

With each problem below, please make a u, v, z,y table before constructing your
graph.

1. Using the change of coordinates x = v, y = u, draw the corresponding
parabola and hyperbola in the xy-plane.

2. Using the change of coordinates z = 2v + 1, y = 3u + 4, draw the
corresponding parabola in the xy-plane.

(y—4?° (-1
9 + 4
=1 in the xy-plane.

(y —4)°

3. Draw both the ellipse = 1 and hyperbola 5

(x—1)
1

Problem 2.5| Consider the change of coordinates z = au+ h, y = bv + k.

1. Use this change of coordinates to rewrite the parabola v = u?, the ellipse
u? 4+ v? = 1, and the hyperbola u? — v? = 1 using xy coordinates.

2. In your own words, how do each of the values of a, b, h, and k, change
the graph of the curve in the uv plane when you draw the graph in the zy
plane. Include pictures to accompany your words.

Problem 2.6 Graph each of the ellipses below by hand. Be prepared to See 11.6: 17-24.

explain how you obtained the graph.

332 y2
1 -+ =1
259

2. 1622 + 25y* = 400 [Hint: divide by 400.]

(@-1)?2 (=27 _
S

Problem 2.7 | Graph each of the hyperbolas below by hand. Make sure your See 11.6: 27-34.

graph shows the hyperbola’s asymptotes.
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2. 25y* — 162% = 400 [Hint: divide by 400.]

(-1 (=27 _
A

—1)? —2)2
Problem 2.8| Consider the hyperbola (z 5 ) — € 9 ) = 1 from the See 11.6: 27-34.

previous problem. Use Mathematica and the ContourPlot[] command to produce
a nice plot with reasonable bounds. Then add to your plot the asymptotes,
using a different color. Your final plot should include both the hyperbola and
the asymptotes in the same plot.

If you are struggling with getting the graphs to show up in the same plot,
try using the Show[] command to combine several plots. Look up Show[] in the
help menu, and you'll see several examples of how to combine several plots into
one. Then you can make one plot for each curve, pick the color you want for
that plot, and finish by combining all the plots with Showf|].

If you need help changing the color, open the help menu for ContourPlot|].
Scroll to the bottom of the examples and expand the “Options” section. There
are several options that have Color in the name, and Contour in the name. You
want to change the style of the Contour, so expand the “ContourStyle” option.
From there, look for an example that you like.

2.2 Parametric Equations

In the previous chapter, we learned how to describe the position (z,y) of a rover
with respect to a parameter t. All of the equations we used in the previous
chapter were lines. We now extend this work to study curved path, allowing
our rover to follow any path at all.

In middle school, we learned to write an equation of a line as y = mx + b.
In vector notation, we can now write this as the vector equation (z,y) =
(1I,m)t + (0,b). Equivalently we can write the two equations

z=1t+0,y =mt+0D,

which we call parametric equations for the line. We were able to quickly develop
equations of lines in space, by just adding a third equation for z. Parametric
equations provide us with a way of specifying the location (z,y, z) of an object
by giving an equation for each coordinate.

Definition 2.1. If each of f and g are continuous functions, then the curve in
the plane defined by x = f(t),y = ¢(t) is called a parametric curve, and the
equations z = f(t),y = g(t) are called parametric equations for the curve. You
can generalize this definition to 3D and beyond by just adding more variables.

Problem 2.9| By plotting points, construct graphs of the three parametric See 11.1: 1-18. This is the same

curves given below (just make a ¢, x,y table, and then plot the (x, %) coordinates). for all the problems below.
Place an arrow on your graph to show the direction of motion.

1. & = cost,y =sint, for 0 <t < 2.

2. x =sint,y = cost, for 0 < ¢ < 27.
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3. x =cost,y =sint,z = t, for 0 <t < 47. You'll need an x,y, z,t table.
Plot your points (z,y, z) in 3D.

4. Now use Mathematica to plot these curves. Use the ParametricPlot|]
command for the first two, and ParametricPlot3D][] for the last.

Problem 2.10| Plot the path traced out by the parametric curve z = 1 +
2cost,y = 3 + 5sint. Then use the trig identity cos®t + sin?¢ = 1 to give a
Cartesian equation of the curve (an equation that only involves x and y). What
kind of motion would you model with this kind of parametrization?

Problem 2.11 ‘ Find parametric equations for a line that passes through What we did in the previous
the points (0, 1,2) and (3, —2,4). What kind of motion would you model with chapter should help here.
this kind of parametrization?

‘Problem 2.12‘ Plot the path traced out by the parametric curve 7(t) =
(t? 4+ 1,2t — 3). Give a Cartesian equation of the curve (eliminate the parameter
t).What kind of motion would you model with this kind of parametrization?

‘ Problem 2.13 ‘ Consider the parametric curve given by x = tant,y = sect.
Plot the curve for —7/2 < t < w/2. Give a Cartesian equation of the curve.
(A trig identity will help - what identity involves both tangent and secant?)
[Hint: this problem will probably be easier to draw if you first find the Cartesian
equation, and then plot the curve.] What kind of motion would you model with
this kind of parametrization?

2.2.1 Derivatives and Tangent lines

We now tackle calculus on parametric curves. The derivative of a vector valued
function is defined using the same definition as first semester calculus.

Definition 2.2. If 7(¢) is a vector equation of a curve (or in parametric form
just x = f(¢),y = g(t)), then we define the derivative to be

dr 7(t+h) — 7

A (i 0}
dt h—0 h

Because vector addition is done component-wise, this is the same as just taking

dr dr dy
the derivati f each t tel —=|—,— .
e derivative of each component separately, so —; ( o dt)

In first semester calculus, we used derivatives to find velocity and acceleration.
Let’s verify that this is true for parametric curves as well.

Problem 2.14‘ Suppose the Curiosity rover travels in a circular path given See 13.1:5-8 and 13.1:19-20
by the parametric curve 7(t) = (3cost,3sint).

= dr 27
1. Graph the curve 7, and compute 7; and 7.

2. On your graph, draw the vectors 4 (T) and % (%) with their tail placed

on the curve at 7 (%) Are these vectors the velocity and acceleration?
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3. Give a vector equation of the tangent line to this curve at t = 7. (You
know a point and a direction vector.)

Definition 2.3. If an object moves along a path 7(t), we can find the velocity

and acceleration by just Computing the first and second derivatives. The velocity

is %, and the acceleration is 4 %7 Speed is a scalar, not a vector. The speed of

an object is just the length of the velocity vector.

Problem 2.15| Consider the curve 7(t) = (2t + 3,4(2t — 1)?).

1. Construct a graph of 7 for 0 <t < 2.

2. If this curve represents the path of a rover (meters for distance, minutes
for time), find the velocity of the rover at any time ¢, and then specifically
at t = 1. What is the rover’s speed at t = 17

3. Give a vector equation of the tangent line to 7 at ¢ = 1. Include this on
your graph.

4. Explain how to obtain the slope of the tangent line, and then write an
equation of the tangent line using point-slope form. [Hint: How can you
turn the direction vector, which involves (dz/dt) and (dy/dt), into the
number given by the slope (dy/dx)?]

The next problem has you decompose an acceleration vector into the com-
ponents that are parallel and orthogonal to the velocity vector. It’s a partial
review of what we did in the previous chapter. For those of you taking dynamics
in the future, this decomposition is central to that course.

‘Problem 2.16‘ Suppose an object travels along the path given by 7(¢) =
(3t, —2t?). The velocity is 7(t) = (3, —4t) and the acceleration is @(t) = (0, —4).
At time t = 1, these vectors are ¢(1) = (3, —4) and d@(1) = (0, —4).

1. Why do we know that the acceleration and velocity vectors are not in the
same direction?

2. What is the vector component of the acceleration vector that is parallel to
the velocity vector? In other words, what is projza. We’ll call this vector
(l”v.

3. What is the vector component of the acceleration vector that is orthogonal
to the velocity vector? We’ll call this vector @ 3.

4. Draw a picture that shows the relationship among ¥, d, G|, and @ 5.

2.2.2 Integration, Arc Length, Work, and More

We’ve been focusing on describing non linear motion by using parametric curves.
In the previous section, we used derivatives to obtain the velocity and acceleration
vectors. We’ll finish this chapter by analyzing how to obtain the work done by
a non constant force, along an arbitrary path.

Let’s think about the Curiosity rover again. In the first chapter, we saw that
the work done by surface friction through a displacement (5,2) is the same as
through a displacement (5,0). A rise or fall in height does not affect the work
done by surface friction. The only thing that mattered was the distance we
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traveled horizontally on the surface. If we moved right 5 meters, and then back
5 meters, the total distance traveled is 10 meters (though the displacement is 0
meters). The 10 meters traveled is the part we need to determine work done by
surface friction.

Imagine now that the rover starts moving along the surface of mars following
the path parametrized by 7(t) = (z(t), y(¢), 2(t)). The third coordinate, z(t),
won’t affect the work done by surface friction. The thing we need to determine
is the distance traveled by the rover through the path #(t) = (z(¢),y(t)). If the
path is a straight line, then we just use the Pythagorean theorem. If the path
is not a straight line, then we have a tougher problem. The key is to break
this tough problem up into lots of smaller problems, each simple, and then use
integration to find the total distance. The following exercise, whose solution
is provided in the footnotes, reminds us how to find the area of a region by
breaking the region up into lots of little regions. Try doing this exercise before
moving on.

Consider a function y = f(x) for a < x < b and assume that

f(x) > 0. Imagine cutting the z-axis up into many little bits, where we use dx
to represent the length of each little bit. See ! for a solution.

1. If we pick one of the tiny bits of length dx whose left endpoint is located
at , what does the quantity dA = f(z)dx give us? Construct a picture
to illustrate this.

2. Why is the total area given by A = fab f(z)dx

We are ready to tackle the problem of finding the length of a path. This
length we call arc length. If our rover moves at a constant speed, then the
distance traveled is simply

distance = speed X time.

This requires that the speed be constant. What if the speed is not constant?
Over a really small time interval dt, the speed is almost constant, so we can still
use the idea above.

‘Problem 2.17: Derivation of the arc length formula‘ Suppose a rover

(or other object) moves along the path given by 7(t) = (x(t),y(t)) for a <t <b.
dF
We know that the velocity is d—g and so the speed is just the magnitude of this

vector.

IThe quantity dA = f(x)dz is the area of a rectangle whose base is dr wide and whose
height is f(z). If dz is really small, then the function f is almost constant, so f(x) and
f(x + dz) are really close. The little bit of area dA is extremely close the actual area under f
that lies above the z axis between x and x + dz, off by the small amount of the rectangle that
lies above the curve as shown below. This extra area becomes negligible as dz — 0.

dA = f(z)dz
The area under f above dz is approximately dA.

f(@) As dx — 0, the error becomes negligible.

dx

To find the total area under the curve, all we have to do is add up the little bits of area. In
terms of Riemann sums, we would write Y dA. The integral symbol just means that we’re
letting dz — 0, and so the total area is found using A = [ dA. To obtain the total area, we
just add up the little bits of area. When we replace dA with f(z)dz, we put the bounds z = a

to z = b on the integral to obtain A = [dA = ff f(z)dx
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de\?  (dy\?
1. Show that we can write the rover’s speed at any time ¢ as \/((;;) + ((5) .

de\?  (dy\?
2. If the rover moves at speed \/(c;) + ((;;) for a little time length dt,

what’s the little distance ds that the rover traveled?

3. Explain why the length of the path given by 7(¢) for a <t <bis This is the arc length formula.

Ask me in class for an alternate
s = / ds = /
a

way to derive this formula.
dt = dt

Problem: Alternate derivation of arc length formula‘ Suppose an ob-

ject moves along the path given by 7(t) = (z(t),y(¢t)) for a < ¢t < b. Imagine
slicing the path up into hundreds of tiny slices. Let ds represent the length of
each tiny slice.

1. Draw an appropriate diagram showing an arbitrary curve, a tiny chunk of
the curve of length ds, and a triangle so that the Pythagorean theorem
gives the approximation ds = /(dz)? + (dy)?.

2. Use algebra to show that /(dz)% + (dy)2 = {/(%%)2 + (%)%t.

3. Explain why the length of the path given by 7(¢) for a <t < b is

- [ ¢ ()

Now that we have a formula for computing arc length, let’s practice using it.
First, we’ll actually evaluate an integral. Next, we’ll walk through setting up a
block of code to do the same thing in Mathematica. Then, we’ll set up several
more integrals to find the arc length of several curves. You'll find that arc length
problems can become quite messy and sometimes impossible to compute exactly
because of the square root term in the integrand.

ds =

S =

‘ Problem 2.18| Compute each integral below. Be prepared to show how you
use substution to complete the integral.

1. [e*dx

2. [sinzes*dx

2

5 3t
‘ Problem 2.19 ‘ Find the length of the curve 7(t) = <t3, 32) for t € [1,3]. See 11.2: 25-30

The notation ¢ € [1,3] means 1 < ¢ < 3. Be prepared to show us your integration
steps in class (you’ll need a substitution).
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Problem 2.20| Now let’s use the parameterization from the previous prob-
lem to write a block of code in Mathematica to compute the arc length of a
parameterized curve. We’'ll use the previous problem as a test problem.

1. First, define a vector function in Mathematica to represent the parame-
3t?
= (¢, =

terized curve 7(t) . In addition, define some variables to hold

the upper and lower limits for the parameter ¢ (i.e., a =1 and b = 3).

2. Add a line to your block of code that uses ParametricPlot[] to create a
graph of the function. This verifies that the function is defined correctly.

3. Using the vector function and limits you defined, add another line to your
block of code to set up and evaluate an integral that will compute the path
length of the curve. Use the derivative function in the integrand where
necessary. Hint: you may have to use a square root and a dot product to
find the magnitude of a vector function.

4. Copy the block of code that you created, then change the interval of
integration to 2 <t < 5.

5. Finally, copy your block of code one more time and use it to compute For more, visit
the length of the curve given by = = cost + tsint,y = sint — ¢ cost, for http://mathworld.wolfram.com/Involute.html
0 <t < 4. This curve, called the involute of the circle, is the path you to see an animation of an involute
; X ; K . of a circle, as well as more details.
would trace if you were skating around a barrel of radius 1 while holding
taut a string that was initially wound around the barrel.

Problem 2.21 ‘ For each curve below, set up an integral formula which would

give the length, and sketch the curve. Do not worry about integrating them.  The reason I don’t want you to
actually compute the integrals is

1. The parabola 7(t) = (t, t2) for t € [0, 3]. that they will get ugly really fast.
Try doing one in Wolfram Alpha
2. The ellipse 7(t) = (4 cost,5sint) for t € [0, 27]. and see what the computer gives.
To actually compute the integrals
3. The hyperbola 7(t) = (tant,sect) for t € [—7/4, 7 /4]. above and find the lengths, we

would use a numerical technique
to approximate the integral

We now have the ability to compute the work done by friction along any (something akin to adding up the
path 7(t) = (x(t),y(t)) our rover takes. Can we generalize what we’ve done to f:if;nogﬁ;g)ts and lots of
find the work done by any force, acting on any object, along any path? Recall
that work is a transfer of energy. Consider the following examples:

e A tornado picks up a couch and applies forces to the couch as it swirls
around the center. Work is the transfer of the energy from the tornado to
the couch, giving the couch its kinetic energy.

e When an object falls, gravity does work on the object. The work done by
gravity converts potential energy to kinetic energy.

e If we consider the flow of water down a river, it is gravity that gives the
water its kinetic energy. We can place a hydroelectric dam next to a river
to capture a lot of this kinetic energy. Work transfers the kinetic energy
of the river to rotational energy of the turbine, which eventually ends up
as electrical energy available in our homes.

When we study work, we are really studying how energy is transferred. This
is one of the key components of modern life. Recall that the work done by a
vector field F' through a displacement d is the dot product F' - d.


http://mathworld.wolfram.com/Involute.html
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An object moves from A = (6,0) to B = (0,3). Along the way, it

encounters the constant force F = (2,5). How much work is done by F as the
object moves from A to B? See 2.

1. For 0 <t < 1, the force encountered is F= (2,5). For 1 <t <2, the force
encountered is (2,7). How much work is done in the first second? How
much work is done in the last second? How much total work is done?

2. If we encounter a constant force £ over a little displacement dr, explain
. L dF
why the little work done is dW = F - dif = F - di;dt.

3. Suppose that the force constantly changes as we move along the curve. At You can visualize what’s
t, we'll assume we encountered the force F'(t) = (2,5 + 2t), which we could happening in this problem as

think of as the wind blowing stronger and stronger to the north. Explain follows. Attach a clothesline
between the points (maybe

why the total work done by this force along the path is representing two trees in your
5 backyard). Put a cub scout space
=, derby ship on the clothesline.
W= [F-dr= / (27 5+ Qt) : (*37 Q)dt' Then the wind starts to blow. As
0 the ship moves along the
clothesline, the wind changes
direction.

Then compute this integral and show you get 16.

4. (Optional) If you are familiar with the units of energy, complete the
following. What are the units of F, dr, and dW.

If a force F acts through a displacement d, then the most basic definition
of work is W = Fd, the product of the force and the displacement. This basic
definition has a few assumptions.

e The force F must act in the same direction as the displacement.
e The force F' must be constant throughout the displacement.
e The displacement must be in a straight line.

The dot product let’s us remove the first assumption as work is W = F. 7, where
F' is a force acting through a displacement . The previous problem showed
that we can remove the assumption that F' is constant to obtain

b —
W:/ﬁ-dF:/ F.ﬁdt,
L dt

provided we have a parametrization of 7 with a < ¢ < b. The next problem gets
rid of the assumption that 7 is a straight line.

‘ Problem 2.23 ‘ Suppose that we move along the circle C' parametrized by Watch a YouTube video about

7(t) = (3cost,3sint). As we move along C, we encounter a rotational force Wwork.

—

F(z,y) = (—2y, 2x).

1. Draw C. Then at several points on the curve, draw the vector field
F(z,y). For example, at the point (3,0) you should have the vector
F(3,0) = (—2(0),2(3)) = (0,6), a vector sticking straight up 6 units. Are

we moving with the vector field, or against the vector field?

2The displacement is B — A = (—6,3). The work is F -d = (2,5) - (—6,3) = —12 + 15 = 3.


http://www.youtube.com/watch?v=9TGZIIpEaHw&list=PL04DF68E73B7ECD54&index=2&feature=plpp_video
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2. Explain why we can state that a little bit of work done over a small
displacement is dW = F' - dr. Why does it not matter that 7 does not
move in a straight line?

3. Since a little work done by F along a small bit of C'is dW = F. dr, we
know that the total work done is [ dW = [ F - dr. This gives us

27
W = / (—2y,2x) - dr = / (—2(3sint),2(3cost)) - (—3sint, 3 cost)dt.
c 0

Complete the integral, showing that the work done by F along C is 36m.

Definition 2.4. The work done by a vector field F, along a curve C' with
parametrization 7(t) for a <t < b, is

Y LTI
W:/F~dr:/ F(r(t)) - —dt.
c a dt

If we let F = (M, N) and we let #(t) = (x,y), so that dF = (dx,dy), then we
can write work in the differential form

W:/ﬁ-dF:/(M,N)-(dx,dy):/de—i—Ndy.
C C C

Example 2.5. Consider the curve y = 322 — 5z for —2 < z < 1. Give a
parametrization of this curve. See 3.

Problem 2.24‘ Consider the parabolic curve y = 4 — 22 for —1 < < 2, and
the vector field F(xz,y) = (2% 4 y, —x).

1. Give a parametrization 7(t) of the parabolic curve that starts at (—1,3)
and ends at (2,0). See the example problem above if you need a hint.

2. Compute dr" and state dz and dy. What are M and N in terms of ¢7

3. Compute the work done by F on an object that moves along the parabola
from (—1,3) to (2,0) (i.e. compute [, Mdx + Ndy).

4. How much work is done by F to move an object along the parabola from
(2,0) to (—1,3). In other words, if you traverse along a path backwards,
how much work is done?

‘Problern 2.25‘ Again consider the vector field F(z,y) = (22 +y, —z). In
the previous problem we considered how much work was done by F as an object
moved along the the parabolic curve y = 4 — 22 for —1 < = < 2. We now want

to know how much work is done to move an object along a straight line from
(—1,3) to (2,0).

1. Give a parametrization 7(t) of the straight line curve that starts at (—1, 3)
and ends at (2,0). Make sure you give bounds for ¢.

2. Compute dr" and state dz and dy. What are M and N in terms of ¢7

3. Compute the work done by F' to move an object along the straight line
path from (—1,3) to (2,0). Check your answer with Sage.

3Whenever you have a function of the form y = f(z), you can always use = t and
y = f(t) to parametrize the curve. So we can use 7(t) = (¢,3t> — 5t) for —2 <t <1 asa
parametrization.

We put the C under the integral
fc, to remind us that we are
integrating along the curve C.
This means we need to get a
parametrization of the curve C,
and give bounds before we can
integrate with respect to t.

Please use this Sage link to check
your work.

Click the link to check your
answer with Sage.

‘When you enter your curve in
Sage, remember to type the times
symbol in “(3*t-1, ...)”".
Otherwise, you’ll get an error.


http://bmw.byuimath.com/dokuwiki/doku.php?id=work_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=work_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=work_calculator
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4. Optional (we’ll discuss this in class if you don’t have it). How much work
does it take to go along the closed path that starts at (2,0), follows the
parabola y = 4 — 22 to (—1,3), and then returns to (2,0) along a straight
line. Show that this total work is W = —9.

Let’s finish this chapter with some examples that use integration along a
parametrization to give us more than just arc length and work. We’ll first find
the mass of a rod, whose density is not constant.

Density is generally a mass per unit volume. However, when talking about
a wire, it’s simpler to let density be the mass per unit length. We can make
objects out of composite material, and the density is different at different places
in the object. For example, we might have a straight wire where one end is
copper and the other end is gold. In the middle, the wire slowly transitions
from being all copper to all gold. Such composite materials are engineered all
the time (though probably not our example wire). The density at point (z,y, z)
is given by the quantity d(x,y, z). In future mechanical engineering courses, you
would learn how to determine the density ¢ (mass per unit length) at each point
on such a composite wire.

‘ Problem 2.26: Mass‘ Suppose a wire C' has the parameterization 7(t) for
t € [a,b]. Suppose the wire’s density (mass per unit length) at a point (,y, z)
on the wire is given by the function §(x,y, z). Since density is a mass per length,
multiplying density by a small length ds gives us the mass of a small portion of
the curve. We represent this symbolically using dm = 0(7(t¢))ds.

1. Explain why the mass m of the wire is given by the formulas below (explain
why each equal sign is true):

m:/cdm:‘/céds:/abé(F(t))

dr
— | dt.
dt

2. Now suppose a wire lies along the straight segment from (0, 2,0) to (1,1, 3).

A parametrization of this line is #(t) = (¢, —t+2, 3t) for t € [0, 1]. The wire’s

density (mass per unit length) at a point (z,y,2) is é(z,y,2) =x +y + 2.

(a) Is the wire heavier at (0,2,0) or at (1,1,3)?

(b) What is the total mass of the wire? [Replace z, y, z, and ds with
what they equal in terms of ¢ and then integrate.]

This last problem comes from physics and asks you to find the total charge
on a wire if you know the charge per length.

‘ Problem 2.27‘ A wire lies along the curve 7(t) = (7cost, 7sint) for 0 < ¢ <
w. The wire contains charged particles where the charge per unit length at
location (x,y) is given by ¢(z,y) = y. In this problem we’ll compute the total
charge on the wire.

1. Draw the curve. Then at several points on the curve write the value of
q(x,y) at that point. (Optional: Should the total charge be positive or
negative?)

2. Why is the little charge d@ over a little distance ds approximately given
by dQ = q(z,y)ds?

Watch a YouTube video.

If the wire were a conductor, then
the charged particles (electrons)
would not stay put, but rather
flow freely along the wire until the
repulsive forces are minimized.
This wire is an insulator.


http://www.youtube.com/watch?v=mz-Udq5TeS4&list=PL04DF68E73B7ECD54&index=6&feature=plpp_video
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3. The total charge is the sum of the charges over all the little pieces on the
rod. This gives us the total charge as

b da\* dy\
Qtotalz/ch:/Cq(x7y)d8:/(; y\/(dt) + (dt> dt

Replace z and y with what they are in terms of ¢ and then finish by
computing the integral above.

2.3 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to I-Learn and download the quiz. Once you have taken the
quiz, you can upload your work back to I-Learn and then download the key to
see how you did. If you still need to work on mastering some of the ideas, please
do so and then demonstrate your mastery though the quiz corrections.



Chapter 3

New Coordinates

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Use a change-of-coordinates to convert between rectangular and other
coordinate systems. In particular, convert both points and equations
between rectangular and polar coordinates.

