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Introduction

This course may be like no other course in mathematics you have ever taken.
We’ll discuss in class some of the key differences, and eventually this section will
contain a complete description of how this course works. For now, it’s just a
skeleton.

I received the following email about 6 months after a student took the course:

Hey Brother Woodruff,

I was reading Knowledge of Spiritual Things by Elder Scott. I
thought the following quote would be awesome to share with your
students, especially those in Math 215 :)

Profound [spiritual] truth cannot simply be poured from
one mind and heart to another. It takes faith and dili-
gent effort. Precious truth comes a small piece at a time
through faith, with great exertion, and at times wrenching
struggles.

Elder Scott’s words perfectly describe how we acquire mathematical truth, as
well as spiritual truth.
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Chapter 1

Review

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Give a summary of the ideas you learned in 112, including graphing, deriva-
tives (product, quotient, power, chain, trig, exponential, and logarithm
rules), and integration (u-sub and integration by parts).

2. Compute the differential dy of a function and use it to approximate the
change in a function.

3. Explain how to perform matrix multiplication and compute determinants
of square matrices.

4. Illustrate how to solve systems of linear equations, including how to express
a solution parametrically (in terms of t) when there are infinitely solutions.

5. Extend the idea of differentials to approximate functions using parabolas,
cubics, and polynomials of any degree.

You’ll have a chance to teach your examples to your peers prior to the exam.

1.1 Review of First Semester Calculus

1.1.1 Graphing

This semester we’ll be using Mathematica to visualize concepts, rapidly perform
computations, and learn to program some more complicated algorithms in a
computer algebra system. During this review unit, we’ll learn to use Mathematica
to perform many of the basic computations from first semester calculus.

Start by installing Mathematica on your computer. You’ll find the instruc-
tions in I-Learn. When you create a WolframID, make sure you use your byui.edu
email address. You should be able to download, install, and register the software
for free. Once you have done so, you can complete the following problem.

We’ll need to know how the graphs of several basic functions. When we start
drawing functions in 3D, we’ll have to piece together infinitely many 2D graphs.
Knowing the basic shape of graphs will help us do this.

Problem 1.1 Use Mathematica to write a block of code that will plot a
function. You should start with the command ‘‘f= x^2’’ and then use the

1



CHAPTER 1. REVIEW 2

“Plot” command to graph the function. Then use your block of code to provide
a sketch of the following functions:

x2, x3, x4,
1

x
, sinx, cosx, tanx, secx, arctanx, ex, lnx.

Bring your laptop to class, or a printout of your work, so that we can see the
commands you used. I have a projector that will display your work, whether
it’s a printout or a laptop.

1.1.2 Derivatives

In first semester calculus, one of the things you focused on was learning to
compute derivatives. You’ll need to know the derivatives of basic functions (found
on the end cover of almost every calculus textbook). Computing derivatives
accurately and rapidly will make learning calculus in high dimensions easier.
You’ll want to be familiar with the power rule, sum rule, product rule, quotient
rule, and chain rule, as well as implicit differentiation.

Problem 1.2 Compute the derivative of esec x cos(tan(x)+ln(x2+4)). Show See sections 3.2-3.6 in Thomas’s
for more practice with derivatives.
The later problems in 3.6 review
of most of the entire
differentiation chapter.

each step in your computation, making sure to show what rules you used.

Problem 1.3 If y(p) =
ep

3

cot(4p+ 7)

tan−1(p4)
find dy/dp. Again, show each step

in your computation, making sure to show what rules you used.

Problem 1.4 Given c2 = a2 + b2 and that a, b, c are all functions of t, use

implicit differentiation to compute dc
dt in terms of a, b, da

dt , and db
dt .

The following problem will help you review some of your trigonometry, inverse
functions, as well as implicit differentiation.

Problem 1.5 Use implicit differentiation to explain why the derivative of See sections 3.7-3.9 in Thomas’s
for more examples involving
inverse trig functions and implicit
differentiation.

y = arcsinx is y′ =
1√

1− x2
. [Rewrite y = arcsinx as x = sin y, differentiate

both sides, solve for y′, and then write the answer in terms of x].

Problem 1.6 Compute dy
dx if we know 5 = x2 + 3xy − y3.

1.1.3 Integrals

Each derivative rule from the front cover of your calculus text is also an integra-
tion rule. In addition to these basic rules, we’ll need to know three integration
techniques. They are (1) u-substitution, (2) integration-by-parts, and (3) inte-
gration by using software. There are many other integration techniques, but
we will not focus on them. If you are trying to compute an integral to get
a number while on the job, then software will almost always be the tool you
use. As we develop new ideas in this and future classes (in engineering, physics,
statistics, math), you’ll find that u-substitution and integrations-by-parts show
up so frequently that knowing when and how to apply them becomes crucial.
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Problem 1.7 Compute

∫
x
√
x2 + 4dx. For practice with u-substitution,

see section 5.5 and 5.6. in
Thomas’s For practice with
integration by parts, see section
8.1.

Problem 1.8 Compute

∫
x sin 2xdx.

Problem 1.9 Compute

∫
arctanxdx.

Problem 1.10 Compute

∫
x2e3xdx.

Problem 1.11 Use Mathematica to write a block of code that computes
both the derivative and integral of a function. Then test your code on several
function that you know the derivatives and integrals of. Bring either your laptop,
or a printout of your code, to share with the class.

1.2 Differentials

The derivative of a function gives us the slope of a tangent line to that function.
We can use this tangent line to estimate how much the output (y values) will

change if we change the input (x-value). If we rewrite the notation
dy

dx
= f ′ in

the form dy = f ′dx, then we can read this as “A small change in y (called dy)
equals the derivative (f ′) times a small change in x (called dx).”

Definition 1.1. We call dx the differential of x. If f is a function of x, then
the differential of f is df = f ′(x)dx. Since we often write y = f(x), we’ll
interchangeably use dy and df to represent the differential of f .

We will often refer to the differential notation dy = f ′dx as “a change in the
output y equals the derivative times a change in the input x.”

Problem 1.12 Let f(x) = x2 ln(3x + 2) and g(t) = e2t tan(t2). Compute See 3.10:19-38.

the derivatives df
dx and dg

dt , and then state the differentials df and dg. If you
skipped reading the definition of a differential, you’ll find it is given directly
above this problem.

This problem will help you see how the notion of differentials is used to
develop equations of tangent lines. We’ll use this same idea to develop tangent
planes to surfaces in 3D and more.

Problem 1.13 Consider the function y = f(x) = x2. This problem has See 3.11:39-44. Also see problems
3.11:1-18. The linearization of a
function is just an equation of the
tangent line where you solve for y.

multiple steps, but each is fairly short.

1. State the derivative of y with respect to x and the differential of y.

2. Give an equation of the tangent line to f(x) at x = 3.
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3. Draw a graph of f(x) and the tangent line on the same axes. Place a dot
at the point (3, 9) and label it on your graph. Place another dot on the
tangent line up and to the right of (3,9). Label the point (x, y), as it will
represent any point on the tangent line.

4. From the point (3, 9) to the point (x, y), the change in x, or run, is
dx = x− 3. The change in y, or rise, is what? Use this to state the slope
of the line connecting (3, 9) and (x, y).

5. We already know the slope of the tangent line is the derivative f ′(3) = 6.
We also know the slope from the previous part. Set these two slope values
equal, and verify that this gives an equation of the tangent line to f(x) at
x = 3.

Problem 1.14 The manufacturer of a spherical storage tank needs to create See 3.11:45-62.

a tank with a radius of 5 m. Recall that the volume of a sphere is V (r) = 4
3πr

3.
No manufacturing process is perfect, so the resulting sphere will have a radius
of 5 m, plus or minus some small amount dr. The actual radius will be 5 + dr.
Find the differential dV . Then use differentials to estimate the change in the
volume of the sphere if the actual radius is 5.02 m instead of the planned 5 m.