2. Graph curves from other coordinate systems (such as polar functions
r = f(#)) in the zy plane.

3. Find the differentials dz and dy of a change-of-coordinates. Then compute
tangent vectors, slope %’ equations of tangent lines, and arc length.

4. Use the area of a parallelogram to express the relationship between the
area of a region in two different coordinate systems.

5. Compute double integrals to find the area of regions in the zy plane.

6. Shade regions in the plane bounded by a < 6 < 8 and r1(0) <7 < r9(0),
and use double integrals to compute their area.

You’ll have a chance to teach your examples to your peers prior to the exam.

3.1 Polar Coordinates

Up to now, we most often give the location of a point (or coordinates of a vector)
by stating the (x,y) coordinates. These are called the Cartesian (or rectangular)
coordinates. Some problems are much easier to work with if we know how far a
point is from the origin, together with the angle between the z-axis and a ray
from the origin to the point.

Problem 3.1 There are two parts to this problem.

1. Consider the point P with Cartesian (rectangular) coordinates (2, 1). Find
the distance r from P to the origin. Consider the ray OP from the origin
through P. Find an angle between OP and the z-axis.

2. Given a generic point P = (z,y) in the plane, write a formula to find the
distance r from P to the origin (in terms of z and y) as well as a formula
to find the angle 6 between the vector (1,0) (the positive a-axis) and the
vector from the origin to P. [Hint: A picture of a triangle will help here.]

26

See 11.3:5-10.
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Definition 3.1. Let P be be a point in the plane with Cartesian coordinates
(z,y). Let O = (0,0) be the origin. We say that (r,0) is a polar coordinates of
P if (1) we have |OP| = |r|, and (2) the angle between i = (1,0) and OP is 6,
or coterminal with 6.

Problem 3.2| The following points are given using polar coordinates. Plot

the points in the Cartesian plane, and give the Cartesian (rectangular) coordi-
nates of each point. The points are

(r,0) = (1,7), (6, %) , (—3, 2) , (3, 5;) , and (—2, —%) .

Finish by explaining why a general formula for z and y if we know a point has
polar coordinates (r, ) is x = rcosf and y = rsin6.

The equations above, namely
xr=rcosf, y=rsinf

are a typical example of what we call a change-of-coordinates. We’ve seen
that these equations allow us transfer points back and forth between Cartesian
coordinates and polar coordinates. We can also use this change-of-coordinates
to transfer equations back and forth between coordinate system. The next two
problems have you do this.

Problem 3.3| Each of the following equations is written in the Cartesian

(rectangular) coordinate system. Convert each to an equation in polar coordi-
nates, and then solve for r so that the equation is in the form r = f(6). You'll
want to use the change-of-coordinates to replace any = and y you see so that it
is in terms of r and 6.

1. 22 +92 =7
2. 2x4+3y=>5
3. 22=y

Problem 3.4| Each of the following equations is written using polar coordi-

nates. Convert each to an equation in using Cartesian coordinates (sometimes
called rectangular coordinates). You’'ll want to use the change-of-coordinates to
replace any r and @ you see so that it is in terms of x and y.

1. »=9cosf
4
2. r=—
" 2cosf + 3sinf
3. 0=3n/4

We’ve been writing the change-of-coordinates by listing the two equations
x =rcosf, y=rsinf. We can also write this in vector notation as

x\  [rcosf
y)  \rsinf )/’

P
<
/
3~
=R
N
0
O ——
i
See 11.3:5-10.

See page 647.

See 11.3: 53-66.

See 11.3: 27-52. 1 strongly suggest
that you do many of these as
practice.
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This is a vector equation in which you input polar coordinates (r,8) and get out
Cartesian coordinates (z,y). So you input one thing to get out one thing, which
means that we have a function. We could also write T'(r, ) = (r cos 0, 7 sin 6),
where we’ve used the letter 7" as the name for the function because the function
is a transformation between coordinate systems. The arrow above T reminds us
that the output is more than one dimensional. To emphasize that the domain
and range are both two dimensional systems, we write T:R2 — R2.

3.2 Differentials

The derivative of a function gives us the slope of a tangent line to that function.
We can use this tangent line to estimate how much the output (y values) will

d
change if we change the input (z-value). If we rewrite the notation Y f'in

the form dy = f'dx, then we can read this as “A small change in y (called dy)
equals the derivative (f’) times a small change in = (called dx).”

Definition 3.2. We call dz the differential of x. If f is a function of x, then
the differential of f is df = f’(x)dxz. Since we often write y = f(z), we’ll
interchangeably use dy and df to represent the differential of f.

We will often refer to the differential notation dy = f’dx as “a change in the
output y equals the derivative times a change in the input z.”

Problem 3.5| Let f(z) = 22 In(3z +2) and g(t) = €?! tan(t?). Compute the

derivatives % and %, and then state the differentials df and dg. If you skipped
reading the definition of a differential, you’ll find it is given directly above this
problem.

The manufacturer of a spherical storage tank needs to create a

tank with a radius of 5 m. Recall that the volume of a sphere is V (r) = %m"?’.
No manufacturing process is perfect, so the resulting sphere will have a radius
of 5 m, plus or minus some small amount dr. The actual radius will be 5 + dr.
Find the differential dV. Then use differentials to estimate the change in the
volume of the sphere if the actual radius is 5.02 m instead of the planned 5 m.

See ! for a solution.

Problem 3.6 A forest ranger needs to estimate the height of a tree. The

ranger stands 50 feet from the base of tree and measures the angle of elevation
to the top of the tree to be about 60°.

1. If this angle of 60° is correct, then what is the height of the tree?

2. If the ranger’s angle measurement could be off by as much as 5°, then how
off could his estimate of the height be? Use differentials to give an answer.

How do we use the ideas above when dealing with more than 2 variables?
Let’s use a change-of-coordinates, of the form x = au + bv,y = cu + dv, to first
answer this questions. We will see that lines map to lines in our work below,
which is the reason why any change-of-coordinates of this form we call a linear
change-of-coordinates.

1Since V(r) = %7!‘1“3, we know dV = 4mr?dr. The problem gave us » = 5 m and

dr = 5.02 — 5 = 0.02 m. This means dV = 47(5)?(.02) = 27 cubic meters. An error of 0.02
meters on the radius could cause a total error of approximately 6.28 cubic meters in volume.

See 3.10:19-38.

See 3.11:45-62.

If your answer here is quite large
(much larger than the height of the
tree), then look back at your work
and see if using radians instead of
degrees makes a difference. Why
does it? Feel free to ask in class.
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Problem 3.7 | Consider the change-of-coordinates x = u—v, y = u+v, which

we could also write as the coordinate transformation T'(u,v) = (u — v, u + v).

1. In the table below, you're given several (u,v) points. Find the correspond-
ing (x,y) pair.

Name | (u,0) (z.9)
A (0,0) (0,0)
B | (1,o) | (1-0,1+0)=(11)
C (Oal) (0_170"1'1):(_1’1)
D | (1,1)
E (3,3)
F | (2,4
G (_ 74)

2. There are two graphs below. One is a plot in the uv plane of the points
from the table, along with the parabola v = 4?2, the line v = u, and the
shaded box whose corners are the first four points. Complete a similar
plot in the zy plane by adding the remaining points, and then connect
the points in your zy plot to show how the parabola, line, and shaded
box (done for you) transform because of this change-of-coordinates. How
would you describe what this change-of-coordinates is doing?

Y

/
\
e

Q
)
Q
Sy

Problem 3.8 | Consider the change-of-coordinates from the problem above,

namely r = u — v, y = u + v, or equivalently f(u, v) = (u—v,u+wv).
1. If we assume z,y, u,v are all functions of ¢, we can compute 9

dt
dz _ du _ dv " which gives the differential de = du — dv.

For example, 5% = % o
Obtain a similar formula for the differentials dy. Finish by writing your

answer as the vector equation

(i) = () e () 0

2. Examine your vector equation above. The two missing parts above repre-
sent 2 vectors. Compare this problem to the previous, and look for these
two vectors in your drawing. Explain where these two vectors appear.

dy
and S

3. Describe what the vector equation above means geometrically (what does
it physically say about the relationship among dx, dy, du, and dv)? For
example, if du = .1 and dv = .5, then how can we use vector addition and
scalar multiplication to find dx and dy based off this information.
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The next problem returns to polar coordinates, and connects errors in
measuring r and 6 to errors in the distances = and y.

Problem 3.9 We have two equations x = rcosf and y = rsinf. Suppose
that a point is moving through space and x,y,r, 6 all depend on time ¢.

: do _ dr oo _ poin gd S ~ dy
1. Explain why 9% = 9% cos — rsin 7. Obtain a similar equation for 7.

2. We can obtain the differential dr and dy in terms of r, 8, dr, and df if

we multiply through by dt. This gives dz = cos8dr — rsin 8df and dy =?.

Write you answer as the vector equation

dzx cos —7rsin6
()= (3o (7)o

3. Suppose the point is currently at r =2, § = 7/2 (so (x,y) = (0,2)). Use
this information to obtain dxr and dy in terms of dr and df, as in

(£)-(=)o (5 (o (o

4. Examine your vector equation above. How would you describe what the
vector equation above means geometrically (what does it physically say
about the relationship among dx, dy, dr, and df)? It’s OK if your answer
is not perfect, rather for this part of the problem just do your best to
visualize geometrically what the vector equation above means.

3.3 Graphing Transformed Equations

You've spent a lot of time in your past graphing equations of the form y = f(x).

Let’s now graph equations of the form r = f(6) in the xy plane.

What use does a function like 7 = f(6) have? See 2.

‘Problem 3.10‘ In the Or plane, graph the curve r = sinf for § € [0, 27]
(make a table where you pick several values for 6 and then compute 7). Then
graph the curve r = sin 6 for 6 € [0, 27| in the zy plane (add to your table the
corresponding x and y values). The graphs should look very different. If one

looks like a sine wave, and the other looks like a circle, you’re on the right track.

Here’s the start of a table to help you, as well as the axes you’ll need to put
your graphs on.

2The function r = f(0) tells us a distance from the origin, based off an angle. So if
something’s distance from the origin depends on an angle from the z-axis, this is exactly what
we want. Planetary orbits are one example, along with satellites traveling around the earth,
or probes around other planets. Along the same lines, we can use this type of function to
describe the motion of electrons around an atom. It’s also great for describing spirals, and
any object with a nice symmetric pattern centered at some point.

Hint: Use implicit differentiation.
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r
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In general, to construct a graph of a polar curve in the xy plane, we create
an r, 0 table. We choose values for 8 that will make it easy to compute any trig
functions involved. If you need to, add x and y to your table before plotting
the location of the polar point in the zy plane. Then connect the points in a
smooth manner, making sure that your radius grows or shrinks appropriately
as your angle increases. Ask me in class to show you some animations of this,
or you can see these animations before class if you open up the Mathematica
Technology Introduction in I-Learn.

‘ Problem 3.11 ‘ Graph the polar curve r = 2 4+ 2cos 6 in the zy plane.

‘Problem 3.12‘ Graph the polar curve r = 2sin36 in the zy plane. [Hint:
You'll want to chose values for theta so that 36 hits all multiples of ninety
degrees, the places where r attains it maximums and minimums.|

Problem 3.13: Mathematica Problem‘ In this problem we’ll use Mathe-
matica to plot the polar curve r = acos(nf) for various values of a and n.

1. Use the command PolarPlot[] to plot the curve r = 3cos26 for 0 < 0 < 27.

2. Use the command ParametricPlot[] to plot the curve r = 3 cos 26 for the
same bounds. We know that = = rcosf and y = rsin 6, so you just need
to plot 7(t) = ((3cos26) cosb, (3 cos26)sinb).

3. Use your code above to graph r = 3 cos(nf) for 0 < 6 < 27 for each integer
n from 2 to 8. What patterns do you see? Make a conjecture and then
plug in higher values for n to see if you are correct.

4. With software you can quickly change parts of a function to see how they
affect behavior. In the function r = a cos(nf), how does the graph change
if instead of having a = 3 you pick a to be another number? What happens
if you pick n to be something other than an integer? What happens if you
change cos to sin?

See 11.4: 1-20.
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3.4 Slopes and Arc Length

‘ Problem 3.14 ‘ We saw in some previous problems that for polar coordinates
we can express the differentials dr and dy using the vector equation

dx cos 6 —rsinf
<dy> - (sin 9) dr + ( rcos ) .

1. Use the vector equation above to compute % and ‘;—Z in terms of r and
%, if we assume that r is a function of 6.

2. Explain why the slope of a tangent line in the zy plane to the curve
r= f(0) is
dy  f'(0)sing + f(0) cos
dr — f'(0)cosf — f(0)sinf’

For parametric curves 7(t) = (z(t),y(t)), the slope of the curve is

dy  dy/dt
de  dx/dt’
A polar curve of the form r = f(6) is just the parametric curve (x,y) =

(f(0) cosd, f(0)sin@). The previous problem showed us that we can find the
slope by computing
dy  dy/do

de  dx/df’

Problem 3.15 ‘ Consider the polar curve r = 3 + 2cosf. Start by graphing
this curve in the zy plane.

1. Remember that z = rcosf and y = rsind. Compute dz/df and dy/d6.
2. Find the slope dy/dx of the curve at § = 7/2.

3. Give both a vector equation of the tangent line, and a Cartesian equation
of the tangent line at 6 = /2.

The above process works with any change-of-coordinates.

Problem 3.16| Consider the parabola v = u? and the change-of-coordinates
r=2u+v,y=u—2v.

1. Construct a graph of the parabola in the xy plane.

2. Compute both dz/du and dy/du. Then find the slope dy/dz of the
parabola at u = 1.

3. Give both a vector equation of the tangent line, and a Cartesian equation
of the tangent line at u = 1.

We showed in the curves section that you can find the arc length for a
parametric curve by using the formula

=) )

If we replace ¢t with 6, this becomes a formula for the arc length of a curve given
in polar coordinates.

Hint: Just multiply everything out
and divide by d#.

See 11.2: 1-14.
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Problem 3.17 ‘ Set up (do not evaluate) an integral formula to compute
each of the following (draw the curve to be sure your bounds are correct - getting
the right bounds is perhaps the toughest part of this problem.):

1. The length of one petal of the rose r = 3 cos 26.

2. The length of the entire rose r = 2sin 36.

3.5 Area from Double Integrals

We’ve now seen one example of how we can use a change-of-coordinates to
compute an integral, namely to find arc length. You’ve actually been using a
change-of-coordinates since first semester calculus, every time you performed
a substitution to complete an integral. The next problem has you revisit this,
and notice something crucial about differentials.

2
e 3 dx.

Problem 3.18| Consider the integral /

-1

1. To complete this integral we use the substitution v = —3x. Solve for x
and compute the differential dzx.

2. Now perform the substitution, filling in the missing parts of

r=2 u="7
/ e 3 dr = /
r=—1 u="

To find the u bounds, just ask, “If x = —1, then u =?” Don’t spend
any time completing the integral, rather just focus on completing the
substitution above.

e ?du.

3. The z values range from —1 to 2. This is a directed interval whose width
is 3 units, pointing from left to right along the z-axis (shown below).

+ + ° + + > + x
3-2-101 2 3
Our substitution © = —3x transforms this directed interval into a different

interval along the u-axis. Draw the transformed interval below.

—tt—t—— u
-7-6-5-4-3-2-10123425 67

4. How long is the new interval along the u-axis? What does your differential
equation dr = f%du have to do with this problem? What does the
negative sign do?

We’ve now seen that the differential equation dx = %du tells us how to relate
lengths along the u-axis to lengths along the z-axis. The next two problems
have you focus on how a two dimensional change-of-coordinates helps us connect
areas in the wv plane to areas in the xy plane.

Problem 3.19| Consider the change-of-coordinates x = 2u, y = 3wv.

1. The lines u = 0,u = 1,u =2 and v = 0,v = 1,v = 2 correspond to lines
in the zy plane. Draw these lines in the zy-plane (v =1 is done for you).

See 11.5: 21-28.

Note: When a definite integral
ends with du, the bounds should
be in terms of u. Many of you
have always ignored this step, and
instead would first compute
fe“?du without bounds, replace
u with —3z, and then finish. We
need the approach on the left in
high dimensions.

[Hint: One option is to find the zy
coordinates of the (u,v) points
(0,0), (0,1), (0,2) and connect the
dots to make a line. Then repeat
with the (u,v) coordinates (1,0),
(1,1), (1,2) and draw another line.
Eventually you’ll have a grid.]



CHAPTER 3. NEW COORDINATES 34

The box in the uv plane with 0 <u <1 and 1 < v < 2 corresponds to a
box in the zy plane. Shade this box in the xy plane and find its area.

Compute the differentials dz and dy. State them using the vector form

(i) = (2) o (2)

. What do the two vectors above have to do with your picture?

Draw the box given by —1 <u <1 and —1 < v <1 in both the uv-plane
and zy-plane. State the area A, of this box in the uv-plane, and then
state the area A, of the corresponding rectangle in the xy-plane.

Consider the circle 42 4+ v? = 1, whose area inside is Ay, = 7. Guess the
area Az, inside the corresponding ellipse in the zy plane. Explain.

Before we continue, we need a quick way to compute the area of a paral-
lelogram. Our work with vectors gives us all the tools we need to tackle this
problems, so the proof of the next theorem is 100 percent within our reach.
Proving the following theorem is the next problem.

Theorem 3.3. The area of a parallelogram whose edges are parallel to the two
vectors (a,b) and (c,d) is given by |ad — bc|.

‘ Problem 3.20‘ Suppose a parallelogram has edges that are parallel to the

vectors @ = (a,b) and ¥ = (¢,d). Prove that the area of this parallelogram is
given by |ad — bc|. If you want some help, here are some steps you can follow:

1.

Draw the parallelogram. Add to your picture the projection of & onto v,
so 3. Then include the component of @ that is orthogonal to ¥, so @ 5.

Explain why the area is A = |U]|@3|. The base length is |¢] and the height
is the magnitude of @ .

Compute @, 7 (there are several ways).

Compute both lengths, multiply them together, and then simplify down
until you get /(ad — be)?, which equals |ad — be|. This might be long.

Whether you are able to complete the proof above or not, let’s practice using
the result in another problem.
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Problem 3.21| For each of the three problems below, you’ll want to first
find the area of an appropriate parallelogram (using |ad — bc|).

1. A parallelogram has vertices (0,0), (—2,5), (3,4), and (1,9). Find its area.
2. Find the area of the triangle with vertices (0,0), (—2,5), and (3,4).
3. Find the area of the triangle with vertices (—3,1), (—2,5), and (3,4).

We’re now use areas of parallelograms to analyze a change-of-coordinates.

Problem 3.22 ‘ Consider the change-of-coordinates = 2u + v, y = u — 2v.

1. The lines u = 0,u = 1,u =2 and v = 0,v = 1, v = 2 correspond to lines in
the xy plane. Draw these lines in the xy-plane (the line v = 1 is drawn for
you). [Hint: One option is to find the zy coordinates of the (u,v) points
(0,0), (0,1), (0,2), (1,0), (1,1), etc., and then just connect the dots to
make a rotated grid.]

v Yy

2. The box in the uv plane with 0 < u <1 and 1 < v < 2 should correspond
to a parallelogram in the zy plane. Shade this parallelogram in your
picture above.

3. Compute the differentials dz and dy. State them using the vector form

dx ? ?
(35) = () e ()2
What do the two vectors above have to do with your picture?

4. Show that the area of the parallelogram formed using these two vectors
is 5. What does this area have to do with this problem? How would you
describe the change in area between the graph in the uv plane, and the
graph in the xy plane?

The next problem has us analyze the integrals fc dx and fc dy, and from
them develop a way to compute area using double integrals.

‘ Problem 3.23 ‘ Consider the portion of the ellipse parametrized by 7(t) =
(3cost,4sint) for 0 <t < 7/2 (so x = 3cost and y = 4sint).

1. Draw the curve, paying attention to the given bounds.
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2. The integral fc dz literally says “Sum up little changes in z.” Adding up
little changes in x gives the total change in z. For this problem note that

t=m/2 t=m/2
—3sintdt. Now compute / dx —/ dx —/ —3sintdt

t=
and verify that it gives the physical change in x from ¢ = 0 tot =m/2.

dx =

t=m/2

3. Compute both dy and then / dy. Explain how you could obtain this
t=0

answer without doing any integration.

t=2m

4. Give the values of /

t=m

dx and / dy without any integration.

Problem 3.24‘ Consider the region R between the functions y = 2?2 and

y = —x for 0 < x < 3. Draw both functions and shade the region R. Your goal

=3 y:wQ
/ dy | dx
y=—z

in this problem is to explain why the iterated integral /
z=0
gives the area of the region R.

y=a’

1. Compute the integral / dy for arbitrary z. Then explain what physical

Yy=—x
quantity this integral measures. See the margin if you need help.

2. Recall that dzx is a small width. When we multiply the previous integral
by this width dx, we will obtain the area of a small region. Construct a
picture that includes the original region R together with the small region

y=a’
dy | dz.

dy) dx gives the area of the region R.

whose area is given by dA = /
y

y=a>
</yx
Problem 3.25 ‘ Consider the double integral

y=2 T=y+2
[ )
y=—1 \Ja=y?

1. The bounds in the integral above describe a region in xy plane where
—1<y<2andy? <x <y+ 2. Sketch this region.

=—x

r=3

3. Explain why /
z=0

2. Consider the inner integral f y+2 dz. This integral adds up changes in

x, so gives a total x distance? Add to your sketch several line segments

whose widths are given by this integral.

3. When we multiply a width f y+2 dx by a small height dy, we get a little
bit of area dA. Pick a value y between —1 and 2, and then at that height

draw a small rectangle whose area is given by dA = ( f;:;;Q dx) dy.

4. Adding up little bits of area gives total area, so the double integral at the
start of this problem gives an area. Compute the integral.

Pick a value of x, such as x = 2.

:1‘2

The inner integral / dy adds

=—zx
up little changes in y for that
specific  value. Compute thls
integral when z = 2 (so fy

to verify that you get a total
change in y of 6 units, the vertical
distance between the two points
(2,—2) and (2,4). Draw a vertical
line segment inside your region
that connects these two points.
Then repeat this for various other
values of z, adding appropriate
segments.

5 dy)

Draw the four curves —1 =y,
y=2,9y2 =, and z =y + 2, and
then shade the appropriate region
that satisfies all 4 inequalities.
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z=b y=f(z)
Problem 3.26‘ The double integral / (/ dy) dx computes the
y=g(x)
area of a region in the xy plane that you should be quite familiar with. Compute

the inner integral fyy:qf(;a;) dy to obtain the single variable formula you should be

more familiar with. Provide a sketch of the region, using some specific functions
to illustrate this abstract idea.

r=a

Since area is a two dimensional quantity, a double integral provides a natural
way to compute the area. The above problems have shown that the area A of a
region R can be found by adding up little bits of area using any of

z=b y=Ff(x) y=d =b(y)
A:/ (/ dy)dx:/ (/ dx)dy.
r=a y=g(z) y=c r=a(y)
We call these iterated integrals, as we iteratively give the bounds for each
variable. Notice that in each of the integrals above, we took a slice of the region,
thickened it up to get a thin rectangle whose area was dA, and then found the
area by adding up these thin rectangles.

Another way to compute the area of a region R is overlay the region with a
rectangular grid, where dx and dy are the distances between the vertical and
horizontal lines of the grid. To find the area of the region, we first determine
which of the rectangles contains a portion of the region R, and then add up the
areas of of all such rectangles. This will overestimate the area, but we then use
limits to shrink both dx and dy to zero to obtain the area.

Problem 3.27| Consider the polar curve r = 1 + cosf. We will use the
approach described above this problem to estimate the area of region R that is
inside this polar curve. The bounds for each graph below are —1 < z < 2 and
—2 <y < 2. To present this problem in class, please print this page so you can
appropriately shade things as asked below.

| o e

de =dy=1 de =dy=.5 dr =dy = .2

1. For the first picture above, there are 10 rectangles (shaded) that contain
a portion of the region R. Each of these rectangles has area dA =

dxdy = (1)(1) = 1, which means an overestimate for the area of R is
A~ 10dA = 10(1) = 10.

2. Now use the middle picture above (where dz = dy = .5) to shade and then
count the number of rectangles that contain a portion of R. What is the
area dA of each little rectangle. Finish by giving an estimate for A.

3. Now use the last picture with dx = dy = .2 to estimate the area of R.

4. How can we obtain the exact value for the area of R?
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We've been considering double integrals of the form

x=b y=f(z) y=d x=b(y)
/ (/ dy) dxr and / (/ dy) dx.
r=aqa y=g(x) y=c z=a(y)
These integrals give us the area of a region R in the (z,y) plane. Setting up
the bounds for these integrals requires being able to describe the bounds of the
region using inequalities of the form a <z < b and g(z) <y < f(x), or of the

form ¢ <y < d and a(y) <y < b(y). This can become a problem if the region
is not easily described using rectangular coordinates.