Problem 1.15 A forest ranger needs to estimate the height of a tree. The
ranger stands 50 feet from the base of tree and measures the angle of elevation
to the top of the tree to be about 60◦.

1. If this angle of 60◦ is correct, then what is the height of the tree?

2. If the ranger’s angle measurement could be off by as much as 5◦, then If your answer here is quite large
(much larger than the height of the
tree), then look back at your work
and see if using radians instead of
degrees makes a difference. Why
does it? Feel free to ask in class.

how much could his estimate of the height be off? Use differentials to give
an answer.

1.3 Matrices

We will soon discover that matrices represent derivatives in high dimensions.
When you use matrices to represent derivatives, the chain rule is precisely
matrix multiplication. For now, we just need to become comfortable with matrix
multiplication.

We perform matrix multiplication “row by column”. Wikipedia has an
excellent visual illustration of how to do this. See Wikipedia for an explanation. The links will open your browser

and take you to the web.See texample.net for a visualization of the idea.

Problem 1.16 Compute the following matrix products. For extra practice, make up two
small matrices and multiply them.
Use Sage or Wolfram Alpha to see
if you are correct (click the links
to see how to do matrix
multiplication in each system).

•
[
3 2 1

] −1
2
0


•
[
1 2
3 4

] [
5 0
6 1

]

http://en.wikipedia.org/wiki/Matrix_multiplication
http://www.texample.net/tikz/examples/matrix-multiplication/
http://aleph.sagemath.org/?z=eJxztM1NLCnKrNCIjjbUMdYxiY3V5HJCiJnrGMXqKICkQJSukY4BSIGjlhMA16EPQw
http://www.wolframalpha.com/input/?i=%281%2C3%2C4%29+*%28%287%2C2%29%2C%281%2C3%29%2C%28-2%2C0%29%29
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Problem 1.17 Compute the product

[
3 2 1
0 1 −4

]−1 3 0
2 −1 0
0 1 2

. Then use

Mathematica to compute the product as well (note that there is a difference
between * and . in Mathematica). Come to class ready to show us how to
perform matrix multiplication in Mathematica.

Most of higher dimensional calculus can quickly be developed from differential
notation. Once we have the language of vectors and matrices at our command, we
will develop calculus in higher dimensions by writing d~y = Df(~x)d~x. Variables
will become vectors, and the derivative will become a matrix.

Problem 1.18 Consider the equations x = r cos θ and y = r sin θ and assume

that x, y, r, θ are all functions of t. Then compute the derivatives dx
dt and dy

dt .
You should be able to write your answer in the form

dx

dt
= (?)

dr

dt
+ (?)

dθ

dt
dy

dt
= (?)

dr

dt
+ (?)

dθ

dt
.

Then rewrite the equations above in terms of matrices, by writing[
dx/dt
dy/dt

]
=

[
? ?
? ?

] [
dr/dt
dθ/dt

]
, or in the differntial form

[
dx
dy

]
=

[
? ?
? ?

] [
dr
dθ

]
.

1.3.1 Determinants

Determinants measure area, volume, length, and higher dimensional versions of
these ideas. Determinants will appear as we study cross products and when we
get to the high dimensional version of u-substitution.

Associated with every square matrix is a number, called the determinant,
which is related to length, area, and volume, and we use the determinant to
generalize volume to higher dimensions. Determinants are only defined for
square matrices.

Definition 1.2. The determinant of a 2× 2 matrix is the number We use vertical bars next to a
matrix to state we want the
determinant, so detA = |A|.

det

[
a b
c d

]
=

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.

The determinant of a 3× 3 matrix is the number Notice the negative sign on the
middle term of the 3× 3
determinant. Also, notice that we
had to compute three
determinants of 2 by 2 matrices in
order to find the determinant of a
3 by 3.

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a det

∣∣∣∣e f
h i

∣∣∣∣− bdet

∣∣∣∣d f
g i

∣∣∣∣+ cdet

∣∣∣∣d e
g h

∣∣∣∣
= a(ei− hf)− b(di− gf) + c(dh− ge).

Problem 1.19 Compute

∣∣∣∣1 2
3 4

∣∣∣∣ and

∣∣∣∣∣∣
1 2 0
−1 3 4
2 −3 1

∣∣∣∣∣∣. For extra practice, create your
own square matrix (2 by 2 or 3 by
3) and compute the determinant
by hand. Then use software to
check your work. Do this until
you feel comfortable taking
determinants.

What good is the determinant? The determinant was discovered as a result of
trying to find the area of a parallelogram and the volume of the three dimensional
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version of a parallelogram (called a parallelepiped) in space. If we had a full
semester to spend on linear algebra, we could eventually prove the following
facts that I will just present here with a few examples.

Consider the 2 by 2 matrix

[
3 1
0 2

]
whose determinant is 3 ·2−0 ·1 = 6. Draw

the column vectors

[
3
0

]
and

[
1
2

]
with their base at the origin (see figure 1.1).

These two vectors give the edges of a parallelogram whose area is the determinant
6. If I swap the order of the two vectors in the matrix, then the determinant of[
1 3
2 0

]
is −6. The reason for the difference is that the determinant not only

keeps track of area, but also order. Starting at the first vector, if you can turn
counterclockwise through an angle smaller than 180◦ to obtain the second vector,
then the determinant is positive. If you have to turn clockwise instead, then the
determinant is negative. This is often termed “the right-hand rule,” as rotating
the fingers of your right hand from the first vector to the second vector will
cause your thumb to point up precisely when the determinant is positive.

+ −

Area = 6

∣∣∣∣3 1
0 2

∣∣∣∣ = 6 and

∣∣∣∣1 3
2 0

∣∣∣∣ = −6

Figure 1.1: The determinant gives both area and direction. A counter clockwise
rotation from column 1 to column 2 gives a positive determinant.

For a 3 by 3 matrix, the columns give the edges of a three dimensional
parallelepiped and the determinant produces the volume of this object. The sign
of the determinant is related to orientation. If you can use your right hand and
place your index finger on the first vector, middle finger on the second vector,
and thumb on the third vector, then the determinant is positive. For example,

consider the matrix A =

1
0
0

0
2
0

0
0
3

. Starting from the origin, each column

represents an edge of the rectangular box 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3
with volume (and determinant) V = lwh = (1)(2)(3) = 6. The sign of the
determinant is positive because if you place your index finger pointing in the
direction (1,0,0) and your middle finger in the direction (0,2,0), then your thumb
points upwards in the direction (0,0,3). If you interchange two of the columns,

for example B =

0
2
0

1
0
0

0
0
3

, then the volume doesn’t change since the shape is

still the same. However, the sign of the determinant is negative because if you
point your index finger in the direction (0,2,0) and your middle finger in the
direction (1,0,0), then your thumb points down in the direction (0,0,-3). If you
repeat this with your left hand instead of right hand, then your thumb points
up.

Problem 1.20 Compute the determinant of the matrix

[
−2 3
5 4

]
. Use your

answer to find the area of the triangle with vertices (0, 0), (−2, 5), and (3, 4).
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Problem 1.21 Find the area of a triangle with vertices (−3, 1), (−2, 5), and
(3, 4), using the determinant of an appropriate matrix. [Hint: if you shift all
the points so one of them is at the origin, then this is extremely similar to the
previous problem. If you search on the web, most of the search results will tell
you to use a 3 by 3 matrix, where they add a column or row of all 1’s, but don’t
explain why you should. Avoid this. Instead, you should be able to do this
problem with just a 2 by 2 matrix and a determinant. You can use the 3 by 3
matrix method from online, provided you are prepared to explain why it works.]