Problem 3.28‘ Shade the region in the zy plane described by each set of
inequalities.

1.0<0<7m/4dand 0 <r <4
2.0<z<3and 0 <y < V9 — 22
3. —7/6 <0 <7/6and 0 <r < 2cos30

4. 0<0<2rand2<r<5+2cosf

Our goal now is to learn how to use double integrals to compute area if
the region is easily described using polar coordinates instead of rectangular
coordinates. Basically, we need to perform a substitution from (z,y) to (r,6)
coordinates. Earlier we saw that for the change-of-coordinates x = 2u + v,
y = u — 2v, we can write the differentials dz and dy in the vector form

(i) = (D) (1)

The area of the parallelogram formed from the two vectors above, namely 5,
gave us the scale factor that connected areas in the xy plane to areas in the uv
plane. A rectangle with width du and height dv in the uv plane would have
an area 5 times larger when transformed to the xy plane. We can write this
as dAg, = ddudv. The next problem has use repeat this process with polar
coordinates.

Problem 3.29| Consider the change-of-coordinates x = r cos 6, y = rsinf.

1. The lines r =1,r =2,r =3 and § = 0,0 = ¢,0 = % correspond to circles

and lines in the xy plane. Draw these circles and lines in the zy-plane.

2. The box in the rf plane with 2 < r < 3 and % <0< % corresponds to a
region in the zy plane. Shade this region in the zy plane.

3. Compute the differentials dz and dy and give them in vector form

dx ? ?
( dy) - <,,) dr + <7) o,
4. We know that the area of a parallelogram with edges given by (a,b)

and (c,d) is |ad — be|. Apply this formula to show that the area of a
parallelogram whose edges are given by the two vectors above is |r|.
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Did you obtain |r| in the last step above? This means that a little rectangle in
the 70 plane will have its area increased by a scale factor of » when transforming
the region to the xy plane. We can express this as dA,, = rdrdf, or just
dA = rdrdf. The next problem gives us a geometric proof of the same fact.

Problem 3.30‘ Let (r,0) be an arbitrary point. Our goal is to develop a A small polar rectangle, when
formula for the area of the region R in the xy plane where the radius ranges transformed into the zy plane,
from 7 to 7 + dr and the angle ranges from 6 to 6 + d@, shown in the diagram to 00k like a rectangle whose width

. .. . K and height are shaded red below.
the right. Copy a similar diagram on to your paper and then do the following. \/

1. Add the labels r, 6, dr, df, r + dr, and 0 + df to appropriate places in T L
your diagram. '

. . . . Notice that the rectangle’s area
2. The shaded region is approximately a rectangle. Explain why the area of will increase as r increases.

this rectangle is dA = rdrdf by first finding the width and height.

The area of a region R in the zy plane can be found using the double integral
A= f f r dA. If it’s easy to describe the bounds using rectangular coordinates,

then we can use either A = f; ( gf((;;) dy) dxr or A= fcd (f(f((;’)) dac) dy. The next
problem gives us a formula for computing areas of regions that are easy to

describe using polar coordinates.

Problem 3.31 ‘ Consider the region R in the zy plane bounded by @ < 6 < 8 Here’s a typical region with
and 0 < r < f(6). a<f<pBand 0<r< f(0).

1. The area of a region R in the xzy plane is the double integral A = [ fR dA.
Explain why the area of the region in the xy plane is

B f(6)
A= / / rdrdf.
«@ 0

2. Now consider the region R bounded by o < 6 < 8 and r1(0) < r < ry(0), Here’s a typical region with
as shown in the diagram to the right. Set up a double integral that would @ <0 <8 and r1(0) <7 <r3(0).
give the area of this region R. =5

Let’s use what we have just developed to examine several polar integrals.

‘ Problem 3.32 ‘ Complete both parts below.

1. Draw the region in the zy plane whose area is given by the polar integral

37/2 p4+43cosf
/ / rdrdf.
0 1

2. Set up a double integral to find the area in the xy plane that is inside one
petal of the curve r = 3sin 26.

Problem 3.33 ‘ Find the area of the region enclosed by the positive z-axis
and the spiral r = 46/3 for 0 < 6 < 2. The region looks like a snail shell.

Problem 3.34 ‘ Find the area enclosed by one leaf of the rose r = 5c0s36 (a You may need the power reduction

sketch may help you define limits for #). Compute the integral by hand. formula cos?(z) = 1+ cos(2z)
2
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For the remainder of the semester, any time an integral involves a power
reduction formula, you may use software to finish the integral.

Problem 3.35| For each region R described below, start by drawing the
region. Then set up a formula involving an iterated integral to find the area of
R.

1. R is inside the cardioid r = 1 + cos @ but outside the circle r = 1.
2. R is inside both the circles r = cos @ and r = sin 6.

3. R is inside the circle r = 5 cos 6 but to the right of the line r = 3sec6.

3.6 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to I-Learn and download the quiz. Once you have taken the
quiz, you can upload your work back to I-Learn and then download the key to
see how you did. If you still need to work on mastering some of the ideas, please
do so and then demonstrate your mastery though the quiz corrections.
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At the end of each chapter, the following words appeared.

Once you have finished the problems in the section and feel comfortable with the ideas, create a
short one page lesson plan that contains examples of the key ideas. You will get a chance to teach
from this lesson plan prior to taking the exam.

I’'ve summarized the objectives from each chapter below. For our in class review, please come to class with
examples to help illustrate each idea below. You’ll get a chance to teach another member of class the examples
you prepared. If you keep the examples simple, you’ll have time to review each key idea.

Vectors
1. Define, draw, and explain what a vector is in 2 and 3 dimensions.
2. Add, subtract, and scalar multiply vectors. Be able to illustrate each operation geometrically.

Compute the dot product and use it to find angles, lengths, projections, and work.

Ll

Decompose a vector into parallel and orthogonal components.

5. Give equations of lines in both vector and parametric form.

Curved Motion

1. Be able to graph and give equations of parabolas, ellipses, and hyperbolas.

2. Use a change-of-coordinates involving translation and stretching to give an equation of and graph a
curve.

3. Model motion in the plane using parametric equations.

4. Find derivatives and tangent lines for parametric equations. Explain how to find velocity, speed, and
acceleration from a parametrization.

5. Use integrals to find the length of a parametric curve, the work done by a non constant force along a
curve, and related quantities.

New Coordinates

1. Use a change-of-coordinates to convert between rectangular and other coordinate systems. In particular,
convert both points and equations between rectangular and polar coordinates.

2. Graph curves from other coordinate systems (such as polar functions r = f(6)) in the zy plane.

3. Find the differentials dz and dy of a change-of-coordinates. Then compute tangent vectors, slope %7
equations of tangent lines, and arc length.

4. Use the area of a parallelogram to express the relationship between the area of a region in two different
coordinate systems.

5. Compute double integrals to find the area of regions in the zy plane.

6. Shade regions in the plane bounded by @ < 8 < 8 and 71(0) < r < r3(0), and use double integrals to
compute their area.
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Mars Rover - Contour Plots, Surface Plots, and Gradient Fields - Local Optimization

42

Let’s pretend we’re the current operations team for the Mars rover Curiosity. We’ll suppose the map
below shows the general vicinity where Curiosity currently is.
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The contours on the map represent a function z = f(x,y), where z is the elevation in meters, with contours
drawn at 20 m increments. We’ve added a 1 km grid over the map to aid in navigation. The rover is currently
at A. We need to get it to B. Discuss the answers to each question below with your group.

1.
2.

Tt W

(OIS e

What is the elevation 2000 m east and 3000 m north, so at (2,3)? In other words give f(2,3).

Note that A = (1,2). Estimate f(A). Then estimate each of f(B), f(C), f(D), and f(E).

. On the map, are there any hill tops (local maximums)? Where are they?

. How do you locate local minimums (low points)? Mark them.

. Mark the spot on the map with the highest elevation. [Hint: it is not on a hill top.]

. What’s the steepest slope encountered by Curiosity on this straight line path.

. On the map, where are the steepest inclines? Where are the mostly flat bits of land?

. Curiosity is currently at A, and needs to get to B. Why is a straight path from A to B not a good idea?
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9. Plan a route to get from point A to point B that passes through one other point (call it F'), with
straight lines connecting A and B to F', avoiding steep rises and falls. Draw this route on your map.

10. What’s the steepest slope that Curiosity will encounter while following your chosen route? Mark the
spot on your route where this steepest slope occurs. Then estimate the slope (estimate the rise Az over
a run As).

11. There are three other points on the map (C, D, and E). At each of these points, let’s estimate the
slope of the hill in two different directions, namely moving east or north.

(a) At point C, notice that moving right Az ~ 100 m (so 0.1 km) doesn’t really change the elevation
much at all (maybe there is a slight drop, but very small). This suggests that Az ~ 0 and so the

lope wh ing cast is =2 & — =0

slope when moving east is — ~ — = 0.

P & Az 100

(b) At point C, moving north about Ay = 100 m gets us to the next contour, which is a drop of
A —20

Az ~ —20 m. This gives a slope of 2 T —.2, a 20% downhill grade.

Ay 100

(c) Estimate A—; at point D.

A
(d) Estimate A—; at point D.

Az
e) Estimate — at point E.
(e) A, AP

A
(f) Estimate A—Z at point E.

In the rover problem, we were handed a function z = f(z,y) as a contour plot, without a rule. For the
rest of class time, lets instead start with a function z = f(z,y) handed to us in rule form.

e Given z = 2% + 3zy, compute dz and write it in the form dz = (?)dz + (?2)dy. Note that if dy = 0,

then 7y is the slope g—; = % in the z direction. A similar computation shows 79 = g—z ~ ﬁ—z. Rather
than using the notation g—fc, we instead use % to remind us that this slope only has meaning if the

other variable is not changing.

e Use the dot product to rewrite your previous answer in the form dz = (?7,7) - (dz, dy).

The vector (?7,7) above we call the gradient of f and write v f. The gradient of f is a vector field, which
means we can construct a vector field plot in 2D. Software is ideal for doing this, so we’ll use Mathematica to
help us for the remainder of class. Our goal over the next few weeks is to learn how to use both contour plots
and gradients to make decisions. Please download the following Mathematica notebook.

e ContourVsGradient.nb at https://www.dropbox.com/s/pwvgelp820s4u3b/ContourVsGradient.nb?dl=1

We’ll go through the first portion of the notebook as a class, and then use what we learned to explore several
different examples and make some conjectures.

As you work through the examples in Mathematica, once you feel like you know what the gradients
vectors represent physically, add them to your map of mars at the points A, B, C, D, and FE.


https://www.dropbox.com/s/pwvge1p820s4u3b/ContourVsGradient.nb?dl=1

Chapter 4

Optimization

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1.

For a function of the form f(z,y) or f(x,y, z), construct (by hand and
with software) contour plots, surface plots, and gradient field plots.

Compute differentials, partial derivatives, and gradients.

Compute slopes (directional derivatives), tolerances (differentials), and
equations of tangent planes.

Obtain and use the chain rule to analyze a function f along a parametrized
path 7(¢). In particular, calculate slopes and locate maximums and
minimums of f along 7.

Use Lagrange multipliers to locate and compute extreme values of a
function f subject to a constraint g = c.

Apply the second derivative test, using eigenvalues, to locate local maxi-
mum and local minimum values of a function f over a region R.

You’ll have a chance to teach your examples to your peers prior to the exam.
In this chapter, we’ll also be utilizing technology to help us construct contour

plots in 2D and 3D, surface plots in 3D, and vector fields plots in 2D and 3D.

Use the following Mathematica notebook to help you throughout the chapter.

ContourSurfaceGradient.nb

The commands in Mathematica we’ll be using are

ContourPlot[ | - Constructs a 2D contour plot of f(x,y) which shows
several level curves of f.

Plot3D][ | - Constructs a 3D surface plot of f(z,y).
VectorPlot| ] - Constructs a 2D vector field plot of V f(z,y).

ContourPlot3D[ | - Constructs a 3D contour plot of f(z,y, z) which shows
several level surfaces of f.

VectorPlot3D][ | - Constructs a 3D vector field plot of V f(z,y, 2).

44


https://www.dropbox.com/s/6hde17k64xd4h18/ContourSurfaceGradient.nb?dl=1
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4.1 Problems
Problem 4.1| The contour plot below shows some terrain near Curiosity.

The rover will follow the linear path shown.

-0.18

-0.36

-0.54

-0.72

-0.90

1. Mark every local maximum with x and every minimum with +. Explain.

2. The rover’s path does not cross any of the points you just marked. However,
as the rover moves, it does reach its own local maximums and minimums.
Circle each of these points on the path. Explain.

3. At points where the rover hits a local maximum or local minimum value
on its path, what’s the relationship between the contours and the path?

4. As curiosity moves along the path, estimate the most extreme slope
encountered. Use a ruler to approximate distances and compare them to
the scale. You may assume that x, y, and z all have the same units, so
units can be ignored. Explain how you got your answer.

We answered all the questions above by visual inspection. The goal of this
unit is to gain the tools needed to answer all the questions above without needing
a human to do a visual inspection. Once we’re done, we’ll know the tools needed
to program a rover to answer all these questions itself.

Problem 4.2| Curiosity is currently on a hill, and its position is at the center

of the map on the left below. Zooming in on the rover’s position yields the map

on the right below (the color legend applies to the graph on the right). Why would we zoom in to
estimate slopes?

-0.90

-0.95

-1.00
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The contours in the graph to the right each represent a change in height of 0.2
units. The bounds for the graph are 1.9 < x < 2.1 and —1.1 <y < —0.9. For
simplicity of computations, let’s assume the x, y and z axes use the same units.
The rover is currently located at the point (2, —1), shown as a dot.

The rover can head in many directions. In this problem we’ll estimate the
slope in several directions. For example, if the rover follows the vector (0,1),
heads north, then it has to move a distance (run) of 0.1 units to hit the next
contour, resulting in a change in height of Az = 4+0.2 units. This means the
slope in the (0, 1) direction is

rise Az +0.2

_— = = = 2.
run  distance moved in xy plane 0.1

1. Estimate the slope if the rover heads east, following (1, 0).
2. If the rover head south, following (0, —1), estimate the slope.

3. If the rover follows the direction (1,1) (so northeast), what distance must
the rover travel to hit the next contour? Use this to estimate the slope in
the (1, 1) direction.

4. Estimate the slope in the (1,2) direction. Then repeat with (—1,2).
5. What direction yields the greatest uphill slope? greatest downhill slope?

6. Why did we zoom in on the surface, instead of estimating the slope from
the graph on the left?

Rather than start with a contour plot and use it to visually estimate slopes,
let’s start with a function of the form z = f(z,y) and use it to compute slopes.

Problem 4.3 | Suppose the elevation z of terrain near the rover is given by

the formula z = f(z,y) = 2 + 3y, and the rover is currently at P = (2, —1).
1. Compute the differential dz and write it in the form dz = (?)dz + (?)dy.

2. Evaluate dz at the rover’s location P = (2, —1). Did you get dz = (1)dx + (6)dy?

dz

V()2 +(dy)?”

4. Estimate the slope if the rover heads east, following (dz, dy) = (1, 0).

3. If the rover follows the direction (dz, dy), explain why the slope is

5. Estimate the slope if the rover heads north, following (dz, dy) = (0, 1).
6. Estimate the slope in the (1, 1) direction. Then repeat with (1,2).

7. What direction yields the greatest uphill slope? greatest downhill slope?

The slope questions above are similar to estimating tolerances, though with
tolerances there is no need to divide by +/(dz)? + (dy)?. The next few problems
have you analyze this idea, as well as introduce partial derivatives (parts of the
differential) and the gradient vector.
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Problem 4.4| The volume of a right circular cylinder is V(r,h) = mr2h. See 3.10 for more practice.

Imagine that each of V, r, and h depends on ¢ (we might be collecting rain
water in a can, or crushing a cylindrical concentrated juice can, etc.).

1. Compute the differential dV and write it in the form
dV = (?)dr + (?)dh.

2. Show that we can write dV as the dot product The vector (27rh, ?) we call the
gradient, or derivative, of V. Each
dV = (2wrh,?) - (dr,dh). entry in the gradient we call a

partial derivative. The partial
derivatives make up the whole

3. If we know r = 3 and h = 4, and we know that 7 could increase by dr = 0.1 ;. .=~

and h could increase by about dh = 0.2, then use differentials to estimate
how much V' will increase.

4. If h is constant (so dh = 0), what is 427 If 7 is constant, what is ‘fi—}‘f?

When h was held constant above, we got % = 27rh. We call this the partial
derivative of V' with respect to r and we write %—‘T/ = 27trh. This is the part of
the differential we multiply by dr. Similarly, the partial derivative of V' with
respect to h, written ah , is the part of the differential we multiply by dh. Using
this partial derivative notation, we write the differential as

v ov ov ov
dv = a—d r+ %dh or as the dot product dV = (67"7 611) - (dr,dh) .

The above vector (%—Z, %—‘}f) we call the gradient of V' and write ﬁV(r, h).

Definition 4.1: Partial Derivative, Gradient. Given a function f(z,y), we
can write the differential df in the form df = Mdx+ Ndy. The partial derivative
of f with respect to x written g—f or f,, is the portion of this differential that
we multiply by dx, so a = M. Similarly the partial derivative of f with respect Different disciplines use different

notations for the partial derivative.
Four common uses are

to y, written g—y is the portion of this differential that we multiply by dy, so

g; = N. Symbolically, we can write the differential as 9 = 2 f=fo=Duf.
df = fd + l
ay

Notice that % is precisely the derivative of f with respect to  when we assume
that the other variables are constant (so dy = 0).

The gradient of f at (x,y), written ﬁf(x,y) is the vector V f = (%, %5)

The gradient of f is a vector field that returns a vector v f at each point (z,y).
Using this vector, we can write the differential of f as the dot product

df = <gf gf) (dx,dy) = Vf - (dz, dy).

We can extend this definition to functions with any number of inputs. For
example, for the function f(z,y, z), we have

df = gfd +g—fd +%
_(9f of oF
= (811," 87y, 82’) ' (d:c,dy,dz)

=V - (dz,dy,dz).



CHAPTER 4. OPTIMIZATION 48

Problem 4.5| The volume of a box is V(z,y, 2) = zyz.

1. Compute the differential dV and write it in the form
dV = (7)dx + (?)dy + (?)dz.

2. Show that we can write dV as the dot product (fill in the blanks)
v = (yz,7,7) - (dz,dy, dz).

3. If the current measurements are x = 2, y = 3, and z = 5, and we know

that dx = .01, dy = .02, and dz = .03, then estimate the change in volume.

oV ov oV
4. Compute —. Then also state — and —. Read the definition before
Ox oy 0z

this problem if you need help with the notation.

Problem 4.6 | Let’s compute differentials, partial derivatives, and gradients.

1. Let f(z,y) = 322 + 2xy. Compute the differential df. Then give % and
fy, and finish by stating the gradient ﬁf(x, Y).

2. Let f(z,y) = e 2% cos(3y). Compute the differential df. Then give %
and f,, and finish by stating the gradient Vf(z,y).

3. Let g(r,s,t) = r?s3 + 4rt?. Compute dg. State D,.g, then g, and then %.

Then give ﬁg.

Let’s now return to the topic of finding the slope of a function z = f(z,y)
at a point P in a given direction 4.

Problem 4.7 | Suppose that our rover is located at point P = (z,y) on a

hill whose elevation is given by z = f(x,y). The rover will be moving in the
direction parallel to 4. We have already shown that the slope of the hill at P in
the direction @ = (dz, dy) is given by

dz
V(dr)? + (dy)?

1. Prove that this slope can be written, using gradients, as

2. Use the above fact to compute the slope of a hill given by f(z,y) = 2%2+3zy
at P = (2,—1) in the direction @ = (3,4). (We call this the directional
derivative of f at P in the direction @, written Dgf(P).

Definition 4.2. The directional derivative of f in the direction of the vector u
at a point P is defined to be

B

Daf(P)=Vf-—, or Duf(P)=Vf-i

|
if @ is a unit vector. We dot the gradient of f with a unit vector in the direction
of #. The partial derivative of f with respect to x is precisely the directional
derivative of f in the (1,0) direction. Similarly, the partial derivative of f with

=

respect to y is precisely the directional derivative of f in the (0,1) direction.

This definition extends to higher dimensions.

The vector (yz,?,?) is the
derivative, or gradient. The
entries we call the partial
derivatives. The partial
derivatives make up the whole
derivative.
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Problem 4.8| Suppose our rover is located at a point P on a hill whose

elevation is given by z = f(z,y). Recall that the directional derivative of f at P
in the direction  is the dot product Dgf(P) = Vf(P) - -%. Also recall that we

|
can compute dot products using the law of cosines V f(P) - @ = |V f(P)]|] cos b,
where 6 is the angle between V f(P) and 4.

1. What angle should 6 be to obtain the largest slope (directional derivative)?
2. State a vector @ that yields the largest directional derivative.
3. When @ is parallel to V f(P), show that Dy f(P) = [Vf(P)|.

4. Which direction points in the direction of greatest decrease?

Problem 4.9| Match each contour plot with the appropriate surface plot.

Some will be easy to pair up, while others a little more difficult. Record which
pairings took you more time, and then come ready to explain how you made
the final decisions, without needing software. It’s perfectly fine to use the
Mathematica notebook provided to the right to help you graph things, but your
goal on this problem is make the pairings without needing software.

N Il \\i 7 I
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You can use Mathematica to check
if you are correct. Download
ContourSurfaceGradient.nb. The
functions used to create the plots
to the left are as follows:

1) f ==z —9?
@)f=z>+y

(B)f =23 + 2% —y?
4)f ==y

(B)f =4—1¢?

(6)f = |x|
(Nf=2%+y°

(8)f =4—4a? —y°


https://www.dropbox.com/s/6hde17k64xd4h18/ContourSurfaceGradient.nb?dl=1
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Problem 4.10‘ A computer chip has been disconnected from electricity and
sitting in cold storage for quite some time. The chip is connected to power, and
a few moments later the temperature (in Celsius) at various points (x,y) on
the chip is measured. From these measurements, statistics is used to create a
temperature function z = f(z,y) to model the temperature at any point on the
chip. Suppose that this chip’s temperature function is given by the equation
z = f(x,y) =9 — a2 —y% (This could just as easily have been the elevation of a
rover at a point (z,y) on a hill.) We’ll be creating a 3D model of this function

in this problem, so you’ll want to place all your graphs on the same x,y, z axes.

The points in the plane with temperature f(z,y) = 0 satisfy 0 = 9 — 22 — 32,
or equivalently 22 + y? = 9. These points lie on a circle of radius 3, so we’ll
draw that circle in the xy plane (the start of our contour plot) and also in 3D
by plotting a circle of radius 3 at height z = 0 (the start of our surface plot).
These two plots are shown to the right.

1. What is the temperature at (0,0), (1,2), and (—4, 3)?

2. Which points in the plane have temperature z = 57 Add this contour
(level curve) to your 2D contour plot. Then at height z = 5, add the same
curve to the surface plot.

3. Repeat the above for z =8, z =9, and z = 1. What’s wrong with letting
z =107

4. Describe the 3D surface that you created with your plot. Add any extra

features to your 3D surface plot to convey the 3D image you constructed.

In the previous problem we started by constructing a contour plot. We
picked a value for the output and then constructed the curve in the plane that
gave all the points with this height. We call such a curve a level curve.

Definition 4.3: Level Curve, Contour. The level curve of a function f(x,y),
corresponding to the constant ¢, is the set of points in the xy-plane such that
f(z,y) = ¢, the output is constant. Level curves provide a cross section of the
surface plot with the plane z = ¢. Many names are given to level curves, such
as contours, isotherms (constant temperature), isobars (constant pressure), and
more. The key idea is that the output of the function should stay at the same
level (be constant, same, iso, equal, etc.).

‘ Problem 4.11 ‘ Consider the function z = f(z,y) = 2% — 4.

1. Construct a contour plot by graphing several level curves. If you end up
with several lines parallel to an axes, you are doing this correctly.

2. We now construct the 3D surface plot. Let y = 0 and then graph the
curve z = 22 — 4 on a 3D axes. Now let y = 1 and add to your plot the
resulting curve. Then let y equal some other constant, and add to your
plot the graph of the resulting object. If you find yourself drawing the
same object, just shifted left or right along the y-axis, then you are doing
this correctly.

3. Now let = 0 and add to your graph the curve z = —4 (it should be a
line in the yz-plane). Then let x = 2 and plot the corresponding curve.
Repeat this for several values of x until you have made a 3D surface plot
that you are happy with.