1.4 Solving Systems of equations

Problem 1.22 Solve the following linear systems of equations. For additional practice, make up
your own systems of equations.
Use Wolfram Alpha to check your
work.•

{
x+ y = 3

2x− y = 4

•

{
−x+ 4y = 8

3x− 12y = 2

Problem 1.23 Find all solutions to the linear system

{
x+ y + z = 3

2x− y = 4
. This link will show you how to

specify which variable is t when
using Wolfram Alpha.Since there are more variables than equations, this suggests there is probably

not just one solution, but perhaps infinitely many. One common way to deal
with solving such a system is to let one variable equal t, and then solve for the
other variables in terms of t. Do this three different ways.

• If you let x = t, what are y and z. Write your solution in the formxy
z

 =

t?
?

 .
where you replace the ?’s above with what y and z equal in terms of t.

• If you let y = t, what are x and z (in terms of t).

• If you let z = t, what are x and y.

1.5 Higher Order Approximations

When you ask a calculator to tell you what e.1 means, your calculator uses an
extension of differentials to give you an approximation. The calculator only
uses polynomials (multiplication and addition) to give you an answer. This
same process is used to evaluate any function that is not a polynomial (so trig
functions, square roots, inverse trig functions, logarithms, etc.) The key idea
needed to approximate functions is illustrated by the next problem.

http://www.wolframalpha.com/input/?i=Solve+x%2B2y%3D3+and+4x-y%2Bz%3D7+and+x%3Dt
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Problem 1.24 Let f(x) = ex. We already know how to find an equation of
the tangent line to f(x) at x = 0. We just need to find the slope f ′(0) and the
value f(0) of the function at x = 0. So the tangent line is just a first degree
polynomial P1(x) = a + bx so that P1(0) = f(0) and P ′1(0) = f ′(0). In other
words, the tangent line passes through the same point and has the same slope
as f(x) = ex does at x = 0. What we’d like to do now is find polynomials of
degree 2, 3, and higher, that approximate the function f(x).

1. Find a second degree polynomial P2(x) = a+bx+cx2 so that P2(0) = f(0),
P ′2(0) = f ′(0), and P ′′2 (0) = f ′′(0). In other words, give me a parabola
that passes through the same point, has the same slope, and has the same
concavity as f(x) = ex does at x = 0. The polynomial has three unknowns,
namely a, b, and c. We have three equations, namely P2(0) = f(0),
P ′2(0) = f ′(0), and P ′′2 (0) = f ′′(0). So just compute the needed derivatives,
plug in x = 0, and you should be able to use these three equations to find
the unknowns.

2. Find a third degree polynomial P3(x) = a + bx + cx2 + dx3 so that
P3(0) = f(0), P ′3(0) = f ′(0), P ′′3 (0) = f ′′(0), and P ′′′3 (0) = f ′′′(0). In
other words, give me a cubic that passes through the same point, has the
same slope, the same concavity, and the same third derivative as f(x) = ex

does at x = 0. Make sure you can show that P3(x) = 1 + x+ 1
2x

2 + 1
6x

3.

3. Now compute e.1 with a calculator. Then compute both P2(.1) and P3(.1).
Which of them is closer to e.1?

Problem 1.25 Now let f(x) = sinx. Find a 7th degree polynomial of the The polynomial you are creating is
often called a Taylor polynomial.
(I’m giving you the name so that
you can search online for more
information if you are interested.)

form
P (x) = a0 + a1x+ a2x

2 + a3x
3 + · · ·+ a7x

7

so that the function and the polynomial have the same value and same first
seven derivatives when evaluated at x = 0. This will require you to compute
8 derivatives of both f(x) and P (x), plug in x = 0 to create 8 equations, and
then use those equations to determine the unknown coefficients a0, a1, a2, . . . , a7
(many of which are zero). Once you’ve got this polynomial, evaluate the As a check, you should get

a7 = − 1
7·6·5·4·3·2·1 = − 1

7!
.polynomial at x = 0.3. How close is this value to your calculator’s estimate of

sin(0.3)?

Problem 1.26 Let’s look at one more example of how to use a high degree
polynomial to approximate a function. Consider the function f(x) = ln(x+ 1).
Find a 10th degree polynomial of the form

P (x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ a10x
10

so that the function and the polynomial have the same value and same first ten
derivatives when evaluated at x = 0. Once you’ve got this polynomial, use your
calculator to compute ln(1.2) and P (.2).
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1.6 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to I-Learn and download the quiz. Once you have taken the
quiz, you can upload your work back to I-Learn and then download the key to
see how you did. If you still need to work on mastering some of the ideas, please
do so and then demonstrate your mastery though the quiz corrections.



Chapter 2

Vectors

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Define, draw, and explain what a vector is in 2 and 3 dimensions.

2. Add, subtract, and multiply (scalar, dot product, cross product) vectors.
Be able to illustrate each operation geometrically, where possible.

3. Use vector products to find angles, length, area, projections, and work.

4. Use vectors to give equations of lines and planes, and be able to draw lines
and planes in 3D.

You’ll have a chance to teach your examples to your peers prior to the exam.

2.1 Vectors and Lines

Learning to work with vectors will be a key tool we need for our work in high
dimensions. Let’s start with some problems related to finding distance in 3D,
drawing in 3D, and then we’ll be ready to work with vectors.

To find the distance between two points (x1, y1) and (x2, y2) in the plane, we
create a triangle connecting the two points. The base of the triangle has length
∆x = (x2−x1) and the vertical side has length ∆y = (y2−y1). The Pythagorean
theorem gives us the distance between the two points as

√
(∆x)2 + (∆y)2 =√

(x2 − x1)2 + (y2 − y1)2.

Problem 2.1 The distance between two points (x1, y1, z1) and (x2, y2, z2) in

3-dimensions is
√

(∆x)2 + (∆y)2 + (∆z)2 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.
Construct an appropriate picture and show how to use the Pythagorean theorem
repeatedly to prove this fact about distance in 3D.

Problem 2.2 Find the distance between the two points P = (2, 3,−4) and See 12.1:41-58.

Q = (0,−1, 1). Then give an equation of the sphere passing though point Q
whose center is at P .

Problem 2.3 For each of the following, construct a rough sketch of the set See 12.1:1-40.

of points in space (3D) satisfying:

10
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1. 2 ≤ z ≤ 5

2. x = 2, y = 3

3. x2 + y2 + z2 = 25

Definition 2.1. A vector is a magnitude in a certain direction. If P and Q
are points, then the vector ~PQ is the directed line segment from P to Q. This
definition holds in 1D, 2D, 3D, and beyond. If V = (v1, v2, v3) is a point in
space, then to talk about the vector ~v from the origin O to V we’ll use any of
the following notations: Most textbooks use a bold font to

write vectors. When writing
vectors by hand, it’s common to
use an arrow above a letter to
represent that it’s a vector.

~v = v = ~OV = 〈v1, v2, v3〉 = (v1, v2, v3) =

v1v2
v3


= v1i + v2j + v3k︸ ︷︷ ︸

common in engineering

= v1x̂ + v2ŷ + v3ẑ︸ ︷︷ ︸
common in physics

.

We call v1, v2, and v3 the x, y, and z components of the vector, respectively.

Note that (v1, v2, v3) could refer to either the point V or the vector ~v. The
context of the problem we are working on will help us know if we are dealing
with a point or a vector.

Definition 2.2. Let R represent the set real numbers. Real numbers are actually
1D vectors. Let R2 represent the set of vectors (x1, x2) in the plane. Let R3

represent the set of vectors (x1, x2, x3) in space. There’s no reason to stop at 3,
so let Rn represent the set of vectors (x1, x2, . . . , xn) in n dimensions.

In first semester calculus and before, most of our work dealt with problem
in R and R2. Most of our work now will involve problems in R2 and R3. We’ve
got to learn to visualize in R3.

Definition 2.3. The magnitude, or length, or norm of a vector ~v = 〈v1, v2, v3〉
is |~v| =

√
v21 + v22 + v23 . It is just the distance from the point (v1, v2, v3) to the

origin.
A unit vector is a vector whose length is one unit. We commonly place a

hat above unit vectors, as in v̂ or v̂, The standard unit vectors are vectors of
length one that point in the positive x, y, and z directions, namely

i = 〈1, 0, 0〉 = x̂, j = 〈0, 1, 0〉 = ŷ, k = 〈0, 0, 1〉 = ẑ.

Note that in 1D, the length of the vector 〈−2〉 is simply |−2| =
√

(−2)2 = 2,
the distance to 0. Our use of the absolute value symbols is appropriate, as it
generalizes the concept of absolute value (distance to zero) to all dimensions.

Definition 2.4. Suppose ~x = 〈x1, x2, x3〉 and ~y = 〈y1, y2, y3〉 are two vectors in
3D, and c is a real number. We define vector addition and scalar multiplication
as follows:

• Vector addition: ~x+ ~y = (x1 + y1, x2 + y2, x3 + y3) (add component-wise).

• Scalar multiplication: c~x = (cx1, cx2, cx3).

Problem 2.4 Consider the vectors ~u = (1, 2) and ~v = 〈3, 1〉. Draw ~u, ~v, See 12.2:23-24.

~u+ ~v, and ~u− ~v with their tail placed at the origin. Then draw ~v with its tail
at the head of ~u.
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Problem 2.5 Consider the vector ~v = (3,−1). Draw ~v, −~v, and 3~v. Suppose See 11.1: 3,4.

a donkey travels along the path given by (x, y) = ~vt = (3t,−t), where t represents
time. Draw the path followed by the donkey. Where is the donkey at time
t = 0, 1, 2? Put markers on your graph to show the donkey’s location. Then
determine how fast the donkey is traveling.

In the previous problem you encountered (x, y) = (3t,−t). This is an
example of a function where the input is t and the output is a vector (x, y).
For each input t, you get a single vector output (x, y). Such a function we call
a parametrization of the donkey’s path. Because the output is a vector, we
call the function a vector-valued function. Often, we’ll use the variable ~r to
represent the radial vector (x, y), or (x, y, z) in 3D which points from the origin
outwards. So we could rewrite the position of the donkey as ~r(t) = (3,−1)t. We
use ~r instead of r to remind us that the output is a vector.

Problem 2.6 Suppose a horse races down a path given by the vector- See 12.2: 1.

valued function ~r(t) = (1, 2)t+ (3, 4). (Remember this is the same as writing
(x, y) = (1, 2)t+ (3, 4) or similarly (x, y) = (1t+ 3, 2t+ 4).) Where is the horse
at time t = 0, 1, 2? Put markers on your graph to show the horse’s location.
Draw the path followed by the horse. Give a unit vector that tells the horse’s
direction. Then determine how fast the horse is traveling.

Problem 2.7 Consider the two points P = (1, 2, 3) and Q = (2,−1, 0). See 12.2: 9,17,25,33 and
surrounding.Write the vector ~PQ in component form (a, b, c). Find the length of vector ~PQ.

Then find a unit vector in the same direction as ~PQ. Finally, find a vector of
length 7 units that points in the same direction as ~PQ.

Problem 2.8 A raccoon is sitting at point P = (0, 2, 3). It starts to climb See 12.5: 1-12.

in the direction ~v = 〈1,−1, 2〉. Write a vector equation (x, y, z) = (?, ?, ?) for the
line that passes through the point P and is parallel to ~v. [Hint, study problem
2.6, and base your work off of what you saw there. It’s almost identical.]

Then generalize your work to give an equation of the line that passes through
the point P = (x1, y1, z1) and is parallel to the vector ~v = (v1, v2, v3).

Make sure you ask me in class to show you how to connect the equation
developed above to what you have been doing since middle school. If you can
remember y = mx+ b, then you can quickly remember the equation of a line. If
I don’t show you in class, make sure you ask me (or feel free to come by early
and ask before class).

Problem 2.9 Let P = (3, 1) and Q = (−1, 4). See 12.5: 13-20.

• Write a vector equation ~r(t) = (?, ?) for (i.e, give a parametrization of)
the line that passes through P and Q, with ~r(0) = P and ~r(1) = Q.

• Write a vector equation for the line that passes through P and Q, with
~r(0) = P but whose speed is twice the speed of the first line.

• Write a vector equation for the line that passes through P and Q, with
~r(0) = P but whose speed is one unit per second.
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If you want to analyze how a river is flowing, one way to do so would be
to construct a plot of the river and at each point in the river draw a vector to
represent the velocity at that point. This create a collection of many vectors
drawn all at once, where the base of each velocity vector is placed at the
point where the velocity occurs. The next problem has you construct your first
vector field. We’ll come back to vector fields more as the semester progresses.
Eventually vector fields will be one of the most important ideas in this course. I
want you to see one now.

Problem 2.10: Vector Fields Consider the function ~F (x, y) = 〈2x+ y,−3x+ 2y〉.
This is a function where the input is a point (x, y) in the plane, and the output
is the vector 〈2x+ y,−3x+ 2y〉. For example, if we input the point (1, 0), then
the output is 〈2(1) + 0,−3(1) + 0〉. To construct a vector field, you draw the
output with its base located at the input. In the picture below, based at (1,0)
we draw a vector that points right 2 and down 3.

1. Complete the table below and add the other 7 vectors to the graph.

(x, y) 〈2x+ y,−3x+ 2y〉

(1, 0) 〈2,−3〉
(1, 1)

(1,−1)
(0, 1)

(0,−1)
(−1, 0)
(−1, 1)

(−1,−1)

2. Repeat the above for the vector field ~F (x, y) = (−2y, 3x), constructing a
vector field plot consisting of 8 vectors.

2.2 The Dot Product

Now that we’ve learned how to add and subtract vectors, stretch them by scalars,
and use them to find lines, it’s time to introduce a way of multiplying vectors
called the dot product. The dot product arises naturally when we try to find the
angle between two vectors. We’ll need to recall the law of cosines, stated below.

Theorem (The Law of Cosines). Consider a triangle with side lengths a, b,
and c. Let θ be the angle between the sides of length a and b. Then the law of
cosines states that

c2 = a2 + b2 − 2ab cos θ.

If θ = 90◦, then cos θ = 0 and this reduces to the Pythagorean theorem.

Problem 2.11 Sketch in R2 the vectors 〈−1, 2〉 and 〈3, 5〉. Then use the See 12.3: 9-12.

law of cosines to find the angle between the vectors.
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Problem 2.12 Consider the two vectors ~u and ~v in the plane (so ~u,~v ∈ R2)

~u

~v

θ

shown in margin to the right.

1. Add the vector ~u− ~v to the picture to the right.

2. Use the law of cosines to explain why |~u− ~v|2 = |~u|2 + |~v|2 − 2|~u||~v| cos θ.

Notice that in your work on the previous problem, the fact that |~u− ~v|2 =
|~u|2 + |~v|2−2|~u||~v| cos θ did not require ever referring to the fact that the vectors
were in R2. This fact is true for vectors in general.

Problem 2.13 Let ~u = (u1, u2, u3) and ~v = (v1, v2, v3) be vectors in R3 See page 693 if you are struggling.

(which we write as ~u,~v ∈ R3).

1. First use the result of the previous problem to explain why

|~u||~v| cos θ =
|~u|2 + |~v|2 − |~u− ~v|2

2
.

2. Now use the coordinates (u1, u2, u3) and (v1, v2, v3) to simplify the right
hand side of the equation above. For example, you’ll replace |~u|2 with(√

u21 + u22 + u23

)2
= u21 + u22 + u23. For the difference |~u− ~v|, you’ll need

to subtract coordinates and then compute the magnitude, which gives
something like |~u−~v| =

√
(u1 − v1)2 + · · ·. When you are done simplifying

you should end up with something quite simple.