Contour Plot

Surface Plot

@
af
-5,

-10

You can use Mathematica to check
if you are correct. Download
ContourSurfaceGradient.nb. See
Thomas’s calculus 14.1: 37-48, for
more practice.

You can use Mathematica to check
if you are correct. Download
ContourSurfaceGradient.nb.


https://www.dropbox.com/s/6hde17k64xd4h18/ContourSurfaceGradient.nb?dl=1
https://www.dropbox.com/s/6hde17k64xd4h18/ContourSurfaceGradient.nb?dl=1
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The elevation encountered by a rover is given by one function z = f(x,y).
The path the rover follows is given by a parameterization 7(¢) = (z(t),y(t)). As
the rover moves around, the height changes. The function f tells us the height
based on position, while the other function  tells us position based on time.
Using function composition, we can combine these two functions to get a new
function f(7(t)) that gives us the height based on time. These functions are
like a chain of events. Changing t causes position (z,y) to change, which in
turn causes the height z to change. The chain rule helps us see how to compute
the derivative of a function that is composed of several smaller pieces. We’ll
see below that the chain rule, when written in differential form, is just direct
substitution.

‘Problem 4.12‘ A rover moves on a hill where elevation is given by z =
f(x,y) = 9— 2% —y?. The rover’s path is parametrized by 7(t) = (2 cost, 3sint).

1. At time ¢ = 0, what is the rover’s position 7(0), and what is the elevation
f(7(0)) at that position? Then find the positions and elevations at ¢ = 7/2,
t=m, and t = 37/2 as well.

2. In the plane, draw the rover’s path for ¢ € [0,27]. Then, on the same
2D graph, include a contour plot of the elevation function f. Include the
level curves that pass through the points in part 1. Along each level curve
drawn, state the elevation of the curve.

3. As the rover follows its elliptical path, the elevation is rising and falling.
At which ¢ does the elevation reach a maximum? A minimum? Explain,
using your graph.

4. As the rover moves past the point at ¢t = 7/4, is the elevation increasing

d
or decreasing? In other words, is —f positive or negative? Use your graph

] dt
to explain.

Notice above that we wanted %, the rate of change of temperature with

respect to time, even though the function f(z,y) does not explicitly have ¢ as

d(for)
dt

an input. The proper notation would be
it’s generally avoided.

, but this is so cumbersome that

Problem 4.13] Consider again f(z,y) = 9—22—y2 and 7(t) = (2cost, 3sint),
which means z = 2cost and y = 3sint.

1. At the point 7(t), we’d like a formula for the elevation f(#(¢)). What is
the elevation of the rover at any time ¢? [In f(z,y), replace x and y with
what they are in terms of ¢.]

2. Compute df /dt (the derivative as you did in first-semester calculus).

—,

3. Construct a graph of z = f(7(t)) (so ¢ on the horizontal axis, and z on
the vertical axis). From your graph, at what time values do the maxima
and minima occur?

4. Compute % at t = /47

Let’s repeat the above, but first compute differentials before substitution.

If you end up with an ellipse and
several concentric circles, then
you’ve done this right.
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Problem 4.14] Let f(z,y) = 9 — 22 — y? and (z,y) = 7(t) = (2cost, 3sint).

1. Compute the differential df in terms of z, y, dx, and dy.
2. Compute dx and dy in terms of ¢ and dt.

3. Use substitution to write df in terms of ¢ and dt. Then divide by dt to
obtain %. Did you get the same answer as the previous problem?

4. Use your work above to state both ﬁf(x,y) and ‘Zl—’:. How could you
combine these two vectors to get %?

Problem 4.15: Chain Rule‘ Suppose that f(x,y) represents an arbitrary
differentiable function and 7(t) = (x,y) is a parametrization of a differentiable
curve. Explain why

df df daF

dx dy -

Then obtain similar formulas for functions of the form f(x,y,z) and curves
parametrized by 7(t) = (z,y, 2).

‘Problem 4.16‘ Suppose a rover moves along the level curve of a function
f(z,y) following the path 7#(t) = (x,y). An example of such a scenario is shown
to the right. Label the dots A and B (it doesn’t matter which you label A or
B). Our goal is to prove that the gradient of f is normal to level curves.

1. At each dot in the picture on the right, draw a vector that represents a
ble option f dr dr dy
ossible option for — = [ —, — |.
P P dt dt’ dt

2. Suppose 7(0) = A and 7(1) = B. If we know that f(7(0)) = 7, then what
is f(7(1))? Explain.

3. As the rover moves along 7(t), how much does f change? Use this to give

d
a value for —f?

dt

—

= d
4. Explain why V f and d—; are orthogonal at any point along the level curve.

(Hint: Look at the result of the previous part, together with the definition
of orthogonal.)

5. Draw a vector that points in the same direction as v f, and use your work
above to explain why the gradient of f must be normal to the level curve.

We’ve obtained two important facts, namely

d d d -
e the chain rule which states d—‘i = fxdff + fydit/ =Vf-—, and

e gradients are normal to level curves.

Let’s use all our knowledge up to now to draw gradients on a given contour plot,
and vice versa to construct a contour plot from a given gradient field plot.

A rover moves along the solid level
curve below, stopping at the two
places marked by a dot.
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Problem 4.17 | Consider the contour plots below. Print this page.

¥ N

1. On both plots, add lots of vectors to the plot, illustrating the direction in
which the gradient points (it’s fine to keep all the vectors quite short so
they don’t overlap).

2. In each plot, label a spot using the letter A where the gradient will be
quite long, and a spot B where the gradient will be quite short.

3. In each plot, locate all the points where the gradient is zero. Explain.

4. Where are the local maximums and local minimums? Explain.

Problem 4.18| The gradient field of a function f(z,y) is shown below on
the left. Note that this plot shows the relative sizes of the gradients. Since the
directions attached to the smaller vectors can be difficult to see, The plot on
the right shows just the directions (all vectors have the same size). This second
plot we call a direction field plot. Print this page.
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1. Mark two points on the plot where the gradient is zero.

2. For each point you marked, classify it as either a local maximum, a local
minimum, or neither. Explain.

3. Now add a few level curves of f(z,y) to the map above. When you’re
done, you’ll have constructed a contour plot of f from the gradient field.
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Definition 4.4: Critical Point.

o4

The function f(z,y) = 22 —y? has
a saddle point at (z,y) = (0,0).

Our work above showed the following must hold for differentiable functions:

e A local maximum or local minimum must occur at a critical point.
e Near a local maximum, gradient vectors point towards the critical point. o

e Near a local minimum, gradient vectors point away from the critical point.

e Some critical points are neither a local maximum nor local minimum.

A saddle point (z,y) is a critical point that corresponds to a maximum in one
direction, but a minimum in another direction. The surface plot to the right

provides an example of a saddle point.

We now introduce a way to determine, without having to construct a gradient

Letting y = 0 produces z = z~,
and letting * = 0 produces

z = —y?. Both are parabolas, but
(z,y) = (0,0) is the location of a

2

minimum for the first, but

field plot, whether or not a critical point corresponds to a local maximum, local
minimum, or saddle point. At every critical point there are two numbers, called
eigenvalues, that answer this question for us. We’ll learn how to compute these
eigenvalues very soon, and they’ll start appearing in your upper division courses.
First, let’s tackle a problem that helps us see how these numbers are useful.

Problem 4.19

Below are several gradient field plots. Each plot is centered

at a critical point of a function. The viewing window has been zoomed in to
analyze the gradient near the critical point. Below each plot are two numbers,
the eigenvalues, that correspond to the critical point.
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Analyze the vector fields above and look for patterns between the behavior of
the field and the eigenvalues. Look for ways you can use the eigenvalues to help
you determine if the critical points corresponds to a maximum, minimum, or
saddle point. List any and all patterns you see. Make as many conjectures as
you can. Write these conjectures down, using complete sentences.

If you need some questions to help get you started, here are some things you
might consider. You do not need to answer all of these questions. Your goal is
to make lots of conjectures, as many as you can. The questions below all have
a definite answer. There are more questions that could be asked. We’ve only
touched the tip of an iceberg when it comes to eigenvalues.

e If the vectors all point towards the center, what can I tell about the
eigenvalues? What if instead the vectors all point away from the center?

e What does a positive eigenvalue mean? What does a negative eigen-
value mean? What does a zero eigenvalue mean? What does a complex
eigenvalue mean?

e What happens if one eigenvalue is positive, and the other is negative?
What if they are both positive? What if they are both negative?

e If I want to find maxes, what do I look for? How do I find mins? How do
I find saddle points?

e If a vector field involves rotation of some kind, what does that mean about
the eigenvalues?

e Are there situations where it might be impossible, from the gradient
field picture alone, to determine if the center point (the critical point)
corresponds to a maximum, minimum, or saddle? Are the eigenvalues
enough?

Many of the previous problems focused on finding maximum and minimum
values in an entire region. The solution technique changes, however, when we
restrict ourselves to a specific path, called a constraint. The next few problems
examine how we optimize (find maxes and mins) of a function (elevation, profit,
force, density, etc.) subject to a constraint (path followed, budget, limited
resources, limited space, etc.). If you are economics student, this topic may be
the key reason why you were asked to take multivariate calculus. In the business
world, we often want to optimize something (profit, revenue, cost, utility, etc.)
subject to some constraint (a limited budget, a demand curve, warehouse space,
employee hours, etc.). An aerospace engineer will build the best wing that can
withstand given forces. Everywhere in the engineering world, we often seek to
create the “best” thing possible, subject to some outside constraints. Lagrange
discovered an extremely useful method for answering this question. Today we
call his method “Lagrange Multipliers.”

Rather than introduce Cobb-Douglass production functions (from economics)
or sheer-stress calculations (from engineering), we’ll work with simple examples
that illustrate the key points. We’ll look for the extreme elevations (optimize
elevation) of a Mars rover moving along a specific path (the constraint).
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‘Problem 4.20‘ Print this page. Suppose a rover travels around the circle
g(z,y) = 2% + y* = 1. The elevation of the surrounding terrain is f(z,y) =
22 + y + 4. The plot below shows the rover’s path (the constraint g(z,y) = 1),
placed on the same grid as a contour plot of the elevation (the function f(x,y)
we wish to optimize).

Each level curve above represents a difference in elevation of 0.25 m. Our goal is Lagrange Multiplier problems will
to find the maximum and minimum elevation reached by the rover as it travels appear as “Optimize f(z,y)

. . - Tt . _ subject to the constraint
around the circle. We will optimize f(x,y) subject to the constraint g(x,y) = 1. 4(z,y) = c for some constant c.

1. Label each level curve with its elevation. Print this page if you have not.

2. At which (z,y) point does the rover encounter the minimum elevation?
What is the minimum elevation?

3. Suppose the rover is currently at the point (0,1) on its circular path. As
the rover moves left, will the elevation rise or fall? What if the rover moves
right? Is (0,1) the location of a local maximum or local minimum?

4. On your graph, place a dot(s) where the rover reaches a maximum elevation.
What is the maximum elevation? Explain.

5. Rather than visually inspecting level curves, let’s examine the gradients v f
and ﬁg to see how these gradients compare at maximums and minimums.
On the graph above, draw v f at lots of places on your contour plot. At
lots of points on the circle, with a different color, draw ﬁg. Make sure
you draw both gradients at all the points corresponding to local maxes
and mins. Make a conjecture about the relationship between v f and ﬁg
at the local maximums and local minimums?
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Theorem 4.5 (Lagrange Multipliers). Suppose f and g are continuously dif-
ferentiable functions. Suppose that we want to find the mazimum and minimum
values of f(x,y) subject to the constraint g(x,y) = ¢ (where ¢ is some constant).
If a local mazimum or minimum occurs, it must occur at a spot where the
gradient of f and the gradient of g point in the same, or opposite, directions.
This means the gradient of g must be a multiple of the gradient of f. To find the
(z,y) locations of the mazimum and minimum values (if they exist), we solve
the system of equations that result from

Vf=AVyg, and g(z,y)=c

where X is the proportionality constant. The locations of mazimum and minimum
values of f will be among the solutions of this system of equations.

Let’s redo the previous problem, this time using gradients and the system

Vf=AVg, and g(z,y)=c.

Problem 4.21‘ A rover travels around the circle 22 4+ y?> = 1 where the
elevation of the region nearby is given by z = 22 + y + 4. Our goal is to find the
maximum and minimum elevations reached by the rover on its circular path.

1. What function f(z,y) do we wish to optimize? What is the constraint
g(z,y) = c (state both g(z,y) and the constant ¢)?

2. Compute v f and ﬁg. Explain why the system of equations v f= )\ﬁg
and g(x,y) = c is equivalent to the system of equations

20 = N2z, 1=\, 2?+4y%>=1

3. Solve the system of equations above to obtain 4 ordered pairs (z,y).

4. At each ordered pair, find the elevation. What is the maximum elevation
obtained, and where does it occur? What is the minimum elevation
obtained, and where does it occur?

The above example used a function of the form f : R? — R, where the
domain consisted of points in the plane R2. The exact same process can be
used on functions of the form f : R® — R, where the domain can consist of
several variables (such as space (z,y, z), time ¢, pressure p, density J, velocity,
acceleration, cost, etc.). Once the number of variables gets too large, visualizing
the solution becomes more difficult. The next two problems focus on visualizing
the level surfaces of a function of the form f: R? — R.

Definition 4.6: Level surface of f(z,y,z). Given a function f(z,y, z), the
level surface of f corresponding to a constant c is the set of points (z,y, z) in
space R3 such that f(z,y,2) = c. This is the collection of inputs (z,y, z) that
return the same, or level, output.

‘ Problem 4.22 ‘ Suppose that an explosion occurs at the origin (0,0,0). Heat
from the explosion starts to radiate outwards. Suppose that a few moments
after the explosion, the temperature at any point in space is given by w =
T(z,y,2) =100 — 2% — y? — 22.

1. Which points in space have a temperature of 99?7 To answer this, replace
T(z,y,2) by 99 to get 99 = 100 — 22 — y? — 22. Use algebra to simplify
this to 22 4+ y2 + 22 = 1. Draw this object.

The most common error on this
problem is to divide both sides of
2z = A2z by = (which could be
zero). If you did this, you’ll only
get 2 ordered pairs. Instead,
subtract all variables to one side,
and then factor out an z.
NEVER DIVIDE BY ZERO or
something that could be zero.

Use the following Mathematica
notebook to check your work:
LagrangeMultipliers.nb.

Use the Mathematica notebook
below to check your work:
ContourSurfaceGradient.nb.

You can access more problems on
drawing level surfaces in 12.6:1-44
or 14.1:53-60.


https://www.dropbox.com/s/frflpfkgf02xnpj/LagrangeMultipliers.nb?dl=1
https://www.dropbox.com/s/6hde17k64xd4h18/ContourSurfaceGradient.nb?dl=1
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2. Which points in space have a temperature of 967 of 847 Draw the surfaces.

3. What is the temperature at (3,0, —4)? Draw the set of points that have *

this same temperature.

4. The 4 surfaces you drew above are called level surfaces. If you walk along
a level surface, what happens to your temperature?

5. To the right is a picture of the gradient field v f. From the gradient field
plot alone, explain what happens to the temperature as you move away
from origin.

Problem 4.23 | Consider the function w = f(z,y, z) = 2%+ 22. This function
has an input y, but notice that changing the input y does not change the output
of the function.

1. Draw a graph of the level surface w = 4. [When y = 0 you can draw
one curve. When y = 1, you draw the same curve. When y = 2, again
you draw the same curve. This kind of graph we call a cylinder, and is
important in manufacturing where you extrude an object through a hole.]

2. Graph the surface 9 = 22 + 22 (so the level surface w = 9).
3. Graph the surface 16 = 2% + 22.

4. Use the Mathematica notebook ContourSurfaceGradient.nb to construct a
plot of the 3D gradient field of f. Add to that plot the level surfaces you
drew above. What relationships hold between the gradient vectors and
the level surfaces?

For Lagrange multipliers, the fact that the level curves of f and g meet
tangentially at maximums and minimums was crucial. Because gradients are
normal to level curves, we located maxes and mins by comparing the two
gradients. In higher dimensions, we need level surfaces to meet tangentially,
which means we need to compare tangent planes.

The next few problems focus on using differentials and the gradient to obtain
equations of tangent lines and tangent planes to curves and surfaces. Let’s first
review how differential notation gives an equation of the tangent line to y = f(x)
at a point © = ¢, and then generalize.

Example 4.7: Tangent Lines. Consider the function y = f(z) = 22.

1. The derivative is f/'(z) = 2x. When z = 3 this means the derivative is
f/(3) = 6 and the output y is y = f(3) = 9.

2. The tangent line passes through the point P = (3,9). Let @ = (z,y) be
any other point on the tangent line. The vector from P to @ gives us
differentials as

dz,dy) = PQ = (z,y) — (3,9) = (z — 3,y — 9).
(dz,dy) = PQ = (z,y) — (3,9) = (x — 3,y — 9)
4 P dx dy

This vector tells us that on our tangent line, for a change in x of dx = = —3,
we know the change in y is dy =y — 9.

Above is a picture of the 3D
gradient field of f(z,y,z). All the
vectors point towards the origin.


https://www.dropbox.com/s/6hde17k64xd4h18/ContourSurfaceGradient.nb?dl=1
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3. Differential notation states that a change in the output dy equals the
derivative times a change in the input dz. In symbols, we have the
equation dy = f’(3)dz. We then replace dz, dy, and f’(3) with what we
know they equal from the parts above to obtain the tangent line’s equation

y—9=_6 (x—3).
dy '3 dx

In first semester calculus, differential notation is dy = f'dx. At = = ¢, the
line passes through the point P = (¢, f(c¢)). If Q = (z,y) is any other point on
the line, then the vector PQ = (z — ¢,y — f(c)) tells us that when dx =z — ¢
we have dy = y — f(c). Substitution give us an equation for the tangent line

tangent line as
y—fle)=f'(c)(z—¢).
—— ——
dy dz
This equation tells us that a change in the output (y — f(¢)) equals the derivative
times a change in the input (z — ¢). We now repeat this for the next problem,
where the output is z and input is (z,y), where differential notation gives

of 8fd

dz:§f~(dm,dy): %d:r—l—a—y 1.

‘Problem 4.24‘ Consider the function z = f(x,y) = 9 — 22 — y%. If you
haven’t yet, read the example above. We’ll be finding an equation of the tangent
plane to f at (z,y) = (2,1)

1. Compute the partial derivatives f, and f,, and the differential dz. At
the point (x,y) = (2, 1), evaluate the partial derivatives and the function

z = f(xvy)

2. One point on the tangent plane to the surface at (2,1) is the point
P=(2,1,f(2,1)). Let Q = (x,y, 2) be another point on this plane. Use
the vector PZQ obtain dz when dr =x —2 and dy =y — 1.

3. We'd like an equation of the tangent plane to f(x,y) when = 2 and
y = 1. Differential notation tells us that

2= -0+ -7
dz dz dy

Fill in the blanks to get an equation of the tangent plane.

4. The level curve of f that passes through (2,1) has no change in height, so

dz = 0. Use this fact to give an equation of the tangent line to this level

curve at (2,1).

‘Problem 4.25‘ Let 2 = f(z,y) = 2% + 4oy + y*. At the point P = (z,y) =
(3, —1), we'll give an equation of the tangent plane to the surface and an equation
of the tangent line to the level curve of f that passes through this point.

1. Give an equation of the tangent plane at P = (x,y) = (3, —1). [Hint: Find
fzs fy, dz, dy, and then dz, all at (z,y) = (3,—1). Then substitute, as
done in the previous problem.]

dy
o)

dy = f'(3)dz

See 14.6: 9-12 for more practice.
Here is the surface with the
tangent plane at (2,1, f(2,1)).

See 14.6: 9-12 for more practice.



CHAPTER 4. OPTIMIZATION 60

2. The level curve of f that passes through P is a curve in the plane. Give
an equation of the tangent line to this curve at P. [Hint: Since we're on a
level curve, what does dz equal? The equation is almost identical to the
previous part, with one minor change based on what dz equals.]

The tangent plane and tangent line you just found are shown below.

1 1

‘ Problem 4.26‘ Consider the function f(z,y,2) = —x2? + y* + 22, and the
level surface which passes through the point (3,2, —1). This level surface is
shown to the right, along with the tangent plane to the surface through the
point (3,2, —1). Use the differential

df = fedx + fydy + f.dz or df = 6f(a,b, c) - (dz,dy, dz).

to give an equation of the tangent plane to this surface at the point (3,2, —1).
[Hint: Start by explaining why df = 0. Then we have dz =z — 3, dy = y—7,
and dz =?. Don’t forget to evaluate the partials at the correct point.]

Joe wants to to find the tangent line to y = 23 at x = 2. He knows

the derivative is y = 322, and when x = 2 the curve passes through 8. So he
writes an equation of the tangent line as y — 8 = 322(x — 2). What’s wrong?
What part of the general formula y — f(c) = f’(c)(z — ¢) did Joe forget? See *
for an answer.

We can summarize our work above with tangent lines and planes as follows:
e The tangent plane to f(z,y) at (a,b, f(a,bd)) has equation

z—f(a,b)=g(a,b)(w—aH%(a,b)(y—b) or = flab) =V

—

or

e The tangent line to the level curve of f(x,y) at (a,b) has equation

O=%(a,b)(x—a)ﬁ-g—g(a,b)(y—b) or Ozﬁf(a,b)-(:v—a,y—b),

e The tangent plane to the level surface of f(z,y,z) at (a,b, c) has equation

of of of
0= —(a,b,c)(x—a)+—=—(a,b,c)(y—b)+—=—

LJoe forgot to replace x with 2 in the derivative. The equation should be y — 8 = 12(x — 2).
The notation f’(c) is the part he forgot. He used f’(x) = 3z2 instead of f/(2) = 12.

a,b)-(z—

The surface —4 = —x2 + y2 + 22
and tangent plane at (3,2, —1) are
shown belovy.

We call this surface a hyperboloid
of two sheet.

a,y—b).

(a,b,c)(z—c) or O=ﬁf(a,b,c)-(x—a,y—b,z—c).
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Have you noticed since the semester started, when we compute a differential
we are really just taking partial derivatives, multiplying them by scalars, and
then summing the results. The tangent plane problems are exactly this as well,
where we compute each of the partial derivatives, multiply them by a differential
(such as dx = x — 3), and then sum results. This process occurs so often, in so
many different settings, that mathematicians gave it a name. We could keep
saying, “Take the things you have, multiply each by a scalar, and then sum the
result,” or we could invent a word that says to do all this.

Definition 4.8: Linear Combination and Matrix Notation. Given n
vectors ¥y, Ua, - -+ , Uy, and n scalars ¢q, ¢, - -+ , ¢, the linear combination of these
vectors using these scalars is the sum

n
E a1 = 11 + ca¥a + - -+ + cp Uy
i=1

Matrix notation and products were invented to organize linear combinations
into a visually appealing compact form. We place each vector in the column of
a matrix, and then place the corresponding scalars into a single column vector
after the matrix. The linear combination above, in matrix form, becomes the
matrix product

Uy + el + -+ - + ¢y = U V3 e Un,

mn

The differential of a function is always a linear combination of the partial
derivatives of the function (using the differentials of the input variables as the
scalars). The table below shows the differential of several types of functions,
written as a linear combination of the partials, and also written as a matrix
product.

Function Linear Combination Matrix Product
y= f(z) dy = (%) da dy = (] (dz)
S, S ar dx/dt - - dx/dt
)= (ey) | di=Tdr= (dy/dt) dat a7 =[] (dt) = [dy/dt} (dt)
d
f(z,y) df = fedx + fydy df = [fz fy] (d;)
dx
f(a,y, 2) df = GLdx + SLdy + 3Lz df = [fo fy I-] Zy
z
x\ _ [rcosf dr\ [cosf dr + —rsinf a0 dr\ | (cos® —rsinf dr
y) \rsinf dy) — \sinf " rcosf dy) — |\sin6 rcosf do

Notice that the partial derivatives are the columns of the first matrix, and the
second matrix is just a column vector of differentials. The matrix of partials,
we call the derivative, or total derivative, of the function.

Definition 4.9: Derivative. The derivative (or total derivative) of a function
is a matrix whose columns are the partial derivatives of the function. The partial
derivatives we insert into the columns of the matrix in the same order in which
the variables are listed for the function. Some examples follow.
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e For the function f(z), the derivative is Df(z) = [fs] = [df}.

dx

e For the function f(z,y), the derivative is D f(z,y) = [fz fy]

e For the function f(r,s,t), the derivative is Df(r,s,t) = [fr fs [i].

e For the function #(u,v), the derivative is Dif(u,v) = [Fy 7).

We’ve added some new definitions, so let’s practice.

Problem 4.27 ‘ For each function below, (a) compute and label all relevant
partial derivatives. Then (b) write the differential df as a linear combination of
the partial derivatives, and then (c) write df as a matrix product. Finish by (d)

stating the total derivative D f of the function.

1. f(z,y) = 2%y [Clearly label all 4 things you were asked to find, namely
(a) all partials, (b) df as a linear combination, (c) df as a matrix product,

and (d) the derivative Df.]
2. f(z,y) = 2 + 2zy + 3y°

3. f(z,y,2) = 3wz — 22y

62

Your textbook has lots of examples to help you with partial derivatives in
section 14.3. However, the textbook leaves out the actual derivative (putting the
parts into a single matrix). The exercise below has 6 problems, with solutions,
that you can use as extra practice for total derivatives. Complete the exercise

below before moving on.

For each function, compute the total derivative. See 2 for answers.

1. flz,y) =9 — 2% + 3y?
2. 7(t) = (t,cost,sint)

3. flz,y,2) = ay?2®

4. #(u,v) = (u?,v%,u —v)

6. T(r,0,2) = (rcosf,rsinb, z).

The gradient of a function f(z,y) is itself a function. When we compute
the partial derivatives of the gradient, we obtain vectors instead of numbers.
The next problem has you examine the differential, partials, and derivative of
the gradient of a function. We’ll soon see that the derivative of the gradient is

precisely the key to classifying maximums and minimums of a function.

‘Problem 4.28‘ The function f(z,y) = 22 + 3zy + 2y* has the gradient

Vf = (2x + 3y, 3z + 4y). This is the vector field

—

F = (2x + 3y, 3z + 4y).

2The derivatives of each function are shown below.

1. Df(z,y) = [—2z 6y

1
2. D(t) = |: sint:|

cost

3. Df(x,y,2) = [y223 2xyz3

3xy? 22]

2u 0
4. Df(u,v)= |0 20
1 -1

= 3 -1
5. DF =[] 7]
. cosf —rsinf 0

6. DT'(r,0,z) = [sinf
0 0 1

rcosf 0].

If you haven’t yet, then please go
back and see 14.3: 1-40 in
Thomas’s Calculus for more
practice. I strongly suggest you
practice until you can compute
partial derivatives with ease.
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1. Find the differential dF and write it as the linear combination

L (7 ?
dF = (7> dz + <,,> dy.

2. Rewrite the above differential as a matrix product.
3. Clearly label the two partial derivatives ‘Z—f and ﬁy
4. State the total derivative DF(z,y).

5. The function f(z,y) = xy? has gradient F= (y?,2xy). Repeat the above
to obtain the differential of F' (as a linear combination, and in matrix
form), the partials of F', and the derivative DF(x,y).

In the previous problem we were computing partial derivatives of partial
derivatives. Informally, we call these second partials, or second-order partial
derivatives. Here is a formal definition of the notation.

Definition 4.10: Second-Order Partial Derivatives. A second-order par-
tial derivative of f is a partial derivative of one of the partial derivatives of
f- The second-order partial of f with respect to x and then y is the quantity
o [of

oy | oz |?
the partial of the result with respect to y. Alternate notations exist, for example
the same second-order partial above we can write as

o [of

so we first compute the partial of f with respect to x, and then compute

_09, 0095 _ oF
n - OyOr Oyox’

The subscript notation f, is easiest to write. Sometimes we’ll use subscript
notation to mean something other than a partial derivative (like the = or y
component of a vector), at which point we use the fractional partial derivative
notation to avoid confusion.

Problem 4.29‘ Consider f(z,y,z) = zy?z> and g(x,y) = z cos(xy).

1. First compute v f. Then compute fz, and gj—afy. Explain how you got

these. End by computing the entire second derivative DV f (z,y,2) (it is
a 3 by 3 matrix with all 9 second partials placed inside).

2. Compute g, and then g,,. Then compute g, followed by gy .

‘Problem 4.30: Mixed Partials Agree‘ Complete the following:

1. Let f(z,y) = 3xy® + €*. Compute the four second partials
o’ f

Ox?’

0% f
Oyox’

o0 f

oy?’

0% f
0xdy’

and

2. For f(x,y) = x?sin(y) + v, compute both f,, and f,.

3. Make a conjecture about a relationship between f,, and f,,. Then use
your conjecture to quickly compute fy, if

flz,y) = 3l’y2 + taHQ(COS(gc))(x49 + x)moo.

We also write the derivative of the
gradient as D? f(x,y), or
D%f(a:,y), and call the resulting
matrix the Hessian of f. Some
people use the notation 62]” for
the Hessian, though this notation
also gets use for the Laplacian

V - (Vf), which is a very different
quantity.

Did you notice the swap in order
between the fractional notation
and the subscript notation?
Remember

82f

T = Byoe
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We’re finally prepared to return to the topic of eigenvalues, which we found let

us classify extreme values as the location of local maximums or local minimums.

b d b d
The eigenvalues A and eigenvectors & of A are solutions A and @ # 0 to the
equation A¢ = A¢, effectively replacing the matrix product (linear combination)
with scalar multiplication.

Definition 4.11. Let A be a square matrix, as A = {(a) <C>} = {a c}

The identity matrix I is a square matrix with 1’s on the diagonal and zeros
1 0
0 1

rewrite AZ = ¢ in the form A7 — ¢Z = 0 or AT — MIZ = 0, which becomes

everywhere else, so in 2D we have I = ( ) To find the eigenvalues, we

(A—AI)=0.

We need to find the values A so that

(Bl D) -6« [ a5)6)

A linear algebra course will show that A satisfies

(a—=X)(d—X) —bc=0,

and the proof of this fact is directly connected to the area of the parallelogram
formed by the vectors (a — A, b) and (¢,d — \).

Theorem 4.12 (The Second Derivative Test). Let f(x,y) be a function so that
all the second partial derivatives exist and are continuous. The second derivative
of f, written D>f and sometimes called the Hessian of f, is a square matriz.
Suppose P = (a,b) is a critical point of f, meaning ﬁf(a7 b) = (0,0).

e Suppose all the eigenvalues of D?f(a,b) are positive. Then at all points

(z,y) sufficiently near P, the gradient ¥ f(x,y) points away from P. The
function has a local minimum at P.

o Suppose all the eigenvalues of D?f(a,b) are negative. Then at all points

(z,y) sufficiently near P, the gradient ﬁf(x, y) points inwards towards P.
The function has a local maximum at P.

e Suppose the eigenvalues of D?f(a,b) differ in sign. Then at some points
(z,y) near P, the gradient ﬁf(x,y) points tnwards towards P. However,
at other points (x,y) near P, the gradient ﬁf(:n,y) points away from P.
The function has a saddle point at P.

o [f the largest or smallest eigenvalue of f equals 0, then the second derivative
tests yields no information.

Example 4.13. Consider f(z,y) = 2> —2z+xzy+y>. The gradient is ﬁf(x, y) =

(22 — 2+ y,x + 2y). The critical points of f occur where the gradient is zero.

We need to solve the system 2z — 2+ y = 0 and = + 2y = 0, which is equivalent
to solving 2z + y = 2 and x + 2y = 0. Double the second equation, and then
subtract it from the first to obtain 0z — 3y = 2, or y = —2/3. The second
equation says that © = —2y, or that © = 4/3. So the only critical point is

(4/3,-2/3).

—A c

b d— A
contains two vectors (a — A, b) and
(e,d — X). Where does the area of
the parallelogram formed by these
two vectors show up in the
formula (a — X)(d — A) — be = 07

The matrix |*

Because the second derivative is
always symmetric (why is it?), in
a linear algebra course we can
prove that the eigenvalues of D?f
must always be real numbers.

Once you have the eigenvalues of
the second derivatives, the
following chart is a simple visual
aid to help you remember the
second derivative test.

Both Positive | Both Negative

Min Max
Pos. & Neg. Zero
Saddle Test Fails
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2 1
1 2
so D?f(4/3,—2/3) is the same as D?f(z,y). To find the eigenvalues we solve

The second derivatives is D?f = { . The second derivative is constant,

(2- N2 - ) - (1)(1) =0.

Expanding the left hand side gives 4 — 4\ + A2 — 1 = 0. Simplifying and
factoring gives us A2 —4X +3 = (A — 3)(A — 1) = 0. The eigenvalues are
A =1 and A = 3. Since both numbers are positive, we know the gradient
points outwards away from the critical point. The critical point (4/3,—2/3)
corresponds to a local minimum of the function. The local minimum is the
output f(4/3,-2/3) = (4/3)% — 2(4/3) + (4/3)(=2/3) + (=2/3)2.

‘ Problem 4.31 ‘ Consider the function f(z,y) = 22 + 4xy + y2. If you have
not yet read the example above, do so now.

1. Find the critical points of f by finding when D f(x,y) is the zero matrix.
2. Find the eigenvalues of D2 f at any critical points.

3. Label each critical point as a local maximum, local minimum, or saddle
point, and state the value of f at the critical point.

Let’s now return to a Lagrange multiplier problem, where we have a constraint
that limits the values over which we want to optimize the function.

‘ Problem 4.32 ‘ Consider the curve xy? = 54 (draw it). The distance from
each point on this curve to the origin is a function that must have a minimum
value. Find a point (a,b) on the curve that is closest to the origin.

[Hint: The distance from (z,y) to the origin is y/x2 + y2. This distance is
minimized when f(z,y) = 22 + y? is minimized. We'll use f(z,y) = 22 + y? as
the function we wish to minimize. What’s the constant ¢ and function g so that
our constraint is g(z,y) = ¢? Remember to solve the system v f= )\ﬁg and
g = ¢, but realize that here the value )\ is not an eigenvalue.|

The Lagrange multiplier process can all be automated with software. The
key piece needing human intervention is the selection of the function f and
constraint g = ¢. The following problem has you practice selecting f, g, and ¢,
and then using software to provide a quick solution to the problem.

‘Problem 4.33: Mathematica‘ For each scenario below, (1) identify the
function f(x,y) to be optimized along with the constant ¢ and function ¢ in
the constraint g(z,y) = ¢, (2) write the system of equations that results from
ﬁf = A\Vyg and g(z,y) = ¢, (3) give the solution to this system (use software),
(4) determine which points correspond to maxes and which to mins, and (5)
produce a relevant plot to verify your conclusions are accurate. Please use the
Mathematica notebook LagrangeMultipliers.nb to make this fast (look for the
“All Code in One Block” section). To present in class, in addition to a list of the
things mentioned above, be prepared to show us how you used Mathematica to
perform the computations.

1. An rover travels along a circle of radius 5, centered at the origin. The
elevation of the surrounding hill is give by z = 422 — 4zy + y2. What are
the highest and lowest elevations reached by the rover.

In this example, the second
derivative is constant, so the point
(4/3,—2/3) does not change the
matrix. In general, the critical
point will affect your matrix.

See 14.7 for more practice.

See 14.8 for more practice.


https://www.dropbox.com/s/frflpfkgf02xnpj/LagrangeMultipliers.nb?dl=1
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2. Find the dimensions of the rectangle of largest possible area that will fit
2
inside of the ellipse %2 + 4= = 1. [The constraint g = c is sitting in the

sentence, but the function f requires you to write a formula for area.]

3. Find dimensions of the box of largest possible volume that lies above
the plane z = 0 and below the paraboloid z = 9 — 22 — y2. Note that
V = lwh = (2x)(2y)z = 4zyz is the function we wish to optimize. The
Mathematica notebook has a section for functions of 3 variables.

We will finish the chapter by focusing on the second derivative test, so
optimizing a function without a constraint.

Problem 4.34| Consider the function f(z,y) = 23 — 3z + y? — 4y.

1. Find the critical points of f by finding when D f(x,y) is the zero matrix.

2. Find the eigenvalues of D?f at any critical points. [Hint: First compute
D?f. Since there are two critical points, evaluate the second derivative
at each point to obtain 2 different matrices. Then find the eigenvalues of
each matrix.]

3. Label each critical point as a local maximum, local minimum, or saddle
point, and state the value of f at the critical point.

Problem 4.35| Consider the function f(x,y) = 622 — 223 + 3y? + 62y. The

function has two critical points (0,0) and (1,—1). At each of these points,
evaluate the second derivative and then find the corresponding eigenvalues.
Use these eigenvalues to classify each critical point as the location of a local
maximum, local minimum, or saddle point.

The second derivative test process can also be automated with software. The
key piece needing human intervention is (1) determining whether or not there is
a constraint (if there is, then use Lagrange multipliers) and (2) the selection of
the function f. The following problem has you use technology to rapidly answer
several questions where the second derivative test is useful.

‘Problem 4.36: Mathematica‘ For each scenario below, (1) identify the
function f(z,y) to be optimized, (2) list all critical points, (3) state the second
derivative at each critical point together with the corresponding eigenvalues, (4)
determine if the function has a maximum, minimum, or saddle at each critical
point, and (5) produce a relevant plot to verify your conclusions are accurate.
Please use the Mathematica notebook 2ndDerTest.nb to make this fast (look for
the “All Code in One Block” section). To present in class, in addition to a list of
the things mentioned above, be prepared to show us how you used Mathematica
to perform the computations.

1. Let f(x,y) = 23 + 3zy + y3. Find all local extreme values of f.

2. Find the largest box in the first octant (all variables are positive) that
can fit under the paraboloid z = 9 — 22 — 2. The volume of such a box is
given by V = lwh = zyz = zy(9 — 22 — y?). [Hint: There are 9 critical
points. Why can you ignore every single one of the points except one?]

3. Find three numbers whose sum is 9 and whose sum of squares is minimized.


https://www.dropbox.com/s/bscqi7db0nucgu9/2ndDerTest.nb?dl=1
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In this final optional problem, we’ll derive the version of the second derivative
test that is found in most multivariate calculus texts. The test given below only
works for functions of the form f : R2 — R. The eigenvalue test you have been
practicing will work with a function of the form f : R™ — R, for any natural
number n.

‘Problem: Optional‘ Suppose that f(z,y) has a critical point at (a,b).

1. We know that D?f(a,b) = [jﬁm ‘;ﬁy} , where all partials are evaluated at
yr  Jyy

(a,b). Prove that the eigenvalues of D?f(a,b) are given by

(fam + fyy) + \/(fxz + fyy)2 - 4(fawfyy - ffy)
9 .

2. Let D = foufyy — f2-

o If D < 0, explain why the eigenvalues differ in sign.

e If D =0, explain why zero is an eigenvalue.

e If D > 0, explain why the eigenvalues must have the same sign.

e If D >0, and f,, > 0, explain why f has a local minimum at (a,b).

e If D >0, and f,, <0, explain why f has a local maximum at (a, b).
3. The only critical point of f(z,y) = 2 + 3zy + 2y is at (0,0). Does this

point correspond to a local maximum, local minimum, or saddle point?
Find D from part 2 to answer the question.

4.2 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to I-Learn and download the quiz. Once you have taken the
quiz, you can upload your work back to I-Learn and then download the key to
see how you did. If you still need to work on mastering some of the ideas, please
do so and then demonstrate your mastery though the quiz corrections.

From the spectral theorem, we
know that the eigenvalues will
always be real numbers.

Different signs = saddle point
A =0 = test fails
Both positive = minimum

Both negative = maximum

The sign of fi, determines the
concavity of f in the = direction.



Chapter 5

Integration

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Set up and compute single, double, and triple integrals to obtain lengths,

areas, and volumes. Connect these to the differentials dx, ds, dA, and dV'.

2. Explain how to compute the mass of a wire, planar region, or solid object,
if the density is known. Connect this to the differential dm.

3. Find the average value of a function over a region. Use this to compute
the center-of-mass and centroid of a wire, planar region, or solid object.

4. Draw regions described by the bounds of an integral, and then use this
drawing to swap the order of integration.

5. Obtain the cross product and use it to find a vector orthogonal to two given
vectors, the area of a parallelogram, and the volume of a parallelepiped.

6. Appropriately use polar coordinates dA = |r|drdf, cylindrical coordinates
dV = |r|drdfdz, and spherical coordinates dV = |p? sin ¢|dpdfde.

You’ll have a chance to teach your examples to your peers prior to the exam.

5.1 Problems

In the previous chapter, we learned how to determine the slope of a hill along
which our rover is moving. In this chapter, we will focus most of our efforts on
answering the following question:

What’s the largest slope the rover can encounter before it tips over?

As the team in charge of moving the rover around, we need to make sure that
the slope encountered never exceeds this number, and ideally stays quite far
from it. The last chapter taught us that we can find the slope by computing
the length of the gradient of the elevation function.

The key to making sure the rover does not tip requires we know how to find
the center-of-mass of the rover. This center-of-mass changes any time the rovers
arms move, the rover picks up an object, the solar panels shift to capture more
light, etc. In this chapter, we’ll focus on looking at center-of-mass at one instant
in time, rather than tracking it as time changes, to keep the problem simpler.
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Please use the Mathematica
notebook Integration.nb to help
you visualize regions in 2D and
3D, as well as compute integrals
throughout this chapter.


https://www.dropbox.com/s/wd1mmy9q10hla8s/Integration.nb?dl=1
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The first problem connects the rover’s center-of-mass to the maximum slope
the rover can encounter. This maximum slope occurs precisely when the center-
of-mass is directly above the point of the rover that is most downbhill.

Problem 5.1 | When sitting on flat ground, the rover has a center-of-mass

that is A units above the ground. Assume this center-of-mass is a units from
each side of the rover. Currently the rover is traveling along a contour of the
surface. One side of the rover is lower than the other side, and the slope on
the mountain is m (see the picture to the right). The tipping slope m, (critical
slope) is the largest possible slope for which the rover will not tip over.

1. Draw several pictures using different slopes to illustrate (1) a slope that
would cause the rover to tip over, (2) a slope that would not cause the
rover to tip over, and (3) the tipping slope.

2. Find a formula to connect mc, h, and a. [Hint: Look for similar triangles
in your picture.]

3. If you know m,, what is h? If you know h, what is m.?

The problem above completely solves the problem of tipping for a stationary
rover, provided we know the center-of-mass of the rover. The rest of this chapter
focuses on locating the center-of-mass. Let’s start by analyzing several ways of
computing an average, for example the average of a bunch of test scores.

Problem 5.2 | Suppose a class takes a test and there are three scores of 70,

five scores of 85, one score of 90, and two scores of 95. We will calculate the
average class score, 5, four different ways to emphasize four ways of thinking
about the averages. We are emphasizing the pattern of the calculations in this
problem, rather than the final answer, so it is important to write out each

calculation completely, without doing any simplifying, in the form 5 =
before calculating the number s.

1. Compute the average by adding 11 numbers together and dividing by the
number of scores. Write down the whole computation before doing any
arithmetic.

2. Compute the numerator of the fraction in the previous part by multiplying
each score by how many times it occurs, rather than adding it in the sum
that many times. Again, write down the calculation for § before doing any
arithmetic.

3. Compute 5 by splitting up the fraction in the previous part into the sum
of four numbers. This is called a “weighted average” because we are
multiplying each score value by a weight.

4. Another way of thinking about the average § is that 5 is the number so
that if all 11 scores were the same value s, you’d have the same sum of
scores. Write this way of thinking about these computations by taking
the formulas for § in the first two parts and multiplying both sides by the
denominator.

In the next problem, we generalize the above ways of thinking about averages
from a discrete situation to a continuous situation. We did this in first-semester
calculus when we computed the average value of f using integrals.

The rover (a box) is moving
through the page as it travels
along a hill with slope m.

1

The distance from the
center-of-mass to the hill is A
units. The distance from the edge
of the rover to the spot directly
below this center-of-mass (when
the rover is on a flat plane) is a.
The dots represent the
center-of-mass and the point of
the rover furthest downhill.

> values

$ = Humber of values

— _ Y- (value-weight)
§= > weight

5= (value - (% of stuff))

(number of values)s = > values
(>~ weight)s = > (value - weight)
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Problem 5.3| Suppose the price of a stock is $10 for two days. Then the

price of the stock jumps to $20 for three days. Our goal is to determine the
average price of the stock over the total 5 day period.

1. Why is the average stock price not $157 Use any of the methods from the
previous problem to show that the average price is f = $16.

10 0<t<2
2. The function f(t) = =P 2 odels the price of the stock for the
20 2<t<5

5-day period. The graph to the right shows both f and f. Show that the
area under f for 0 < ¢ < 5 is 80. Then show that the area under f for
0 <t <5is also 80.

3. The average value of a function over an interval [a,b] is a constant value f
so that the areas under both f and f are equal, which means

b b
/ fdx = / fdx.
Explain why the formula above can be rewritten in the form
/ fdx
/ =
/ dx

4. The formulas for f in the previous part resemble at least one of the ways
of calculating averages from Problem 5.2. Which ones and why?

fda:

Let’s return to the rover. If we know the mass and center-of-mass of each
part of the rover, we can use weighted averages to combine these values and
obtain the center-of-mass of the the entire rover.

Problem 5.4| Consider a simplified rover with a bottom and a top.

e The bottom part of the rover has a volume of V; m3, a constant density

(mass per volume) of §; g/m?, and a center-of-mass located at (Z1,%1,21).

e The top part of the rover has a volume of Vo m?, a constant density (mass
per volume) of d; g/m?3, and a center-of-mass located at (Zz, ¥z, Z2)-

Complete the following:

1. Give the masses my and msy of the bottom and top of the rover. Explain.

2. What proportion of the total mass comes from the bottom of the rover?

3. Explain why the center-of-mass of the entire rover is

20 $

10 1

0 t t t t b
0 1 2 3 4 5
The solid line shows the graph of
f while the dashed line shows the
average price f.

The quantity f we call the average
value of f over [a,b]. It was
crucial to proving the
Fundamental Theorem of Calculus
from first-semester calculus.

(T1,91, 21) ————+(T2, J2, Z2)

)

m o me (x1(m1)+x2(m2) g1(my) + Ja(ma) Z1(m1) + Z2(ma)

m1 + mo my + mo

4. The rover picks up an additional object. The object’s mass is mgz with

center-of-mass (Zs, ¥s, z3). Modify the formula above to give the center-of-

mass of the rover, together with the new object. Try writing the formula
using summation notation.

)
my + mo my + ma

mi + mo )
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Of course, a rover consists of many parts (not just a top and bottom). Each
little part has a little mass dm and a center-of-mass. We can predict these
quantities prior to building the rover, before we can weigh anything. We just
need the length ds, area dA, or volume dV of a small part, together with the
material’s density 6 (mass per length, area, or volume, as appropriate).

e For thin wires, we get little masses dm by multiplying little lengths ds by
a density d with units of mass per length.

e For thin plates, we get little masses dm by multiplying little areas dA by
a density d with units of mass per area.

e For solid objects, we get little masses dm by multiplying little volumes
dV by a density § with units of mass per volume.

In all three cases, we can obtain the total mass m by adding up the little masses
with an integral. The difference between the three cases will be whether we use a
single, double, or triple integral. Often the density ¢ will be constant throughout
an entire object. However, composite materials exist where density d(z,y, 2)
can vary throughout an object. We can then compute the center-of-mass using
the average value formulas from above. Let’s look at some examples.

Problem 5.5| Consider a thin rod (like a drive shaft or thinner) that lies
along the z-axis for a < z < b. The rod is made out of a single material whose
density is given by the constant § g/m (mass per length).

1. A small part of the rod has length dz. Compute f: dz, and explain what
physical quantity this integral computes.

2. A small bit of the rod has mass dm = ddz. Compute the total mass by
computing f; ddz. Remember that § is a constant.

3. Guess the location of the average z-value of the rod (the center-of-mass).
4. Compute and simplify the integral formula below, to validate your guess.

b b
/ zdm / 20dz

zZ= 5 = A .
/dm /sz

Then explain, if you can, why these integrals give Zz.

Problem 5.6 Suppose again we have a thin rod lying on the z-axis for

a < z < b. However, this time the rod is more like an antenna and the rod gets
thinner as we move up the rod. This means the density d(z) is now a function
of z. Let’s use, for simplicity, the linear density function 6(z) = b — z.

1. What is the density of the rod at a? What is the density of the rod at
b? Construct a rough sketch of a rod that could have this type of density
function.

2. A small bit of the rod has mass dm = §(z)dz. Compute the total mass by
computing f; 5(z)dz = f:(b — 2)dz.
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3. Is the location of Z closer to z = a or z = b? Explain.
4. We know that the z-coordinate of the center-of-mass is given by

b b
/ zdm / 20dz

zZ= 5 =4 5 .
/ dm ddz
Compute the integrals above by hand (show this). Then simplify your
answer (feel free to use software) and verify that z = QGT“’.