Definition 2.5: The Dot Product. Let ~u = (u1, u2, u3) and ~v = (v1, v2, v3)
be vectors in R3. We define the dot product of these two vectors to be

~u · ~v = u1v1 + u2v2 + u3v3.

A similar definition holds for vectors in Rn, where ~u·~v = u1v1+u2v2+· · ·+unvn.
You just multiply corresponding components together and then add. It is the
same process that we use in matrix multiplication.

With the definition of the dot product, we can rewrite the law of cosines as

~u · ~v = |~u||~v| cos θ.

Problem 2.14 Use our new rule ~u ·~v = |~u||~v| cos θ to find the angle between See 12.3: 9-12.

each pair of vectors below. If the angle is messy, first write the answer in terms
of arccos and then use a calculator to approximate the angle.

1. 1i + 2j + 3k and −2i + 1j + 4k

2. (1, 2, 3) and (−2, 1, 0)

In the previous problem, you should have found that one of the pairs of
vectors had a dot product that was zero.

Definition 2.6. We say two vectors ~u and ~v are orthogonal when ~u · ~v = 0.

Problem 2.15 Find two vectors orthogonal to (1, 2). Then find 4 vectors
orthogonal to (3, 2, 1).
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The dot product provides a really easy way to determine when two vectors
meet at a right angle. The dot product is precisely zero when this happens. The
next problem has you justify this fact.

Problem 2.16 Show that if two nonzero vectors ~u and ~v are orthogonal, See page 694.

then the angle between them is 90◦. Then show that if the angle between them
is 90◦, then the vectors are orthogonal.

Note: There are two things to show above. First, assume that the vectors
are orthogonal (so their dot product is zero) and use this to compute the angle.
Then second, assume that the angle between them is 90◦ and use this to compute
the dot product.

Let’s end this section by looking at some properties of the dot product.

Problem 2.17 Mark each statement true or false. Then make up an example
to illustrate why you gave your answer. I have done the first as an example.
You can assume that ~u,~v, ~w ∈ R2 and that c ∈ R.

1. ~u · ~v = ~v · ~u.

Solution: This is true. If ~u = (a, b) and ~v = (c, d), then we know
~u · ~v = (a, b) · (c, d) = ac + bd and ~v · ~u = (a, b) · (c, d) = ca + db. Since
ab = ba and cd = dc, these two are clearly true.

2. ~u · (~v · ~w) = (~u · ~v) · ~w.

3. c(~u · ~v) = (c~u) · ~v = ~u · (c~v).

4. ~u+ (~v · ~w) = (~u+ ~v) · (~u+ ~w).

5. ~u · (~v + ~w) = (~u · ~v) + (~u · ~w).

6. ~u · ~u = |~u|2.

The last property above is extremely important, namley it connects the
length of a vector to the dot product. We have now seen that we can compute
both lengths and angles from the dot product. Any time you are working with
either lengths or angles, there is a dot product hiding in the background. On a
side note, in dimension 4 and higher, we define lenths and angles directly from
the dot product.

2.2.1 Projections and Work

Suppose a heavy box needs to be lowered down a ramp. The box exerts a In the diagram below, we have
~F = ~w + ~n where ~w is parallel to
~d and ~n is orthogonal to ~d.

~F

~d
~w = c~d

~n

downward force of say 200 Newtons, which we could write in vector notation
as ~F = 〈0,−200〉. If the ramp was placed so that the box needed to be moved
right 6 m, and down 3 m, then we’d need to get from the origin (0, 0) to the

point (6,−3). This displacement can be written as ~d = 〈6,−3〉. The force
~F acts straight down, rather than with the displacement. Our goal in this
section is to find out how much of the force ~F acts in the direction of the
displacement. This will tell us precisly the force needed to prevent the box
from sliding down the ramp (neglecting friction). We are going to break the

force ~F into two components, one component in the direction of ~d, and another
component orthogonal to ~d.
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Problem 2.18 Read the preceding paragraph. Rather than working with

the specific numbers given in that paragraph, please use ~F and ~d to represent
any vector, so that when we are done with this problem we’ll have a symbolic
solution.

We want to write ~F as the sum of two vectors ~F = ~w+~n, where ~w is parallel
to ~d and ~n is orthogonal to ~d. Since ~w is parallel to ~d, we can write ~w = c~d for
some unknown scalar c. This means that ~F = c~d + ~n. Use the fact that ~n is

orthogonal to ~d to show that c =
~F · ~d
~d · ~d

.

[Hint: Dot each side of ~F = c~d+ ~n with ~d and distribute. You’ll need to use

the fact that ~n and ~d are orthogonal to remove ~n · ~d from the problem. This
should turn the vectors into numbers, so you can use division and solve for c
directly. Don’t spent more than 10 minutes on this problem.]

Problem 2.19 Consider the vectors ~u and ~v in the diagram to the right. In the diagram below, we have
~u = ~w + ~n where ~w is parallel to ~v
and ~n is orthogonal to ~v.

~u

~v

~w ~n

Notice the right angle where
vectors ~n and ~w meet.

We can write ~u as the sum of a vector that is parallel to ~v (called ~w below) and
a vector that is orthogonal to ~v (called ~n below). This gives us ~u = ~w + ~n.

1. Let θ be the angle between ~u and ~v. Use right triangle trigonometry to
explain why the length of ~w is given by |~w| = |~u| cos θ.

2. Now that we know the length of ~w, explain why ~w = (|~u| cos θ)
~v

|~v|
. See

problem 2.7 if you need help.

3. We have a formula that connects the dot product to the cosine of the
angle between two vectors. Show the steps that transform the equation
above into the equation

~w =

(
~u · ~v
|~v|

)
~v

|~v|
.

Can you explain why this also means

~w =

(
~u · ~v
~v · ~v

)
~v?

The previous two problems give us the definition of a projection.

Definition 2.7. The projection of ~F onto ~d, written proj~d
~F , is defined as

proj~d
~F =

(
~F · ~d
~d · ~d

)
~d︸ ︷︷ ︸

quick computation method

=

(
~F · ~d
|~d|

)
~d

|~d|︸ ︷︷ ︸
geometric method

magnitude times direction

.

When we wish to write ~F as the sum of a vector parallel to ~d plus a vector
orthogonal to ~d, the projection of ~F onto ~d is precisely the portion of ~F that is
parallel to ~d.

Problem 2.20 Let ~u = (−1, 2) and ~v = (3, 4). Draw ~u, ~v, and proj~v ~u. See 12.3:1-8 (part d).

Then draw a line segment from the head of ~u to the head of the projection.
Now let ~u = (−2, 0) and keep ~v = (3, 4). Draw ~u, ~v, and proj~v ~u. Then draw

a line segment from the head of ~u to the head of the projection.
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One final application of projections pertains to the concept of work. Work
is the transfer of energy. If a force F acts through a displacement d, then the
most basic definition of work is W = Fd, the product of the force and the
displacement. This basic definition has a few assumptions.

• The force F must act in the same direction as the displacement.

• The force F must be constant throughout the entire displacement.

• The displacement must be in a straight line.

Before the semester ends, we will be able to remove all 3 of these assumptions.
The next problem will show you how dot products help us remove the first
assumption.

Recall the set up to problem 2.18. We want to lower a box down a ramp
(which we will assume is frictionless). Gravity exerts a force of ~F = 〈0,−200〉 N.
If we apply no other forces to this system, then gravity will do work on the box
through a displacement of 〈6,−3〉 m. The work done by gravity will transfer
the potential energy of the box into kinetic energy (remember that work is a
transfer of energy). How much energy is transferred?

Problem 2.21 Find the amount of work done by the force ~F = 〈0,−200〉 See 12.3: 24, 41-44.

through the displacement ~d = 〈6,−3〉. Find this by doing the following:

1. Find the projection of ~F onto ~d. This tells you how much force acts in
the direction of the displacement. Find the magnitude of this projection.

2. Since work equals W = Fd, multiply your answer above by |~d|.

3. Now compute ~F · ~d. You have just shown that W = ~F · ~d when ~F and ~d
are not in the same direction.

The dot product gives us the work done by ~F through a displacement ~d
when ~F and ~d are not in the same direction. Remember that the dot product is
a number, which means it may be hard to visual. Connecting the dot product
to work done by one vector in the direction of another can often lead to a good
geometric description of the dot product.

Problem Answer each of the following, assuming that none of the vectors
are the zero vector.

1. Suppose ~u · ~v = 0. What do you know about the two vectors?

2. Suppose ~u · ~v > 0. What do you know about the two vectors?

3. Suppose ~u · ~v < 0. What do you know about the two vectors?

See 1 for a solution.

1When the dot product is zero, we know that the two vectors meet at a 90◦ angle. Thinking
about this in terms of work, this means that the force has no portion in the direction of the
displacement, hence there is no work done. If the dot product is positive, then the force has a
portion acting in the direction of the displacement. This means that the angle between the
two vectors is acute. Similarly if the dot product is negative then the angle must be obtuse
(greater than 90◦.)
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2.3 The Cross Product and Planes

The dot product gave us a way of multiplying two vectors together, but the
result was a number, not a vector. We now define the cross product, which
will allow us to multiply two vectors together to give us another vector. We
were able to define the dot product in all dimensions. The cross product is only
defined in R3.

Definition 2.8: The Cross Product. The cross product of two vectors ~u and The definition of a the cross
product tells us what kind of
vector we need (orthogonal to
both, magnitude equal to an area,
and direction following the right
hand rule), but doesn’t give us a
formula for computing it. The
formula given here is nontrivial to
develop from the definition.
Wikipedia (see this link) gives a
decent explanation, but does skip
one difficult step in their
computation. We will use the
formula given here without proof.

~v is a new vector ~u× ~v. This new vector is (1) orthogonal to both ~u and ~v, (2)
has a length equal to the area of the parallelogram whose sides are these two
vectors, and (3) points in the direction your thumb points as you curl the base
of your right hand from ~u to ~v.

Problem 2.22 Consider i = (1, 0, 0), 2j = (0, 2, 0), and 3k = (0, 0, 3).

See 12.3: 9-14.

Remember that the definition above defines the cross product in terms of areas
of parallelograms.

1. Explain why i× 2j = 2k and why 2j× i = −2k. Make sure you draw the
appropriate parallelogram whose area you need to compute, and be ready
to explain why one points in the direction of k and the other points in the
direction of −k.

2. Compute i× 3k and 3k× i.

3. Compute 2j× 3k and 3k× 2j.

4. Compute i× i. In particular, what is ~u× ~u for any vector ~u?

The problem above gives us the following facts for the cross product of the
unit vectors i, j, and k:

i× j = k, j× k = i,k× i = j,

j× i = −k,k× j = −i, i× k = −j,

i× i = j× j = k× k = ~0.

In the next problem, we’ll develop a formula that works for the cross product
of any two vectors. To do this, we’ll need some more facts about the cross
product. First, constant multiples of a vector can be applied either before or
after computing the cross product, giving us

(a~u)× (b~v) = ab(~u× ~v).

Second, the cross product satisfies the distributive laws If you are interested, ask me in
class to show you a proof of why
the cross product satisfies these
distributive laws.

(~u+ ~v)× ~w = ~u× ~w + ~v × ~w and ~u× (~v + ~w) = ~u× ~v + ~u× ~w.

Problem 2.23 Draw two non parallel vectors on your paper and label them
~u and ~v. Then use the definition of the cross product, in terms of areas of
parallelograms, to explain why (2~u)× (3~v) = (2 · 3)(~u× ~v). This is essentially
the proof of why (a~u)× (b~v) = ab(~u× ~v).

Then let ~u = u1i + u2j + u3k and ~v = v1i + v2j + v3k. Use the constant
multiple rule, the distributive laws, and facts about the cross products of i, i,
and k, to compute and simplify the cross product ~u× ~v. Simplify your work till
you obtain the formula for the cross product that is given below.

https://en.wikipedia.org/wiki/Cross_product#Computing_the_cross_product
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Definition 2.9: Cross Product Formula. A formula for the cross product
is

~u× ~v = 〈u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1〉 = det

 ~i ~j ~k
u1 u2 u3
v1 v2 v3

 .
Problem 2.24 Let ~u = (1,−2, 3) and ~v = (2, 0,−1). See 12.4: 1-8.

1. Compute ~u× ~v and ~v × ~u. How are they related?

2. Compute ~u · (~u× ~v) and ~v · (~u× ~v). Why did you get the answer you got?

3. Compute ~u× (2~u) using the formula for the cross product. Then explain,
using an area argument, why you got (0, 0, 0).

Problem 2.25 Let P = (2, 0, 0), Q = (0, 3, 0), and R = (0, 0, 4). Find a See 12.4: 15-18. Remember, the
magnitude of the cross product
gives the area of the parallelogram
formed using the two vectors as
the edges.

vector that orthogonal to both ~PQ and ~PR. Then find the area of the triangle
PQR. Construct a 3D graph of this triangle.

We will now combine the dot product with the cross product to develop an
equation of a plane in 3D. Before doing so, let’s look at what information we
need to obtain a line in 2D, and a plane in 3D. To obtain a line in 2D, one way
is to have 2 points. The next problem introduces the new idea by showing you
how to find an equation of a line in 2D.

Problem 2.26 Suppose the point P = (1, 2) lies on line L. Suppose that the

P

Q
~n

L

angle between the line and the vector ~n = 〈3, 4〉 is 90◦ (whenever this happens
we say the vector ~n is normal to the line). Let Q = (x, y) be another point

on the line L. Use the fact that ~n is orthogonal to ~PQ, together with the dot
product, to obtain an equation of the line L.

Problem 2.27 Let P = (a, b, c) be a point on a plane in 3D. Let ~n = See page 709.

(A,B,C) be a normal vector to the plane (so the angle between the plane and
and ~n is 90◦). Let Q = (x, y, z) be another point on the plane. Show that an
equation of the plane through point P with normal vector ~n is

A(x− a) +B(y − b) + C(z − c) = 0.

Problem 2.28 Consider the three points P = (1, 0, 0), Q = (2, 0,−1), R = See 12.5: 21-28.

(0, 1, 3). Find an equation of the plane which passes through these three points.
[Hint: first find a normal vector to the plane.]

Problem 2.29 Consider the two planes x+ 2y + 3z = 4 and 2x− y + z = 0. See 12.5: 57-60.

These planes meet in a line. Find a vector that is parallel to this line. Then
find a vector equation of the line.

Problem 2.30 Find an equation of the plane containing the lines ~r1(t) =
(1, 3, 0)t+ (1, 0, 2) and ~r2(t) = (2, 0,−1)t+ (2, 3, 2).
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Problem 2.31 Consider the points P = (2,−1, 0), Q = (0, 2, 3), and R =
(−1, 2,−4).

1. Give a vector equation (x, y, z) = (?, ?, ?) of the line through P and Q.

2. Give a vector equation of the line through P and R.

3. Give an equation of the plane through P , Q, and R.

Problem 2.32 Consider P = (2, 4, 5), Q = (1, 5, 7), and R = (−1, 6, 8).

1. What is the area of the triangle PQR.

2. Give a normal vector to the plane through these three points.

3. What is the distance from the point A = (1, 2, 3) to the plane PQR. [Hint:

What does the projection of ~PA onto ~n have to do with this problem?]

2.4 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to I-Learn and download the quiz. Once you have taken the
quiz, you can upload your work back to I-Learn and then download the key to
see how you did. If you still need to work on mastering some of the ideas, please
do so and then demonstrate your mastery though the quiz corrections.