The previous two problems showed the computations for a rod that lies on an
axis. This works great for a drive shaft, or antenna, or any part of the rover that
consists of a straight thin rod. The next problem repeats these computations for
a portion of the rover that is a thin flat plate, such as a solar panel, an armored
plate, or any object which is best described by thinking of the area, multiplied
by some tiny thickness.

Problem 5.7 | Consider the triangular region R in the first quadrant that A metal plate occupies the

. . x . . tri It ion R below.
lies under the line — + y_ 1, shown to the right. If you would rather work with ripnetiar region b below

a
numbers instead of variables, feel free to let a = 5 and b = 7 in this problem.

IS
o=
Il

—

a rb(1-2)
1. Compute the double integral / dydr. What physical quantity
0

0
of the region R does this integral give?

2. The density of the metal plate is § g/m?2. Set up a double integral formula
to compute the mass of the region using this density.

3. The center-of-mass in the z-direction is given by the formula

a rb(1-%)
// xdm / / xddydx
7— JJR _ Jo Jo
a b(1—Z) :
/ / dm / / Sdyda
R 0o Jo

Assuming 4 is constant, compute this integral and show that 7 = £. Feel free to use software.

4. Set up an integral formula, like the one above, to compute g. Show the
integral formula you used, and then state the value g obtained.

Recall that we have already shown for a region R described in polar coordi-
nates by 0 < 0 < a and 0 < r < r1(0), that we can compute the area of this
region using the formula

a prri(0)
// dA:/ / |r|drdf.
R o Jo

The quantity |r| is the stretch factor that tells us how much little areas drdf
in the polar plane need to multiplied by to obtain areas in the xy-plane (so
dA = |r|drdf). This stretch factor we call the “Jacobian.”
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Problem 5.8| Consider the semicircular disc R that lies above the z-axis
and below the circle of radius a, shown to the right. If you would rather work
with numbers instead of variables, feel free to let a = 5 for this problem.

1. We know the area of R is %mﬂ. Set up a double integral using polar

coordinates to compute this area. Then compute the integral by hand and
simplify your work to obtain the correct area.

2. Let’s assume the density for this problem is § = 1, so that dm = dA.
When the density is constant, we use the word “centroid” instead of
“center-of-mass” to talk about the geometric center of the object. The
centroid in the z-direction is given by the formula

// xzdA / / (rcos®) Tdrdé‘
/ / dA / / rdrdd
o Jo T

Compute the integrals above, by hand, to show that z = 0.

3. Set up an integral formula, like the one above, to compute 3. Show the
integral formula you used, and then compute it to obtain §.

Rods and wires along with thin metal plates are easily tackled using single

and double integrals. Other parts of the rover we’ll tackle using triple integrals.

5 7 l10-2z
Problem 5.9| The triple integral / / / dzdydx gives the volume of
o Jo Jo

a solid domain D in space.

1. Draw the solid domain D described by the bounds of the integral above.

This is the solid satisfying the inequalities 0 < x < 5,0 <y < 7, and
0<2<10— 2.

2. Let 6 = 1 so that dm = ddV = 1dV. The centroid of D has three
coordinates (Z, 7, z). The z-coordinate is given by the integral formula

///gch ///m () dzdyd
/ / / av / / / v 2x1dzdyda:

Compute this triple integral and simplify to show that z = g.

3. Modify the above formula to obtain integral formulas for both ¢ and Z.

Then state the values of § and Z, either by using facts we’ve already proven
or by computing the integrals directly. Use software to check.

We'll be working with triple integrals quite a bit in this chapter. When we
try to change coordinates in 3 dimensions, we will need to be able to compute the
volume of a parallelepiped (a 3D parallelogram) if we have the three vectors that

define the edges. To find this volume, we need to tackle a couple of problems.
First, we will need to compute the area of one face of the parallelepiped. Second,

we’ll need to compute the distance between that face and the opposing side
of the parallelepiped, which is easy to do by projecting any vector connecting
the two edges onto a vector that is normal to the face. It turns out that both
problems, are addressed with the same process. The second problem, finding a
vector orthogonal to two given vectors, is the simpler of the two.

A metal plate occupies the
semicircular region R below.

If you struggled on part 1, the
formula for the area appears as
part of the formula to the left.

Feel free to use software. You can
find the correct answer on the
back end cover of most
engineering statics textbooks, or
by searching the web for the
centroid of a semicircular disc.

Here is a parallelepiped formed by
the three vectors i, ¥, and .

The volume is found by obtaining
the area A of one face, multiplied
by the distance h between the
base and the plane containing the
opposing face.
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Problem 5.10‘ Let @ = (a,b,¢) and ¥ = (d, e, f). Our goal is to find a single
nonzero vector (z,y, z) that is orthogonal to both @ and ¥, preferably with as
few fractions as possible in the final answer.

1. Explain why we need to solve the system of equations

ax+by+cz=0 and dr+ey+ fz=0.

2. To solve the system above, multiply the first equation by d and the second
equation by —a (assume for a moment that both a and d are not zero).
Then add the two equation together to eliminate x. Solve for y in terms
of z, and then x in terms of z, to show that every solution to this system
can be written in the form

bf —ce cd —af
(#,9,2) = (<ae—bd> = <ae—bd>z’z>'

3. The above solution has some complicated fractions. Why is (z,y,2) =
(bf — ceyed — af,ae — bd) a solution to the system?

Definition 5.1: Cross Product. The cross product of the two vectors o =
(u1,u2,us) and ¥ = (v1, v, v3) is the vector

U X U = (Uugv3 — UzV2, U3V] — U V3, U1 V2 — UV ).

Let’s tackle the problem of finding the area of a parallelogram in 3D. In 2D,
recall that if we have the two vector (uq,usg,0) and (v, vs,0), then the area of
the parallelogram formed using these two vectors is |ujvg — ugv1|. Take a second
and look at the cross product formula above. Do you notice any similarities?

Problem 5.11| Let @ = (a,b,c¢) and ¥ = (d,e, f). Our goal is to find the
area of a parallelogram whose edges are formed from these two vectors.

1. Draw a picture that contains 2 vectors labeled @ and ¢. In that picture,
include )7 and i, 3. Explain why the area we seek is A = [ 5(|7].

2. Compute the projection )y and then ;.

3. Computing the magnitude of %, 7 can be quite tedious by hand. Using
software, we can quickly get

A= i, 5|0 = a2 (€2 + f2) — 2be(ad + cf) — 2acdf + b2 (d2 + f2) + c2 (d2 + €2).

The magnitude of the cross product is

[ix 0| = |(bf—ce, cd—af,ae—bd)| = \/(bf — ce)2 + (cd — af)? + (ae — bd)2.
Show that the two quantities above are equal (so show A = |u x 7).

4. In summary, to find the area of the parallelogram formed by @ and v,
compute the magnitude of

Theorem 5.2. The cross product @ X ¥ of U and ¥ is orthogonal to both @ and
¥. The magnitude |i X V| is the area of the parallelogram formed by @ and U.
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Problem 5.12| Prove that for two vectors @ and ¥ in R3, we have

@ x 7] = |@||7]sin 0,

where 6 is the angle between the two vectors.

Observation 5.3. Given two vectors # and ¥ in R3, we have

—

- U= |d]|v]cosd and

@ % &) = |@]|3] sin 0.

We'll return to more problems with the cross product later in this chapter.
The next problem interchanges the order of the bounds of a double integral.

Problem 5.13 ‘ Consider the region R in the xy-plane that is below the line
y = x + 2, above the line y = 2, and left of the line x = 5. We can describe this
region by saying for each z with 0 <z <5, we want y to satisfy 2 <y < x + 2.
In set builder notation, we write

R:{(Jc,y)eRz|0§J;§5,2§y§x+2}.

We use the symbols { and } to enclose sets and the symbol | for “such that”.
We read the above line as “R equals the set of (z,y) in the plane such that zero
is less than = which is less than 5, and 2 is less than y which is less than z + 2.”
The iterated double integral f05 f;“ dydz gives the area of this region.

1. Draw this region.

2. Describe the region R by saying for each y with ¢ < y < d, we want «
to satisfy a(y) < z < b(y). In other words, find constants ¢ and d, and
functions a(y) and b(y), so that for each y between ¢ and d, the x values
must be between the functions a(y) and b(y). Write your answer using
the set builder notation

R={(z,y) | c<y<d,aly) <z <by)}

3. Finish setting up the iterated double integral fr; f?? dxdy.

[Hint: Draw the 4 curves given by 0 =z, x =5, 2 =y and y =  + 2. Then
appropriately shade above, below, left, or right of each curve.]

Definition 5.4: Double and Iterated Integrals. Given a region R, we write
/ f(z,y)dA for the double integral of f over R. We just have to state what
R

the region R is to talk about a double integral. The formal definition of a
double integrals involves slicing the region R up into tiny rectangles of area
dxdy, multiplying each rectangle by a function f, and then summing over all
rectangles. This process is repeated as the length and width of the rectangles
shrinks to zero at similar rates, with the double integral being the limit of this
process.

An iterated integral is an integral where we have actually specified the
order of integration and given bounds for each integral. For double integrals
there are two options, namely

/ / (z,y)dydz and / / (z,y)dzxdzy.

We’ll focus mostly on setting up iterated integrals.

Draw two vectors and the
parallelogram they form. Add a
right triangle where one of the
angles is given by 6. Basic
trigonometry, along with the fact
that |@ x U] gives the area of the
parallelogram, will complete the
proof.
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To find the mass of a thin metal plate occupying a region R in the xy-plane,
we add up the differentials dm = d(x,y)dA, where ¢ is the density (mass per
area), to obtain the mass as

m = //Ré(x,y)dA: //Rd(%y)dxdy: //R d(z,y)dzdy.

Note that if §(z,y) = 1, then this reduces to the formula for the area of R. The
next problem has you practice setting up several mass integrals.

Problem 5.14‘ For each region R below, draw the region. Then use the
given density to set up an iterated double integral which would give the mass.
You do not need to fully compute each integral, rather just set it up.

1. The region R is above the line x +y = 1 and inside the circle 22 + y? = 1.
The density is d(z,y) = .

2. The region R is below the line y = 8, above the curve y = 22, and to the
right of the y-axis. The density is §(z,y) = zy%.

3. The region R is bounded by 2z 4+ y = 3, y = x, and x = 0. The density is
o(z,y) =7

3,3
‘ Problem 5.15 ‘ Consider the iterated integral / / ev’ dydz.
0 T

1. Write the bounds as two inequalities (0 < x < 3 and ? < y <?). Then
draw and shade the region R described by these two inequalities.

2. Swap the order of integration from dydx to dxdy. This forces you to
describe the region using two inequalities of the form ¢ < y < d and
a(y) <z < b(y).

3. Use your new bounds to compute the integral by hand.

3 3

4. Why is the original integral / / edeydx impossible to compute without
0 T

first swapping the order of integration? [Hint: Try computing the inner

integral fj ¥’ dy — why can’t you?]

Problem 5.16 ‘ Compute by hand the iterated integral

PN
/ / sin(z?)dzdy.
0 y/2

In the previous problem we used Cartesian coordinates to compute the
integral. The next problem is impossible to complete using Cartesian coordinates,
though becomes completely doable if we swap to polar coordinates. Recall that
earlier in the semester we showed that for a region R,, in the zy-plane, we
showed that little areas drdf in the rf plane were transformed to little regions
in the xy-plane with area

dA = |r|drd.

First swap the order of the
bounds. Then integrate
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The stretch factor, or Jacobian, of this transformation is |r|. Provided we never
let 7 become negative, this means

//R f(z,y)dzdy = //R f(rcosf,rsinf)r drdf.

To swap from Cartesian to polar coordinates, we just replace x with r cos#,
replace y with rsin 0, replace dxdy or dydx with rdrdf, and then use bounds
for  and 6 to set up an iterated integral. The next problem has you do this.

y
mass of a region in the plane with density § = e®*+¥* that is bounded by the

curves y =0, y = V2, z = y, and = = /4 — 32

1. Draw the region described by these bounds. (Did you get a sector of a
circle, something like a 1/8th of a pizza?)

V2
Problem 5.17 ‘ The double integral / et dxdy computes the
0

2. Give bounds of the form ? < 8 <7 and ? < r <7 that describe the region
using polar coordinates. (The new bounds are all constants.)

3. Convert the Cartesian integral to an integral in polar coordinates (don’t
forget the Jacobian).

4. Compute the integral by hand. Show your steps.

Problem 5.18| For each region R below, draw the region in the xy-plane.
Then use the given density to set up an iterated double integral in polar
coordinates which would give the mass. You do not need to fully compute each
integral, rather just set it up. For example, if the region is the inside of the
circle 22 + 4% = 9, and the density is 6(z,y) = y, then the mass is

2m 3
m:// (5dA:/ / (rsinf) rdrdf .
5oy dA

1. The region R is the quarter disc in the first quadrant that lies inside the
circle 22 + 32 = 25. The density is §(z,y) = .

2. The region R is bounded above by y = v/9 — 22, bounded below by y = z,
and bounded on the left by the y-axis. The density is 6(z,y) = xy>.

3. The region R is the inside of the cardioid r = 3 + 3 cos§. The density is
o(z,y) =7

Just as we’ve used double integrals to compute the area and mass for regions
in the plane, we can use triple integrals to compute volume and mass for solids in
space. A triple integral is an integral of the form [[[, dV, where dV represents
a small portion of volume of the solid region D. However, now there are six
different possible orders of integration when we want to create iterated integrals.
For example if we pick the order dzdydx, then to set up the integral we’ll need
a<z<b, clx)<y<d(x),and e(z,y) < z < f(x,y). Note that the outermost
bounds must be always be constant, whereas the innermost bounds can depend
on all of the other variables.
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Problem 5.19| Do not evaluate the three integrals below. Our focus is
setting up the bounds for triple integrals.

1 4 py?
1. The iterated triple integral / / / dzdxdy gives the volume of the
-1Jo Jo

solid D that lies under the surface z = 42, above the zy-plane, and bounded
by the planes y = —1, y = 1, x = 0, and = 4. Sketch this region.

2. Set up an iterated triple integral that gives the volume of the solid in
the first octant that is bounded by the coordinate planes (x =0, y = 0,
z = 0), the plane y + z = 2, and the surface x = 4 — 32, using the order of
integration dxdzdy. Make sure you sketch the region.

3. Set up an integral to give the volume of the pyramid in the first octant
that is below the planes % + g =1 and % + g = 1. [Hint, don’t let z be
the inside bound. Try an order such as dydxdz.|

Problem 5.20| Consider the triangular wedge D that is in the first octant,

bounded by the planes % + g =1 and =z = 12. In the yz-plane, the wedge forms
a triangle that passes through the points (0,0,0), (0,7,0), and (0,0, 5).

1. Draw the solid.

2. Assume the density § of the solid is constant. Recall that Z, the z-
coordinate of the centroid, is given by the integral formula

[, wsav
J]p0dv-

Set up the corresponding integral formulas for § and z (if your answers
look almost identical to the above, you are doing this correctly).

T =

3. Actually compute the integrals for §. Show your integration steps.

4. State T and Z using symmetry or other arguments.

We’ve now found the mass and center-of-mass for straight wires, thin flat
metal plates, and solid regions in space. Earlier in the semester we used

s= [as= [

to obtain the length of a thin wire lying on the curve C' with parametrization
7(t). For such a wire, we use the differential

dr
— | dt
dt

dr
ds =|— t
~— ~—~—
little distance ~~~ little time
speed

instead of dz (little length in a straight rod), dA (little area in a thin metal
plate), or dV (little volume in a solid). The differential ds can replace dx, dA,
or dV in any of our previous formulas to help us determine, for a curved wire,
the length, mass, center-of-mass, and more. The next problem has you set up
several integrals that do this.
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‘ Problem 5.21 ‘ Consider a wire that lies along the curve C' with parametriza-
tion 7(t) = (5cost, 5sint) for 0 <t < 7.

1. Draw the curve, compute ‘fl—f, and show that ds = 5dt.

. Evaluate [, ds to obtain the length of the wire.

2
3. Assuming the density is constant, why do we know = = 07
4

. Set up an integral formula for § and compute the integrals involved to
obtain g, showing your integration steps.

5. If instead, the density is § = xy? + 7, then set up an integral formula to
find Z. You don’t need to compute the integral, rather just set it up.

Problem 5.22| A sphere of radius a centered at the origin is described by
the equation 2 + y2 + 22 = a®. A right circular cone whose tip is at the origin
is given by 22 = 22 4+ y2. You'll be setting up integrals on this problem. Don’t
worry about computing any integrals, rather focus on setting up the integrals.

1. Draw the surface 22 + 32 + 22 = a? and then set up an iterated triple

integral using Cartesian coordinates to compute the volume inside the
sphere z2 + 3% + 22 = a2

2. Draw the surface 22 = 22 4 y? and then set up an iterated triple integral
using Cartesian coordinates to compute the volume of the solid cone that
lies above 22 = 22 + y? and below z = h.

Both of the integrals above are quite messy to actually compute using
Cartesian coordinates. What we need are two new coordinate systems, called
cylindrical and spherical coordinates. We’ll introduce these coordinates, and
then find the appropriate stretch factor (Jacobian) that will let us replace the
differential dV = dxdydz with an appropriate differential in the new coordinate
system. Then we’ll return to the integrals above and compute them using these
new coordinate systems. First, let’s revisit what we did with polar coordinates.
This will remind us of the key things we will need to tackle a three dimensional
change of coordinates.

Problem 5.23| Consider the polar change-of-coordinates x = rcosf and
y = rsinf. We can write this in vector form as

T(r,0) = (rcos0,rsin ).

1. Compute the differential dT. Write it as a linear combination of the partial
derivatives of T', as well as a matrix product.

2. In your differential above, you should have a linear combination of two

vectors. Find the area of the parallelogram formed by these two vectors.

We call this the Jacobian of the polar transformation, written g((::g)) .

3. Explain what the differential equation dA = |r|drdf means.

4. The notation g((f’g)) was invented to help remember where to insert the
Jacobian in an integral formula. Consider the two formulas

Since the curve is half a circle, the
length you obtain from integration
should be half the circumference
of the circle.

//ny fdxdy = //Rre fg((i: g)) drdf or //Rw fg((i: g)) dxdy = / . fdrde.

Which formula above is correct, and how does the notation help you
remember this?
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Recall that the for @ = (u1, us,u3) and ¥ = (v1,ve,v3), we have
U X U= (ugvs — uzva, Uzl — UIV3, U Vg — U1 ).

Also recall that @ x ¢/ is orthogonal to both « and ¥, and the magnitude of © x ¥
is equal to the area of the parallelogram formed by @ and .

Problem 5.24| Let @ = (1,—2,3) and ¥ = (2,0, —1). The paragraph before
this problem reminds you of some key facts about the cross product.

1. Compute @ x ¢ and ¥ x 4. How are they related?
2. Compute and simplify both @ - (¢ x ¢) and ¥ - (@ x ¥). Did you get zero
for both? What fact about the cross product guarantees you get zero?

3. Compute the area of the parallelogram formed by @ and .

4. Explain (without doing any computations if you can) why @ x (2@) must
equal (0,0,0).

‘Problem 5.25‘ Let P = (a,b,c) be a point on a plane in 3D. Let 7 =
(A, B,C) be a normal vector to the plane (so the angle between the plane and
7i is 90°). Let Q = («,y, z) be another point on the plane.

1. What is the angle between PQ = (z — a,y — b, z — ¢) and 7@ = (A, B, C)?
2. Explain why an equation of the plane through P with normal vector i is

A(x—a)+By—b)+C(z—c)=0.

3. Consider the three points R = (1,0,0), S = (2,0,—1), and T = (0, 1, 3).

Give an equation of the plane which passes through these three points.

Problem 5.26] Let P = (2,0,0), Q = (0,3,0), and R = (0,0,4).

1. Find a vector that is orthogonal to both P_Q and PR.

2. Find the area of the triangle PQR. Construct a 3D graph of this triangle.

3. Give an equation of the plane through P = (2,0,0), @ = (0,3,0), and
R =1(0,0,4).

The Jacobian of a change-of-coordinates in 2D is found by computing the

area of the parallelogram formed by the partial derivatives of the transformation.

In 3 dimensions, we’ll need to find the volume of a parallelepiped formed by 3
partial derivatives, instead of just two. We’ll now tackle this problem.

Problem 5.27| Consider three vectors @, ¥, and o in R3. We will find the
volume of the parallelepiped formed by these three vectors. Let the base of
the parallelogram be the face formed by « and . The height h is the distance
between the planes contain the base to the plane containing the opposing side

of the parallelepiped. The cross product will be your friend on this problem.

Review the problems related to the cross product before proceeding.

See 12.4: 1-8.

See 12.5: 21-28.

Hint: Use an appropriate cross
product to get a normal vector.

See 12.4: 15-18. Remember, the
magnitude of the cross product
gives the area of the parallelogram
formed using the two vectors as
the edges.

Here is a parallelepiped formed by
the three vectors 4, ¥, and .

The volume is found by obtaining
the area A of one face, multiplied
by the distance h between the
base and the plane containing the
opposing face.



CHAPTER 5. INTEGRATION 81

1. Give a formula to compute the area of the base of the parallelogram.
2. Give a vector 7 that is normal to the base.

3. Use the projection formula, with the vectors @ and 7 in an appropriate
manner, to state the height of the parallelogram in terms of dot products.

4. Use your work above to explain why the parallelepiped’s volume is

(@ x &) - .

‘Problem 5.28 | Suppose @ = (a,b,c), U = (d,e, f), and & = (g, h, ).

1. Compute and simplify |(@ x ¥) - @] for these three vectors to obtain a
formula for the volume of the parallelepiped formed by these three vectors.

2. Compute and simplify |(¢ x @) - @|. What do you notice?

In the new coordinates chapter, we focused quite a bit on how to work
with a two-dimensional change-of-coordinates. In particular, we’ve already
seen examples of coordinate transformations with polar coordinates. In three
dimensions, some common coordinate systems are cylindrical and spherical
coordinates. The equations for these coordinate systems are shown below.

Cylindrical Coordinates | Spherical Coordinates

x =rcosf x = psin ¢ cos
y=rsinf y = psin¢sinf
z=z z = pcos ¢

Problem 5.29| Let P = (z,y,2) be a point in space. This point lies on a
cylinder of radius r, where the cylinder has the z axis as its axis of symmetry.
The height of the point is z units up from the zy plane. The point casts a
shadow in the xy plane at @ = (z,y,0). The angle between the ray C} and the
z-axis is 6. See the figure to the right. Use the graph and the information above
to explain why the equations for cylindrical coordinates are

r=rcosf, y=rsinb, z==z.

Now that we have a new coordinate system, let’s compute the Jacobian
0(z.y,2)
9(r,0,z)7

namely the stretch factor in the equation

9(z,y,2)
a(r,0,z)
As one last reminder, here is the process for polar coordinates. For polar

coordinates we have ¢ = rcosf and y = rsinf. The differential d(z,y), when
written as a linear combination of partial derivatives, becomes

dx cosf —7rsinf
(dy) o (sin 0) dr + ( rcosf ) do.
The area of the parallelogram formed by the partial derivatives is

|(cos ) (r cos ) — (sin ) (—rsin )| = |r(cos? § + sin® §)| = |r|.

O(z,y)
a(r, 0)
coordinates is that now we we’ll use the triple product (@ x ) - @ to find the
volume of the parallelepiped formed by the three partial derivatives.

dV = dzdrdf.

This gives the Jacobian as = |r|. The only difference for cylindrical

We call (@ X ¥) - W the triple

product of @, ¥, and 0.

A point P = (z,y, 2) lies on a
cylinder of radius r whose axis of
rotation is the z-axis, shown

below.

T

/j> = (z,9,2)
Y,
\ 9/ = (z,9,0)
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Problem 5.30| Compute the Jacobian for cylindrical coordinates. The steps
below are a guide, if needed.

1. For cylindrical coordinates we have x = rcosf, y = rsinf, and z =
z. Write the differential d(z,y, z) as the linear combination of partial

derivatives
dzx cos 6 ? ?
dy| = |sinf |dr+ |?7]dO+ |7]dz.
dz 0 ? ?

2. Compute the volume of the parallelepiped formed by the three vectors

(partial derivatives) above. Use the triple product (@ x ) - .

3. Simplify your result and state %.

Problem 5.31| Consider the solid domain D in space that lies inside the
right circular cylinder 2% + 4% = a? for 0 < z < h.

1. Draw the domain D.

2. Set up an integral in Cartesian coordinates that gives the volume of D. (If
some of your bounds involve something like v/aZ — 22 or y/a2? — y2, then
you're doing this correctly - the bounds are quite gross.)

3. Set up an integral in cylindrical coordinates that gives the volume of D.
(Your bounds should all be constants - this is one indication that we picked
the correct coordinate system.)