Chapter 3

Curves

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Be able to graph and give equations of parabolas, ellipses, and hyperbolas.

2. Use a change-of-coordinates involving translation and stretching to give
an equation of and graph a curve.

3. Model motion in the plane using parametric equations.

4. Find derivatives and tangent lines for parametric equations. Explain how
to find velocity, speed, and acceleration from parametric equations.

5. Use integrals to find the length of a parametric curve and related quantities.

You’ll have a chance to teach your examples to your peers prior to the exam.

3.1 Creating Good Graphs in the Plane

Before we jump fully into R3, we need some good examples of planar curves
(curves in R2) that we’ll extend to objects in 3D. For now, we’ll focus on
parabolas, circles, ellipses, and hyperbolas. We need to become comfortable
drawing these graphs, as well as translating, streching (rescaling), and reflecting
them about lines.

Given a graph of a function y = f(x), how do we modify the equation
y = f(x) to obtain a new function that has been shifted? You might recall
several rules that allow you to translate functions left and right, up and down,
or even rescale (stretch) the functions vertically and horizontally. For example,
if we start with the parabola y = x2, then the equation y = (x − 2)2 + 3, or
equivalently y − 3 = (x − 2)2, is the same parabola except we have shifted it
right 2 and up 3.

In this section, we’ll revisit the concepts of translating and stretching func-
tions. All of these ideas are part of a bigger picture which we’ll refer to as
changing coordinates. In the example above we had two curves, namely y = x2

and the translated y− 3 = (x− 2)2. To simplify our work, let’s use the variables In practice, we generally don’t use
new variables but might instead
write the change-of-coordinates as
xn = xo + 2 and yn = yo + 3
where n stands for “new” and o
stands for “old”. After making the
change, we just drop subscripts.

u and v for the starting equation and x and y for the translated equation. Notice
then that we have v = u2 and y − 3 = (x − 2)2. If we just let v = y − 3 and
u = x − 2, or equivalently x = u + 2 and y = v + 3, then we have equations
that allow us to change between uv and xy coordinatse. We call each pair of
equations a change-of-coordinates. We’ll often write our changes of coordinates

21
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by solving for x and y, as the equations x = u+ 2 and y = v + 3 clearly show
us that the x-values should be the old u-values shifted 2 units right and the
y-values should be the old v-values shifted 3 units up.

Problem 3.1 Consider the circle u2 + v2 = 1 and the change-of-coordinates
given by x = 2u+ 1 and y = 3v + 4. If you didn’t read the paragraphs above
this problem, please do so before you start working on this problem.

1. Draw the curve u2 + v2 = 1 in the uv plane.

2. The change of coordinates give above allows us to construct a graph of
(u, v) (x, y)

(1, 0) (3, 4)
(−1, 0) (−1, 4)
(0, 1) (?, ?)

(0,−1) (?, ?)

this curve in the xy plane. Once simple way to do this is make a u, v, x, y
table. We know the circle above passes through the points (±1, 0) and
(0,±1), so we can use the change of coordinate equations x = 2u+ 1 and
y = 3v+ 4 to find the corresponding points in the xy plane, as seen on the
right. Use this table to construct a graph of the curve in the xy plane.

3. Solve the change-of-coordinate equations for u and v and use substitution
to give an equation of the curve using x and y coordinates.

4. Use the same change-of-coordinates with the curve v = u2 to graph the
(u, v) (x, y)

(−2, 4) (−3, 16)
(−1, 1) (?, ?)
(0, 0) (?, ?)
(1, 1) (3, 7)
(2, 4) (?, ?)

curve in both the uv and xy plane. Then state an equation of the curve
in the x and y coordinates. You may find the table to the right helpful.

5. How would you describe the connection between the graphs you made in
the uv plane and their corresponding graph in the xy plane?

In the previous problem you were given a curve using uv coordinates, and
then asked to use a change-of-coordinates to construct a graph in the xy plane.
The next problem has you do this in reverse, namely gives you curve in the xy
plane and asks you to state the change of coordinates that would reduce the
curve to a simple object in the uv plane.

Problem 3.2 Start by graphing the parabola y = 3(x− 1)2 + 2.

1. Give a change-of-coordinates of the form x =?u+?, y =?v+? that will
transform the curve v = u2 in the uv plane to the parabola y = 3(x−1)2+2.

2. Which of y = 3(x− 1)2 + 2 or
y − 2

3
= (x− 1)2 makes it easier to see the

change of coordinates?

3. Construct a graph of the parabola
y + 1

2
=

(
x− 3

4

)2

. Optionally, state

the change-of-coordinates you used.

Problem 3.3 Consider the curve x2 − y2 = 1, which we call a hyperbola.

1. Show that y = ±x
√

1− 1
x2 , and then use this fact to explain why y

approaches the lines y = ±x as x gets large. We call these two lines the
asymptotes of the hyperbola, and any good graph of a hyperbola should
include them.

2. We’ll now construct a graph of the hyperbola. One simple way to draw
the asymptotes is to start by constructing a rectangular box with corners
at (1,±1) and (−1,±1). Connecting opposing corners of this box gives



CHAPTER 3. CURVES 23

the asymptotes y = ±x. The circle x2 + y2 = 1 should fit nicely inside
your box (see the picture on the right). Now use software to view a graph
of the hyperbola x2 − y2 = 1 and add it to your picture, making sure the
hyperbola follows the asymptotes as |x| gets large. When you construct
your graph on your paper, make sure your sketch includes the box, lines,
and circle, as well as the hyperbola.

3. Now construct a graph of
(x− 1)2

4
− (y − 4)2

9
= 1, including an appropriate

box and asymptotes. If you want to find the box easily, start by drawing

the ellipse
(x− 1)2

4
+

(y − 4)2

9
= 1, and then add the box, the asymptotes,

and finally the hyperbola.

Problem 3.4 The equation 4x2 + 4y2 + 6x− 8y − 1 = 0 represents a circle
(though initially it does not look like it). Use the method of completing the
square to rewrite the equation in the form (x− a)2 + (y− b)2 = r2 (hence telling
you the center and radius). Then generalize your work to find the center and
radius of any circle written in the form x2 + y2 +Dx+ Ey + F = 0.

Problem 3.5 Consider the parabola v = u2 and the hyperbola u2 − v2 = 1.
With each problem below, please make a u, v, x, y table before constructing your
graph.

1. Using the change of coordinates x = v, y = u, draw the corresponding
parabola and hyperbola in the xy-plane.

2. Using the change of coordinates x = 2v + 1, y = 3u + 4, draw the
corresponding parabola in the xy-plane.

3. Draw both the ellipse
(y − 4)2

9
+

(x− 1)2

4
= 1 and hyperbola

(y − 4)2

9
−

(x− 1)2

4
= 1 in the xy-plane.

Problem 3.6 Consider the change of coordiantes x = au+ h, y = bv + k.

1. Use this change of coordinates to rewrite the parabola v = u2, the ellipse
u2 + v2 = 1, and the hyperbola u2 − v2 = 1 using xy coordinates.

2. In your own words, how do each of the values of a, b, h, and k, change
the graph of the curve in the uv plane when you draw the graph in the xy
plane. Include pictures to accompany your words.

Problem 3.7 Graph each of the four ellipses below by hand. Be prepared See 11.6: 17-24.

to explain how you obtained the graph.

1.
x2

25
+
y2

9
= 1

2. 16x2 + 25y2 = 400 [Hint: divide
by 400.]

3.
(x− 1)2

5
+

(y − 2)2

9
= 1.

4. x2 + 2x + 2y2 − 8y = 9 (You’ll
need to complete the square.)
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Problem 3.8 Graph each of the four hyperbolas below by hand. Make sure See 11.6: 27-34.

your graph shows the hyperbola’s asymptotes.

1.
x2

25
− y2

9
= 1 and

y2

9
− x2

25
= 1

2. 25y2 − 16x2 = 400 [Hint: divide
by 400.]