4. Compute the integral in cylindrical coordinates and simplify your work
till you obtain V = mwa?h, the volume inside a cylinder of height h and
radius a.

Problem 5.32‘ Consider the solid domain D in space which is above the
cone z = v/22 + y2 and below the paraboloid z = 6 — 22 — 2. Sketch the region
by hand, and then use cylindrical coordinates to set up an iterated triple integral
that would give the volume of the region. You’ll need to find where the surfaces
intersect, as their intersection will help you determine the appropriate bounds.

‘Problem 5.33‘ Let P = (z,y,2) be a point in space. This point lies on a

sphere of radius p (“rho”), where the sphere’s center is at the origin O = (0, 0,0).

The point casts a shadow in the zy plane at Q = (z,y,0). The angle between the
ray Cj and the z-axis is 6, which some call the azimuth angle. The angle between
the ray P and the z-axis is ¢ (“phi”), which some call the inclination angle,
polar angle, or zenith angle. See the figure to the right. Use this information to
explain why the equations for spherical coordinates are

= psingcosf, y=psingsinf, 2z = pcosa.

There is some disagreement between different scientific fields about the
notation for spherical coordinates. In some fields (like physics), ¢ represents
the azimuth angle and 6 represents the inclination angle, swapped from what

See Sage for a picture of the
region.

A point P = (z,y, 2) lies on a
sphere of radius p, where the two
angles ¢ and 0 (think latitude and
longitude) are sufficient to

describe its location.
z

See Wikipedia or MathWorld for a
discussion of conventions in
different disciplines.


http://aleph.sagemath.org/?z=eJxty00OgyAQQOF9L-IQB6PSnxUnMWqImpTEBgqTFji900V35m3e5vuYAFXCjKUSF6_ty-92sTT73ZFaoWgd34EgTX2dp14gJJQKFU_-T8EWr4J1fcbvkq1ke0675oaPH27i033BRL8tNAdD1umhQ24UB9CiL84
http://aleph.sagemath.org/?z=eJxty00OgyAQQOF9L-IQB6PSnxUnMWqImpTEBgqTFji900V35m3e5vuYAFXCjKUSF6_ty-92sTT73ZFaoWgd34EgTX2dp14gJJQKFU_-T8EWr4J1fcbvkq1ke0675oaPH27i033BRL8tNAdD1umhQ24UB9CiL84
http://en.wikipedia.org/wiki/Spherical_coordinate_system
http://mathworld.wolfram.com/SphericalCoordinates.html
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we see here. In some fields, like geography, instead of the inclination angle, the
elevation angle is given — the angle from the zy-plane (lines of latitude are from
the elevation angle). Additionally, sometimes the coordinates are written in a
different order. You should always check the notation for spherical coordinates
before communicating to others with them. As long as you have an agreed upon
convention, it doesn’t really matter how you denote them.

Problem 5.34| Let’s compute the Jacobian gg éj& 93 for spherical coordinates.

1. For spherical coordinates we have
x =psingcosf, y=psingsinh, z= pcosa.

Write d(z,y, z) as a linear combination of partial derivatives, so

dx sin ¢ cos 6 ? ?
dy | = |singsing | dp+ | 7| do+ | 7] d6.
dz cos ¢ ? ?

2. Compute the volume of the parallelepiped formed by the three vectors

(partial derivatives) above. Simplify your result to % = ‘p2 sin ¢|. Feel free to use software on this
s problem. You can do it all by
3. We'd like to remove the absolute values above and instead write hand, but you’ll to use a
Pythagorean identity several times
8(;3’ v, Z) to complete the simplification.

2
o 6.0)

Give bounds for ¢ that allow us to remove the absolute values.

Problem 5.35‘ Consider the solid domain D that lies inside the sphere
22 +y? + 22 = a®. We call this region a ball of radius a (a sphere is a surface,
whereas a ball is the solid region inside a sphere). We have already shown that
the volume of this region, using Cartesian coordinates, is given by

a2_x2 a2—x2—y
/ / / dzdydzx.
—a (LQ—.LQ a2—£2—J2

1. Set up an integral, using cylindrical coordinates, to find the volume of D. Don’t forget the Jacobian r.

2. Set up an integral, using spherical coordinates, to find the volume of D.
This will require you to give bounds for p, ¢, and 6. (Did you forget
the spherical Jacobian p?sin¢? If all your bounds are constants, then
you know you’ve done this correctly and that spherical coordinates is the
correct coordinate system to use.)

3. Compute the integral in spherical coordinates and simplify your work till
you obtain V = 37a?, the volume of a ball of radius a.

Problem 5.36\ Consider the solid domain D in space that lies below the
cone z = /22 + y2, above the zy-plane, and inside the sphere 22 + 32 + 2% = 25.

1. Provide a sketch of the domain D.

2. Set up an integral in cylindrical coordinates that gives the volume of D.
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3. Set up an integral in spherical coordinates that gives the volume of D.

4. Set up an integral in the coordinate system of your choice that would give
the z coordinate of the centroid of D.

‘ Problem 5.37 ‘ Consider the solid domain D in space that lies inside a right
circular cone whose height is h and the radius of the base is a. Set up and
then compute (using software) appropriate integrals (pick a relevant coordinate
system) to give both the volume V and centroid (Z, 7, Z) of the region. Place

the origin at whatever point you deem most appropriate, and provide a picture.

We’ve been working with rods, wires, thin plates, and solid domains. For
example, we could work with a circular wire, or a circular disc, or a ball. How
do the centroid formulas change in each setting? The following problem has you
examine these three setting, set up the corresponding integrals, use software to
solve them, and then compare the locations of the centroids.

Problem 5.38| Consider the curve C that is the upper half of the circle
% +y? = 49, the region R that lies above y = 0 and inside the circle 22 +y? = 49,
and the solid domain D that lies inside the sphere 2% 4+ y? + 22 = 49 and satisfies
y > 0. Because of symmetry, for each region it is clear that z =z = 0.

1. Set up an integral formula to compute g for the curve C.
2. Set up an integral formula to compute 7 for the region R.
3. Set up an integral formula to compute g for the domain D.
4

. Use software to compute all three integral formulas above, obtaining an
exact value for the answer (not a numerical approximation).

5. For each object, state a general formulas for § if the radius is a (not 7).

‘Problem 5.39‘ Let R be the region in the plane with ¢ < x < b and
g9(z) <y < f(z).
1. Set up an iterated integral to compute the area of R. Then compute the

inside integral. You should obtain a familiar formula from first-semester
calculus.

2. Set up an iterated integral formula to compute Z for the centroid. By
computing the inside integrals, show that

b
J, =(f — g)dx
e
J.(f = g)da
3. If the density depends only on x, so § = d(x), set up an iterated integral

formula to compute g for the center of mass. Compute the inside integral
and show that

I

b,(?/j? dm
b 5(2) (f — g)dz
[ A - stas [ L

mass

You’ll need a parametrization.

When we use double integrals to
find centroids, the formulas for the
centroid are similar for both Z and
y. In other courses, you may see
the formulas on the left, because
the ideas are presented without
requiring knowledge of double
integrals. Integrating the inside
integral from the double integral
formula gives the single variable
formulas.

In class, we’ll analyze the integral
formula on the left and show how
you can set this up as a single
integral using geometric reasoning.
We’ll discuss the quantities g, dm,
and dA, as appropriate.
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5.2 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to I-Learn and download the quiz. Once you have taken the
quiz, you can upload your work back to I-Learn and then download the key to
see how you did. If you still need to work on mastering some of the ideas, please
do so and then demonstrate your mastery though the quiz corrections.
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At the end of each chapter, the following words appeared.

Once you have finished the problems in the section and feel comfortable with the ideas, create a
short one page lesson plan that contains examples of the key ideas. You will get a chance to teach
from this lesson plan prior to taking the exam.

I’'ve summarized the objectives from each chapter below. For our in class review, please come to class with
examples to help illustrate each idea below. You’ll get a chance to teach another member of class the examples
you prepared. If you keep the examples simple, you’ll have time to review each key idea.

Optimization

1. For a function of the form f(x,y) or f(x,y,z), construct (by hand and with software) contour plots,
surface plots, and gradient field plots.

2. Compute differentials, partial derivatives, and gradients.
3. Compute slopes (directional derivatives), tolerances (differentials), and equations of tangent planes.

4. Obtain and use the chain rule to analyze a function f along a parametrized path 7(¢). In particular,
calculate slopes and locate maximums and minimums of f along 7.

5. Use Lagrange multipliers to locate and compute extreme values of a function f subject to a constraint
g=c.

6. Apply the second derivative test, using eigenvalues, to locate local maximum and local minimum values
of a function f over a region R.

Integration

1. Set up and compute single, double, and triple integrals to obtain lengths, areas, and volumes. Connect
these to the differentials dz, ds, dA, and dV.

2. Explain how to compute the mass of a wire, planar region, or solid object, if the density is known.
Connect this to the differential dm.

3. Find the average value of a function over a region. Use this to compute the center-of-mass and centroid
of a wire, planar region, or solid object.

4. Draw regions described by the bounds of an integral, and then use this drawing to swap the order of
integration.

5. Obtain the cross product and use it to find a vector orthogonal to two given vectors, the area of a
parallelogram, and the volume of a parallelepiped.

6. Appropriately use polar coordinates dA = |r|drdf, cylindrical coordinates dV' = |r|drdfdz, and spherical
coordinates dV = |p? sin ¢|dpdfde.



Chapter 6

Boundaries

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Determine whether a vector field has a potential. Use a potential of a
vector field to compute the work done by the field along a curve.

2. Use the del operator V to compute divergence and curl of a vector field.

3. Use Green’s theorem to compute the circulation of a vector field along a
closed curve.

4. Draw parametrized surfaces and set up surface integrals to compute their
surface area, mass, and center-of-mass.

5. Compute the flux of a vector field across an oriented surface.
6. Verify Stokes’s theorem and the Divergence theorem.

You’ll have a chance to teach your examples to your peers prior to the exam.

6.1 The Fundamental Theorem of Line Integrals

Many vector fields are the derivative of a function. When this occurs, computing
work along a curve is extremely easy. All we have to know are the endpoints of
the curve (the boundary of the curve), and the function f whose derivative is
the vector field. This function we call a potential for the vector field.

Qeﬁnition 6.1: Gradients and Poten_t)ials._'A potential for the vector field
F'is a function f whose gradient equals F', so Vf = F.

Problem 6.1 | Let’s practice finding gradients and potentials.

1. Let f(z,y) = 2% + 3zy + 2y2. Find Vf. Then compute D2 f(z,y) (you
should get a square matrix). What are f,, and f,?

2. Consider the vector field F(z,y) = (2z +y, z + 4y). Find the derivative of

F(z,y) (it should be a square matrix). Then find a function f(z,y) whose
gradient is ' (i.e. Df = F). What are f,, and fy,7

3. Consider the vector field F(z,y) = (2z + y, 3z + 4y). Find the derivative
of F. Why is there no function f(z,y) so that Df(z,y) = F(z,y)? [Hint:
look at fgy, and fy..]
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Watch a YouTube Video.

Watch a YouTube Video.

See problem 4.30.


http://www.youtube.com/watch?v=8Tk2pEIOnwg&list=PL04DF68E73B7ECD54&index=9&feature=plpp_video
http://www.youtube.com/watch?v=8Tk2pEIOnwg&list=PL04DF68E73B7ECD54&index=9&feature=plpp_video
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Based on your observations in the previous problem, we have the following
key theorem.

Theorem 6.2. Let F be a vector field that is everywhere continuously differen-
tiable. Then F has a potential if and only if the derivative DF is a symmetric
matriz. We say that a matriz is symmetric if interchanging the rows and columns
results in the same matriz (so if you replace row 1 with column 1, and row 2
with column 2, etc., then you obtain the same matriz).

Problem 6.2| For each of the following vector fields, start by computing the If you haven’t yet, please watch

derivative. Then find a potential, or explain why none exists. this YouTube video.
1. F(z,y) = (2x —y, 3z + 2y)
2. F(x,y) = 2z + 4y, 4z + 3y)

3. ﬁ(x, y) = (22 + 4y, 222 + y)

Problem 6.3 | For each of the following vector fields, start by computing the If you haven’t yet, please watch

derivative. Then find a potential, or explain why none exists. this YouTube video.
1. ﬁ(a:,y,z) = (x4 2y + 32,2z + 3y + 4z, 2z + 3y + 4z2)
2. F(z,y,2) = (z + 2y + 32,20 + 3y + 42,3z + 4y + 52)

3. ﬁ(x,y,z) =(z+yz,xz+ z,2y + y)

Definition 6.3: Smooth Curve. A smooth curve is a a curve C with a
continuously differentiable parameterization 7(¢) that is never the zero vector.
This condition requires that changes in direction happen gradually (derivative
is continuous), and it’s not possible to stop (derivative can’t be zero) and then
back up. The two conditions together prevent the curve from having any cusps.

If a vector field has a potential, then there is an extremely simple way to
compute work. To see this, we must first review the fundamental theorem of
calculus. The second half of the fundamental theorem of calculus states,

If f is continuous on [a,b] and F is an anti-derivative of f, then
F(b) — F(a) = [ f(z)da
If we replace f with f’, then an anti-derivative of f’ is f, and we can write,

If f is continuously differentiable on [a,b], then

b
F(b) — f(a) = / £ ()dx

This last version is the version we now generalize.

Theorem 6.4 (The Fundamental Theorem of Line Integrals). Suppose f is a Watch a YouTube video.
continuously differentiable function, defined along some open region containing

the smooth curve C. Let #(t) be a parametrization of the curve C for t € [a, b].

Then we have

b
(7)) — £(7a) = / DF(F(1)DF(t) dt.


http://www.youtube.com/watch?v=8Tk2pEIOnwg&list=PL04DF68E73B7ECD54&index=9&feature=plpp_video
http://www.youtube.com/watch?v=8Tk2pEIOnwg&list=PL04DF68E73B7ECD54&index=9&feature=plpp_video
http://www.youtube.com/watch?v=5ZsCN6NN3yg&list=PL04DF68E73B7ECD54&index=11&feature=plpp_video
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Notice that if F is a vector field, and has a potential f, which means F=D f,
then we could rephrase this theorem as follows.

Suppose F is a a vector field that is continuous along some open
region containing the curve C. Suppose F has a potential f. Let A
and B be the start and end points of the smooth curve C. Then the
work done by F along C depends only on the start and end points,
and is precisely

15 - 1) = |

ﬁ-d?z/ Mdz + Ndy.
C C

The work done by F' is the difference in a potential.

If you are familiar with kinetic energy, then you should notice a key idea here.
Work is a transfer of energy. As an object falls, energy is transferred from
potential energy to kinetic energy. The total kinetic energy at the end of a fall is
precisely equal to the difference between the potential energy at the top of the
fall and the potential energy at the bottom of the fall (neglecting air resistance).
So work (the transfer of energy) is exactly the difference in potential energy.

‘Problem 6.4: Proof of Fundamental Theorem‘ Suppose f(z,y) is con-
tinuously differentiable, and suppose that 7(t) for ¢ € [a,b] is a parametrization

of a smooth curve C. Prove that f(7(b)) — f(i(a)) = f; Df(r(t))Dr(t) dt. [Let
g(t) = f(7(t)). Why does g(b) — g(a) = fab ¢’ (t)dt? Use the chain rule (matrix
form) to compute ¢’'(t). Then just substitute things back in.]

Problem 6.5| For each vector field and curve below, find the work done by

F along C (compute the integral Jo Mdx + Ndy or [, Mdx + Ndy + Pdz).

1. Let F"(:L’, y) = (2z + y,x + 4y) and C be the parabolic path y = 9 — 22 for
x from —3 to 2.

2. Let ﬁ(x, y,z) = (2x +yz,2z + xz,2y + xy) and C be the straight segment
from (2,-5,0) to (1,2,3).

[Hint: If you parametrize the curve, then you’ve done the problem the HARD
way. You don’t need any parameterizations at all. Did you find a potential, and
then plug in the end points?]

Let F = (7,2yz,y?). Let C; be the curve which starts at
(1,0,0) and follows a helical path (cost,sint,t) to (1,0,27). Let Cy be the curve
which starts at (1,0, 27) and follows a straight line path to (2,4, 3). Let C5 be
any smooth curve that starts at (2,4, 3) and ends at (0, 1, 2).

e Find the work done by F along each path C1, Cs, and Cj.

e Find the work done by F along the path C which follows C7, then Cs,
then Cj.

e If C is any path that starts at (1,0,0) and ends at (0, 1,2), compute the
work done by F' along C.

The proof of the fundamental
theorem of line integrals is quite
short. All you need is the
fundamental theorem of calculus,
together with the chain rule.

Watch a YouTube video.

See Sage for a picture.

See Sage for a picture.

See Sage—C'1 and C2 are in blue,
and several possible C3 are shown
in red.

If you are parameterizing the
curves, you're doing this the really
hard way. Are you using the
potential of the vector field?


http://www.youtube.com/watch?v=5ZsCN6NN3yg&list=PL04DF68E73B7ECD54&index=11&feature=plpp_video
http://aleph.sagemath.org/?z=eJxz06jQqdS01TDSqtCu1KnQNtGq1OQqyMkviS9LTS7JL4pPy0zNSdFw01EAKtQ11jHSBLIqdQx0LDU1tUHqNCx1K-KMdGCymgDJPhZ0
http://aleph.sagemath.org/?z=eJwVi7EKgDAMRPd-hWPSRtCIo6s_IdJBKwhFRYo0_XrT6R5372bIJFRwArbZiS3Etris2bAVBUHzxDv5L2zpfv1xhrgPO8zU6LMnRgWhdqwEhToaEF08rwALcO27aqiow4rmBwN1HWM
http://aleph.sagemath.org/?z=eJytkM1uhCAUhfc-hTsueMmMYNOV23mJydQYpR1SK0TItPr0hVFbm5kumnQBl597zvngUg9APKHJAT5wxImWoU440sRY78pWNx78WTevvXKulDSxpe2Mry6q8WaonrXqWtnCAdOg4zkKGlYj8gILijAhl_hIgyorbT3Ub8oPuqmiA0BjHPjQ7nR_rXGAxz0KZjVFxiLBVdrpXsER8q-7FAQWKOkJ07UtzkfSmM4M5FSSQbVkI53bgy567Le6e2SCr0wFmykZ5Dzu5bJfUa3eiR-ov3oxwfzO6tVSsm-7B_YPhuFgLllnXiDPIrPns92SEzPnhzyJP-RlMe-qvX3CbWa-4G0-a3N4P9adzTtYmnwCd8u7lQ
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In the problem above, the path we took to get from one point to another
did not matter. The vector field had a potential, which meant that the work
done did not depend on the path traveled.

Definition 6.5: Conservative Vector Field. We say that a vector field is
conservative if the integral fC F' - di does not depend on the path C. We say
that a curve C is piecewise smooth if it can be broken up into finitely many
smooth curves.

We now know how to draw a vector field provided someone tells us the
equation. What we really need is to do the reverse. If we see vectors (forces,
velocities, etc.) acting on something, how do we obtain an equation of the vector
field? The spin field F= (—y, ) is directly related to the magnetic field that
surrounds a wire with a current running through it. The following problem
develops the gravitational vector field.

Problem 6.7: Radial ﬁelds‘ Do the following;:

1. Let P = (x,y, z) be a point in space. At the point P, let B (x,y, z) be the
vector which points from P to the origin. Give a formula for Fi(z,y, 2).

2. Give an equation of the vector field where at each point P in space, the
vector F5(P) is a unit vector that points towards the origin.

3. Give an equation of the vector field where at each point P in space, the
vector F3(P) is a vector of length 7 that points towards the origin.

4. Give an equation of the vector field where at each point P in space, the
vector F'(P) points towards the origin, and has a magnitude equal to G /d?
where d is the distance to the origin, and G is a constant.

Now that we have a formula for the gravitation vector field, let’s prove that
this field has a potential. The following review problem is very similar.

T
-Review Compute / ———dz. See L.
P Va? 44

Definition 6.6: Simple Closed Curve. A closed curve is a curve C' that
starts and ends at the same point.

Problem 6.8| The gravitational vector field is directly related to the radial
oo (—.Z', Y, _Z)
field F = RSy
finding a potential for F'. Then compute the work done by an object that moves
from (1,2,—-2) to (0,—3,4) along ANY path that avoids the origin.
[See the review problem just before this if you're struggling with the integral.|

Show that this vector field is conservative, by

Problem 6.9| Suppose Fisa gradient field. Let C be a piecewise smooth

closed curve. Compute fC F . dr (you should get a number). Explain how you
know your answer is correct.

1 Let u = 22 + 4, which means du = 2zdz or dx = (2% This means

d 1 1ul/?
[ mte= [ = [ =gy = va= VL
X

Use Sage to plot your vector fields.
See 16.2: 39-44 for more practice.


http://aleph.sagemath.org/?z=eJxz06jQqdSp0lSwVdAA0joVmlwFOfkl8WWpySX5RfFpmak5KcYpGm46CkCFusY6xpo6IIUQlkYVhKEJAOGFExs
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6.2 Parametric Surfaces

If someone gives us parametric equations for a curve in the plane or space, we
can draw the curve. What we really need is the ability to obtain parametric
equations of a curve that we can see. We've already seen that the parametric

curve, given by the equations x = 2cost and y = 3sint or 7(t) = (2cost, 3sint),

2 2
is the ellipse — + vy, The next problem reviews a few parametrizations

that we’ve learned to construct on our own.

Problem 6.10| For each planar curve below, give a parametrization of the
curve. You can write your parametrization in the vector form #(¢) = (7,7), or in
the parametric form x =7, y =7. Remember to give bounds for ¢ of the form
7 <t <7 so that we obtain precisely the requested portion of the curve.

2 2
1. The top half (so y > 0) of the ellipse 9% + ?Z—Q =1.
a

2. The straight line segment from (a,0) to (0,b).

w

. The parabola y = 22 from (—1,1) to (2,4).

S

. The function y = f(z) for = € [a,b].

The next two problems introduce parametric surfaces. Basically, parametric
surfaces are a collection of lots of parametric curves along a surface.

Problem 6.11| A jet begins spiraling upwards to gain height. The position
of the jet after ¢ seconds is modeled by the equation 7(t) = (2 cost,2sint,t). We
could alternatively write this as x = 2cost, y = 2sint, z = t.

1. Construct a graph of this function by picking several values of ¢t and
plotting the resulting points (2 cost,2sint,t).

2. Next to a few points on your graph, include the time ¢ at which the jet is
at this point on the graph. Include an arrow for the jet’s direction.

3. Find the first and second derivative of 7(t).

4. Compute the velocity and acceleration vectors at ¢ = 7/2. Place these
vectors on your graph with their tails at the point corresponding to ¢t = m/2.

5. Give an equation of the tangent line to this curve at t = 7/2.

‘ Problem 6.12 ‘ The jet from problem 6.11 is actually accompanied by several
jets flying side by side. As all the jets fly, they leave a smoke trail behind them
(it’s an air show). The smoke from each jet spreads outwards to mix together,
so that it looks like the jets are leaving wide sheet of smoke behind them
as they spiral upwards. The position of two of the many other jets is given
by 73(t) = (3cost,3sint,t) and 74(t) = (4cost,4sint,t). A function which
represents the smoke stream from these jets is 7#(a,t) = (acost,asint,t) for
0<t<4mand 2 <a<4.

1. Start by graphing the position of the three jets 7(2,t) = (2cost, 2sint, t),
7(3,t) = (3cost,3sint,t), and 7(4,t) = (4cost,4sint,t).

2. Let ¢ = 0 and graph the curve r(a,0) = (a,0,0) for a € [2,4], which
represents a segment along which the smoke has spread. Then repeat this
for t = w/2,7,3m/2.

Use Sage or Wolfram Alpha to
visualize your parameterizations.

See Sage or Wolfram Alpha. The
text has more practice in 13.1:
9-14, 19-22.

More practice in 16.5: 1-16.


http://aleph.sagemath.org/?z=eJwrsS1LLNJQL1HX5CpILErMTS0pykyOL8jJL9GINtJKzi_WKNHUUTDWKs7MA7JidRQ0SnQMdIy0CjI1NQFWdRJT
http://wolfr.am/wAkR8l
http://aleph.sagemath.org/?z=eJxL0yjRtNUw0krOLwaydBSMtIoz88CsEk2ugsSixNzUkqLM5PiCnPwSjTQdBY0SHQMdBROtgkxNTQAYOxGO
http://www.wolframalpha.com/input/?i=parametric+plot+3D++%282+cos+t%2C+2+sin+t%2C+t%29+for+t+from+0+to+4+pi
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3. Describe the resulting surface, and make sure you check your answer with See Sage or Wolfram Alpha.
technology (use the links to the side).

We call the surface you drew above a parametric surface. The vector equation
describing the smoke screen is a parametrization of this surface.

Definition 6.7: Parametric Surface, Parametrization of a surface. A
parametrization of a surface is a collection of three equations to tell us the
position

x=x(u,v),y = y(u,v), z = z(u,v)

of a point (x,y,z) on the surface. We call u and v parameters, and these
parameters give us a two dimensional pair (u,v), the input, needed to obtain
a specific location (z,y, z), the output, on the surface. We can also write a
parametrization in vector form as

(u,v) = (x(u,v),y(u,v), z(u,v)).

We’ll often give bounds on the parameters v and v, which help us describe
specific portions of the surface. A parametric surface is a surface together with
a parametrization.

We draw parametric surfaces by joining together many parametric space
curves, as done in the previous problem. Just pick one variable, hold it constant,
and draw the resulting space curve. Repeat this several times, and you’ll have
a 3D surface plot. Most of 3D computer animation is done using parametric
surfaces. Woody’s entire body in Toy Story is a collection of parametric surfaces.
Car companies create computer models of vehicles using parametric surfaces, and
then use those parametric surfaces to study collisions. Often the mathematics
behind these models is hidden in the software program, but parametric surfaces
are at the heart of just about every 3D computer model.

Problem 6.13| Consider the parametric surface 7(u, v) = (ucos v, usinv, u?) See Sage or Wolfram Alpha.
for 0 <u <3 and 0 <wv < 2w Construct a graph of this function. Remember,

to do so we just let u equal a constant (such as 1, 2, 3) and then graph the

resulting space curve where we let v vary. After doing this for several values of

u, swap and let v equal a constant (such as 0, w/2, etc.) and graph the resulting

space curve as u varies. [Hint: Did you get a satellite dish? Use the software

links to the right to make sure you did this right.]

We'll return to parametric surfaces in a bit, and use the parametrization to
compute surface areas.

6.3 Operators

Recall that the gradient of a function f is the quantity

. (Of Of AF\ (8 @ @
Vf— <axaay7az> - (axaayvaz) f7

where in the last expression we let V= ( 9 ,8%, 6%) and then treat 6]“ as a

oz
“yector” V times a scalar f. The quantity V= ( 0 9 ) is an example of

9 90 0
oz’ dy’ 0z
something we call an “operator,” something that operates on functions.


http://aleph.sagemath.org/?z=eJxL0yjRUUjUtNVI1ErOL9Yo0QTytIoz88CsEk2ugsSixNzUkqLM5PiCnPwSjTQdBaAOAx0FE62CTKASjUQdBSMgT1OTCwBCiRSf
http://www.wolframalpha.com/input/?i=parametric+plot+3D++%28a+cos+t%2C+a+sin+t%2C+t%29+for+t+from+0+to+4+pi+and+a+from+2+to+4
http://aleph.sagemath.org/?z=eJxL0yjVUSjTtNUo1UrOL9Yo09RRKNUqzsyDsOKMNLkKEosSc1NLijKT4wty8ks00nQUQHoMdBRMgEo0ynQMdIy0CjI1NQFPyxVa
http://wolfr.am/A90cfW
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Definition 6.8: Operator. An operator is a function whose input is a function
itself. This allows us to say “operator on functions” instead of “function of
functions.”

We’ve already encountered several operators before this class. For example,

the derivative operator % from first semester calculus takes a function such as

f(x) = 22 and returns a new function %f = 2x. The integral operator fj fdx
takes a function f and return a real number. The gradient operator takes a
function f and returns a vector of functions Vf = (f,, fy, f.). This is just 3
examples of operators. Here are two more.

Definition 6.9: Divergence and Curl of a vector field. Consider the
vector field F(x,y,z) = (M, N, P), where M, N, and P are functions of z, y,
and z.

e The divergence of F' is the scalar quantity

div(F) =V - F
0 0 0
- (%7@782> (M7N7P)

oM o op
- Ox dy 0z
=M, + N, + P,.

e The curl of F is the vector quantity
curl(F) = V x
o 0 0
==—,=—,— M,N, P
(ax’ay’az) x (M, N, P)
(00 ox _[or _oa] oo

9y 9z |ox 0z | ox oy
— (P, ~ N.,— [Py — M.],N, — M,).

Problem 6.14‘ Compute the divergence and curl of each vector field below.

1. F = (2z, 3y?, e%)
2. F = (—3y,3z,52)
3. F = (2 —3y,3z,—1)

In class, we’ll talk about the physical meaning of each result above.

Problem 6.15| Suppose f(z,y,2) is a twice continuously differentiable.

1. Compute the curl of the gradient of f, so compute V xV f, and simplify
the result as much as possible.

2. Which of the vector fields from the previous problem have a potential?

3. If a vector field F = (M, N, P) has a potential, then what is the curl of F?




CHAPTER 6. BOUNDARIES 94

Problem 6.16 | Suppose 15”(:1:7 y,z) = (M, N, P) is a vector field and f(z,y, z)
is a function, both of which are twice continuously differentiable.

1. Compute the divergence of the curl of F , S0 compute V- (ﬁ x F ), and

simplify the result as much as possible.

2. Compute the divergence of the gradient of f, so compute V.V f, and
simplify the result as much as possible.

6.4 Green’s Theorem

When a vector has no potential, there is a version of the fundamental theorem
of calculus that simplifies the work computations.

Definition 6.10: Circulation, Simple closed curve. When a curve C' is a
closed curve (starts and ends at the same point), we call the work done by vector
field F along C the circulation of F along C. A simple closed curve is a closed
curve that does not cross itself.

Definition 6.11: Circulation Density and Flux Density (Divergence).

Let F(z,y) = (M, N) be a continuously differentiable vector field. At the point
(z,y) in the plane, create a circle C, of radius a centered at (z,y), oriented

1 -
counterclockwise. The area inside of Cy is A, = ma?. The quotient — F-dr
a JC,

is a circulation per area. The counterclockwise circulation density of F at (z,9)
we define to be

.1 | ON oM
g,ll)l%)fl.afandr_z},%flafchdx—"_Ndy_&C_ay_NL_My

In the definition above, we could have replaced the circle C, with a square
of side lengths a centered at (x,y) with interior area A,. Alternately, we could
have chosen any collection of curves C, which “shrink nicely” to (z,y) and have
area A, inside. Regardless of which curves you chose, it can be shown that

. 1
Nm—My:ilg%)Aafgade—i—Ndy.

To understand what the circulation density mean in a physical sense, think
of F as the velocity field of some gas. The circulation density tells us the rate
at which the vector field F causes ob jects to rotate around points. If circulation
density is positive, then particles near (x,y) would tend to circulate around
the point in a counterclockwise direction. The larger the circulation density,
the faster the rotation. The velocity field of a gas could have some regions
where the gas is swirling clockwise, and some regions where the gas is swirling
counterclockwise.

We are now ready to state Green’s Theorem. Ask me in class to give an
informal proof as to why this theorem is valid.

Theorem 6.12 (Green’s Theorem). Let F(xz,y) = (M, N) be a continuously
differentiable vector field, which is defined on an open region in the plane that
contains a simple closed curve C' and the region R inside the curve C. Then we
can compute the counterclockwise circulation ofﬁ along C' using

§ Mdo Nay = [ N, - w0
c R

We will not prove that the partial
derivative expression Ny — My, is
actually equal to the limit given
here. That is best left to an
advanced course.
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Let’s use this theorem to rapidly find circulation (work on a closed curve).

Problem 6.17| Consider the vector field F' = (2 + 3y, 4z + 5y). Start by
computing N, — M,. If C is the boundary of the rectangle 2 < x < 7 and
0 <y < 3, find the circulation of F along C. You should be able to reduce the
integrals to facts about area. [If you tried doing this without Green’s theorem,
you would have to parametrize 4 line segments, compute 4 integrals, and then
sum the results.]

Problem 6.18 ‘ Consider the vector field F = (22 + y2, 3z + 5y). Start by
computing N, — M,. If C is the circle (x — 3)*> + (y + 1)*> = 4 (oriented
counterclockwise), then find the circulation of F along C.

Problem 6.19‘ Repeat the previous problem, but change the curve C' to the
boundary of the triangular region R with vertexes at (0,0), (3,0), and (3, 6).

6.5 Surface Integrals

‘Problem 6.20‘ Consider the parametric surface 7(a,t) = (acost,asint,t)
for 2 <a <4 and 0 <t <4n. We encountered this parametric surface early in
the chapter when we considered a smoke screen left by multiple jets.

1. Compute the differential dr” which is the same as finding dz, dy, and dz.
Write your answer as a linear combination of vectors, so as

dx ?
di=|dy| =17]|da+ dt
dz ? ?

2. Suppose an object is on this surface at the point 7(3,7) = (—3,0,7) (the
dot on the graph to the right). Evaluate the vectors above at this point

and then draw both vectors on the plot with their tail at the point 7(3, 7).

This will go best if you PRINT THIS PAGE.

3. Give vector equations for two tangent lines to the surface at 7(3, 7).

[Hint: You’ve got the point as 7(3, 7), and you’ve got two different direction
vectors as the columns of the matrix. Use the ideas from chapter 2 to get
an equation of a line, or see the review problem above.]

In the previous problem, you should have noticed that the columns of your
matrix are tangent vectors to the surface. Because we have two tangent vectors
to the surface, we should be able to use them to construct a normal vector to
the surface, and from that we can get the equation of a tangent plane.

If you know that a plane passes through the point (1,2,3) and has

normal vector (4,5,6), then give an equation of the plane. See ? for an answer.

2An equation of the plane is 4(z — 1) + 5(y — 2) + 6(z — 3) = 0. If (x,y, 2) is any point in
the plane, then the vector (z — 1,y — 2,z — 3) is a vector in the plane, and hence orthogonal
to (4,5,6). The dot product of these two vectors should be equal to zero, which is why the
plane’s equation is (4,5,6) - (x — 1,y — 2,2 — 3) = 0.

See 16.4 for more practice. Try
doing a bunch of these, as they
get really fast.

Here’s a rough sketch of the
surface.
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Problem 6.21| Consider again the parametric surface

7(a,t) = (acost,asint,t)

for 2 <a <4 and 0 <t <4n. We'd like to obtain an equation of the tangent
plane to this surface at the point 7(3,27). Once you have a point on the plane,
and a normal vector to the surface, we can use the concepts in chapter 2 to get
an equation of the plane. Give an equation of the tangent plane.

[Hint: To get the point, what is #(3,27)? The columns of the matrix we
obtain, when computing the differential dr, give us two tangent vectors. How
do we obtain a vector orthogonal to both these vectors?]

[Here’s an alternate version of this problem, for Mario Kart fans. Mario and
Luigi are booking it up rainbow road. About half way up, there is a glitch in the
computer game and the road temporarily disappears. Instead of following the
road, they instead are stuck on an infinite plane that meets the road tangentially
where the glitch occurred. Give an equation of this plane.]

In first-semester calculus, we learned how to compute integrals f; fdx along
straight (flat) segments [a,b]. This semester, in the line integral unit, we learned
how to change the segment to a curve, which allowed us to compute integrals
f o fds along any curve C, instead of just along curves (segments) on the z-axis.

The integral f: dx = b — a gives the length of the segment [a,b]. The integral
Jo ds gives the length s of the curve C.

This semester we’ve learned how to compute double integrals f f r fdA along
flat regions R in the plane. We’ll now learn how to change the flat region R
into a curved surface S, and then compute integrals of the form [, g fdo along
curved surfaces. The differential do stands for a little bit of surface area. We
already know that [[,dA gives the area of R. We’ll define [[do so that it
gives the surface area of S.

‘Problem 6.22‘ Consider the surface S given by z = 9 — 22 — 2, an up-
side down paraboloid that intersects the xy-plane in a circle of radius 3. A
parametrization of the portion of this surface that lies above the xzy-plane is

Fla,y) = (r,9,9 —2? —y?) for —3<2<3,—V/9—22<y<V9— a2

1. Draw the surface S. Add to your surface plot the parabolas given by
7(z,0), 7(x, 1), and 7(x, 2), as well as the parabolas given by 7(0,y), 7(1,y),
and 7(2,y). You should have an upside down paraboloid, with at least 6
different parabolas drawn on the surface. These parabolas should divide
the surface up into a bunch of different patches. Our goal is to find the
area of each patch, where each patch is almost like a parallelogram.

—

0 or
2. Find both a—; and a—; Then at the point (2,1), draw both of these partial

derivatives with their bases at (2,1). These vectors form the edges of a
parallelogram. Add that parallelogram to your picture.

0
3. Show that the area of a parallelogram whose edges are the vectors a—r and
x

or

Ew is v/1+ 422 + 4y2. [Hint: think about the cross product.]
Y

Here’s a rough sketch of the
surface with its tangent plane.

See Sage for a solution.


http://aleph.sagemath.org/?z=eJx1jkEKwjAQRfc5RXadqVMXzUohJylWYtrY0NqEJGBze1MFF4KzGD7M-7wxsFFGuW86NVvfNrlvkXnpF5fEAKZrL1SujSCBBPkTkDmfohysTqDd4oKsbovSc0VpsnpexxilQGZc4JbblQe13kd4V8-Ml_EH6VVQjzEFq6-7C0yxWCT-ldX1LsH_vC2fFz7_8P4YJ_cEfAHkUEDa
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4. Notice in your work above that we drew parabolas by changing both z
and y by 1 unit. If instead we had drawn parabolas at increments of .5
instead of 1, then we’d need to multiply our partial derivatives by .5 before
finding the area of the parallelogram. If we use increments of dx and dy,
then the edges of our parallelogram are the vectors 7,dx and 7,dy. Find
the area of this parallelogram.

In the previous problem, you showed that the area of the parallelogram with
edges given by %dm and %dy is
or  or
do=|— X —
Jdx Oy
This little bit of area approximates the surface area of a tiny patch on the
surface. When we add all these areas up, we obtain the surface area.

dxdy = |7y x 7| dzdy.

Definition 6.13. Let S be a surface. Let #"(u,v) = (x,y, 2) be a parametrization
of the surface, where the bounds on w and v form a region R in the uv plane.
Then the surface area element (representing a little bit of surface) is

or  or

do = ani

dudv = |Fy X 7| dudv.

The surface integral of a continuous function f(x,y, z) along the surface S is

//fxy, da—/ fFuv‘arxar
v

If we let f = 1, then the surface area of S is snnply

o~ - 5

This definition tells us how to compute any surface integral. The steps are
almost identical to the line integral steps.

dudv.

dudv

1. Start by getting a parametrization 7" of the surface S where the bounds
form a region R.

2. Find a little bit of surface area by computing do = |g—i X g—ﬂ dudv.

3. Multiply f by do, and replace each x, y, z with what they equals from
the parametrization.

4. Integrate the previous function along R, your parameterization’s bounds.

Example 6.14. Consider again the surface S given by z = 9 — 22 — ¢?2, for
z > 0. We used the parametrization

Fla,y) = (r,9,9 —2? —y?) for —3<2<3,—V/9—22<y<V9— a2

to obtain do = |7y x 7| dedy = /422 + 4y? 4+ 1dzdy. This means that the
surface area is

Vo—z2
0—// dg—/ V4?2 + 4y? + ldydzx.

Vo—zZ

At this point we now have an iterated double integral. As the region described
by the integral is a circle, we can swap to polar coordinates to simplify the
computations. The bounds are 0 < r < 3 and 0 < 0 < 27, which means

3 V9—z? 27 p3
o= / VA2 +y?) + 1 dydx = / / V4r? +1 rdrd®.
o Jo

—3J—v9—22
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Problem 6.23‘ Consider again the surface S from the example above. A
different parametrization of this surface is

7(r,0) = (rcosf,rsinh,9 —r?), where 9 — 72 > 0.

1. Give a set of inequalities for r and 6 that describe the region R, over
which we need to integrate.

2. Find the surface area element do = |7 x 7| drdf. Simplify your work to
show that do = rv/4r2 + 1 drd6.

3. Set up the surface integral [[do as an iterated double integral over Ryg,
and then actually compute the integral by hand.

Problem 6.24 ‘ Consider the parametric surface Here’s a rough sketch of the
surface.

7(a,t) = (acost,asint,t) for 2<a<4and 0 <t <4nm.

Find 7, and 7. Then compute the surface area element do = |7, X 7;|dadt. Set
up an iterated integral for the surface area. Don’t compute the integral.

‘Problem 6.25‘ If a surface S is parametrized by 7(z,y) = (z,vy, f(z,y)),
show that do = /1 + f2 + f2 dady (compute a cross product). If 7(z,z) =

(z, f(x, 2), z), what does do equal (compute a cross product - you should see
a pattern)? Use the pattern you’ve discovered to quickly compute do for the
surface © = 4 — y? — 22, and then set up an iterated double integral that would
give the surface area of S for x > 0.

Problem 6.26 ‘ Consider the sphere 2 + y2 + 22 = a?. We'll find do using
two different parameterizations.

1. Consider the rectangular parametrization 7(z,y) = (z,y, \/a? — 22 — y?).
Compute do? [Hint, use the previous problem.] Why can this parametriza-

tion only be use if the surface has positive z-values?

2. Consider the spherical parametrization
7(¢,0) = (asin ¢ cos b, asin ¢sin b, a cos P).

Show that
do = (a?|sin ¢|)d¢pdd = (a® sin ¢)dpde,

where we can ignore the absolute values if we require 0 < ¢ < 7. Along
the way, you’ll show that

sy X 7p = a” sin ¢(sin ¢ cos 0, sin ¢ sin 0, cos ¢).

We can compute mass, average value, centroids, and center of mass for
surfaces. We just replace dA with do, and all the formulas are the same.

Problem 6.27‘ Consider the hemisphere 22 + y2 + 22 = a? for z > 0.
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1. Set up a formula that would give Z for the centroid of the hemisphere. I
suggest you use a spherical parametrization, as then the bounds are fairly
simple, and we know do = (a?sin ¢)d¢df from the previous problem.

2. Compute both the integrals in your formula. The combine your work to

show that z = 5.

3. One of the integrals you computed gave the surface area of a hemisphere
of radius a. Which is it? Use that result to give the surface area of a
sphere of radius a.

‘ Problem 6.28| Consider the surface S that is the portion of the cone z? =

y? + 22 with 1 <z < 4.

1. Give a parametrization of the cone, including bounds.
2. Use your parametrization to compute the surface area element do.
3. Compute the surface area of S. Yes, actually compute the integral.

4. Setup a formula that would give the center of mass T of the cone if the
density is §(x,y, z) = 2. Don’t spend any time computing the integrals.

6.6 Flux

Flux (often represented with ®) is a measure of flow across a surface. This
might be the flow of water across a net. Alternately, it might be the flow of
light through a solar panel. For simplicity, let’s start by assuming F represents
the velocity of a fluid (the units are meters per second). When we want to find
the flux of a vector field across a surface, we must state in which direction 7
we want to compute the flux. This direction gives an orientation to the surface,
differentiating between the two sides of the surface. The flux of F across the
surface S (oriented using the normal vector 72) is a measure of the amount of the
fluid per unit time that flows across S in the direction of nn. To compute this
flux, we need to know the projection of F onto the normal 7 to the surface. The
next problem has you prove that little bits of flux are given by d® = F - fdo.

Problem 6.29‘ Let ﬁ(m,y, z) be a vector field and 7i(u, v) be a unit normal
vector to a surface S given by parametrization 7#(u,v) for a < u < b and
c<v<d.

1. Use the projection formula, and sirgplify the result, to prove that the
projection of F' onto 7 is given by (F - 7)n.

2. What is the scalar component of F in the direction of A?

3. Let do be the surface area of a small portion of the surface. What does
F - ndo measure?

4. If the units on F are m/s, then what are the units of F - hdo?

Adding up little bits of flux gives us the following formula for the flux of a
vector field F' across a surface S:

Fluxz(b://ﬁ~ﬁda.
S

The next problem will help us simplify the computation of 7ido.
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Problem 6.30| Consider again the surface z = 9 — 22 — ¢2.

1. Using the parametrization #(z,y) = (z,y,9 — 2% — y?), find a unit normal
vector 77 to the surface so that 7 points upwards away from the z-axis.
State what do equals, as well as ido. Explain how you know the normal
vector you give is pointing upwards away from the z axis.

2. Using the parametrization 7(r,0) = (rcos@,rsinf,9 — r2?), find a unit
normal vector 77 to the surface so that 7 points downwards towards the
z-axis. State what do equals, as well as 77do. Explain how you know the
normal vector you give is pointing downwards towards the z axis.

In the problem above, we showed that fidoc = £(7, x 7)dzdy and that
fido = £(7 x 7p)drdf. We no longer need to find the magnitude of the cross
product, but we must determine the correct sign to put on our cross product.
This shows us that we can write flux as

Flux:@://ﬁ.ﬁda:// F - (+7, x 7)) dudv.
S Ry

| Problem 6.31| Consider the cone 22 = 22 + y? and vector field F = (22 +
3y, —2y,yz). Set up an iterated integral that would give the flux of F outwards
(away from the z-axis) for the portion of the cone between z = 1 and z = 3.
[Hint: Start by parameterizing the cone by using a polar parametrization

x=rcosf,y =rsinf, z =7.

You should obtain bounds for r and 6 that are constants. Compute the normal
vector and look at the third component to determine if it points up or down.
Then just plug everything into the formula.]

When the surface is flat, often you can determine the normal vector without
having to perform any cross products. We’ll now compute a flux of a vector
field outwards across the 6 faces of a cube.

Problem 6.32| Find the flux of F = (z +y,y, z) outward across the surface
of the cube in the first quadrant bounded by x = 2,y = 3,2 = 5. The cube has
6 surfaces, so we have to compute the flux across all 6 surfaces. Fill in the table
below to complete the flux across each surface, and then compute each integral
to find the total flux.

—

Surface 7(u,v) 7l F(7(u,v)) F.i Flux
Backz =0 | (0,4,2) | (-1,0,0) | F(0,49.2) = (y.9.2) | —y | [fggex —9do = —go = —~(3)(15)
Front x =2 | (2,9,2) F(2,y,2) = (2+y,y,2)
Left y =0 0 (Why?)
Right y =3 | (2,3,2) | (0,1,0) ﬁ(a:,?», z)=(x+3,3,z2) 3 30 (Why?)
Bottom z =0
Top z =3

You should be able to complete each integral by considering centroids and surface
area of each of the 6 different flat surfaces. Show that the total flux is 90.
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In the double integral chapter, we learned a way to greatly simplify work
computations when working with simple closed curves (a closed curve is the
boundary of a planar region). Green’s theorem stated that [ F.dr = JJr Na—
NydA. A similar theorem, called the divergence theorem, connects the outward
flux of a vector field across a closed surface S containing the solid D using the

formula
//ﬁ-ﬁda:///ﬁ-ﬁdv.
s D

The divergence of F is the quantity div(F) = M, + N, + P..

Problem 6.33 \ Consider the exact same vector field and box as the previous

problem. So we have the vector field F= (z +vy,y,2) and S is the surface of
the cube in the first quadrant bounded by z =2,y = 3,z = 5.

1. Compute the divergence of F, which is div(ﬁ) =M, + N, + P,.
2. The divergence theorem states that if S is a closed surface (has an inside

and an outside), and the inside of the surface is the solid domain D, then
the flux of F' outward across S equals the triple integral

//ﬁ-ﬁdaz// Vv - FdV.
S D

Use the divergence theorem to compute the flux of F across S. [Hint:
Just as the area is found by adding up little bits of area, which is what
we mean by A = [ dA, the volume is found by adding up little bits of
volume.]

Problem 6.34‘ In problem 6.26, we found

fido = 7y x Tpdpdd = a® sin ¢(sin ¢ cos 0, sin ¢ sin 0, cos ¢)dpdo
for a sphere of radius a. Use this to compute the outward flux of

<—(E, —Y, _Z>

F=
(22 + 42 + 22)3/2

across a sphere of radius a. You should get a negative number since the vector
field has all arrows pointing in. [Hint: Remember that for a sphere of radius
a we have a2 = 22 + y? + 22. When you perform the dot product of F and
7, you'll save yourself a lot of time if you remember that i - @ = |i|?; the dot
product of a vector with itself is the length squared.]

Problem 6.35| Repeat the previous problem, but this time don’t use the
formula from problem 6.26. In fact, you don’t even need to parametrize the
surface. Instead, if you are at the point (z,y,2) on a sphere of radius a, give
a formula for the outward pointing unit normal vector 7. Give this formula
by only using a geometric argument. Then find the outward flux of F =

<—l‘, -y, _Z>

(.’EQ + y2 + 22)3/2
simplifies to a constant, so that you never actually have to compute do. Then
you can use known facts about the surface area of a sphere.

across a sphere of radius a. You should find that F.i
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