3.
(x− 1)2

5
− (y − 2)2

9
= 1.

4. x2 + 2x − 2y2 + 8y = 9 (You’ll
need to complete the square.)

Problem 3.9 Consider the hyperbola
(x− 1)2

5
− (y − 2)2

9
= 1 from the See 11.6: 27-34.

previous problem. Use Mathematica and the ContourPlot[] command to produce
a nice plot with reasonable bounds. Then add to your plot the asymptotes,
using a different color. Your final plot should include both the hyperbola and
the asymptotes in the same plot.

If you are struggling with getting the graphs to show up in the same plot,
try using the Show[] command to combine several plots. Look up Show[] in the
help menu, and you’ll see several examples of how to combine several plots into
one. Then you can make one plot for each curve, pick the color you want for
that plot, and finish by combining all the plots with Show[].

If you need help changing the color, open the help menu for ContourPlot[].
Scroll to the bottom of the examples and expand the “Options” section. There
are several options that have Color in the name, and Contour in the name. You
want to change the style of the Contour, so expand the “ContourStyle” option.
From there, look for an example that you like.

3.2 Parametric Equations

In middle school, you learned to write an equation of a line as y = mx+ b. In
the vector unit, we learned to write this in vector form as (x, y) = (1,m)t+(0, b).
The latter equation we call a vector equation. Equivalently we can write the
two equations

x = 1t+ 0, y = mt+ b,

which we call parametric equations for the line. We were able to quickly develop
equations of lines in space, by just adding a third equation for z.

Parametric equations provide us with a way of specifying the location (x, y, z)
of an object by giving an equation for each coordinate. We will use these
equations to model motion in the plane and in space. In this section we’ll focus
mostly on planar curves.

Definition 3.1. If each of f and g are continuous functions, then the curve in
the plane defined by x = f(t), y = g(t) is called a parametric curve, and the
equations x = f(t), y = g(t) are called parametric equations for the curve. You
can generalize this definition to 3D and beyond by just adding more variables.

Problem 3.10 By plotting points, construct graphs of the three parametric See 11.1: 1-18. This is the same
for all the problems below.curves given below (just make a t, x, y table, and then plot the (x, y) coordinates).

Place an arrow on your graph to show the direction of motion.

1. x = cos t, y = sin t, for 0 ≤ t ≤ 2π.
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2. x = sin t, y = cos t, for 0 ≤ t ≤ 2π.

3. x = cos t, y = sin t, z = t, for 0 ≤ t ≤ 4π. You’ll need an x, y, z, t table.
Plot your points (x, y, z) in 3D.

4. Now use Mathematica to plot these curves. Use the ParametricPlot[]
command for the first two, and ParametricPlot3D[] for the last.

Problem 3.11 Plot the path traced out by the parametric curve x = 1 +

2 cos t, y = 3 + 5 sin t. Then use the trig identity cos2 t + sin2 t = 1 to give a
Cartesian equation of the curve (an equation that only involves x and y).

Problem 3.12 Find parametric equations for a line that passes through What we did in the previous
chapter should help here.the points (0, 1, 2) and (3,−2, 4).

Problem 3.13 Plot the path traced out by the parametric curve ~r(t) =
(t2 + 1, 2t− 3). Give a Cartesian equation of the curve (eliminate the parameter
t).

Problem 3.14 Consider the parametric curve given by x = tan t, y = sec t.
Plot the curve for −π/2 < t < π/2. Give a Cartesian equation of the curve.
(A trig identity will help - what identity involves both tangent and secant?)
[Hint: this problem will probably be easier to draw if you first find the Cartesian
equation, and then plot the curve.]

3.2.1 Derivatives and Tangent lines

We’re now ready to discuss calculus on parametric curves. The derivative of
a vector valued function is defined using the same definition as first semester
calculus.

Definition 3.2. If ~r(t) is a vector equation of a curve (or in parametric form
just x = f(t), y = g(t)), then we define the derivative to be

d~r

dt
= lim
h→0

~r(t+ h)− ~r(t)
h

.

Problem 3.15 Consider the curve ~r(t) = (2t, t3). We’ll analyze this curve
at t = 1, where ~r(1) = (2, 1). When h = 1, we have ~r(t+ h) = ~r(2) = (4, 8) and

the difference quotient ~r(t+h)−~r(t)
h equals the difference ~r(2)− ~r(1) and simply

connects the heads of these two vectors, as shown below on the left.
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~r(t
)

~r(
t
+
h
)

~r(
t

+
h
)
−
~r(
t)

~r(
t+

1
2

)

1. The picture above on the right shows ~r(t) and ~r(t+ h) when t = 1 and
h = 1/2. Add to this picture the difference ~r(t+h)−~r(t) and the difference

quotient ~r(t+h)−~r(t)
h .

2. Leaving t = 1 but changing h to h = 1/4 and then h = 1/8, construct a
third and fourth picture that shows ~r(t), ~r(t+ h), the difference, and the
difference quotient.

3. Letting t = 1, as h→ 0 what happens to ~r(t+h)−~r(t)
h ? Draw this vector.

The previous problem gave a geometric intuition of the derivative, and
emphasizes why the derivative is tangent to a curve. The following problem will
provide a simple way to compute derivatives.

Problem 3.16 Let ~r(t) = (f(t), g(t)). Show that d~r
dt = (f ′(t), g′(t)). See page 728.

[The definition of the derivative is d~r
dt = lim

h→0

~r(t+ h)− ~r(t)
h

. We were told

~r(t) = (f(t), g(t)), so use this in the derivative definition. Perform the vector
arithmetic componentwise, and you should obtain d~r

dt = (f ′(t), g′(t)).]

The previous problem shows you can take the derivative of a vector valued
function by just differentiating each component separately. The next problem
shows you that velocity and acceleration are still connected to the first and
second derivatives.

Problem 3.17 Consider the parametric curve given by ~r(t) = (3 cos t, 3 sin t). See 13.1:5-8 and 13.1:19-20

1. Graph the curve ~r, and compute d~r
dt and d2~r

dt2 .

2. On your graph, draw the vectors d~r
dt

(
π
4

)
and d2~r

dt2

(
π
4

)
with their tail placed

on the curve at ~r
(
π
4

)
. These vectors represent the velocity and acceleration

vectors.

3. Give a vector equation of the tangent line to this curve at t = π
4 . (You

know a point and a direction vector.)

Definition 3.3. If an object moves along a path ~r(t), we can find the velocity
and acceleration by just computing the first and second derivatives. The velocity

is d~r
dt , and the acceleration is d2~r

dt2 . Speed is a scalar, not a vector. The speed of
an object is just the length of the velocity vector.
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Problem 3.18 Consider the curve ~r(t) = (2t+ 3, 4(2t− 1)2).

1. Construct a graph of ~r for 0 ≤ t ≤ 2.

2. If this curve represented the path of a horse running through a pasture,
find the velocity of the horse at any time t, and then specifically at t = 1.
What is the horse’s speed at t = 1?

3. Give a vector equation of the tangent line to ~r at t = 1. Include this on
your graph.

4. Explain how to obtain the slope of the tangent line, and then write an
equation of the tangent line using point-slope form. [Hint: How can you
turn the direction vector, which involves (dx/dt) and (dy/dt), into the
number given by the slope (dy/dx)?]

Problem 3.19 Suppose an object travels along the path given by ~r(t) =
(3t,−2t2). The velocity is ~v(t) = (3,−4t) and the acceleration is ~a(t) = (0,−4).
At time t = 1, these vectors are ~v(1) = (3,−4) and ~a(1) = (0,−4).

1. Why do we know that the acceleration and velocity vectors are not in the
same direction?

2. What is the vector component of the acceleration vector that points in
the same direction as the velocity vector? In other words, what is proj~v~a.
We’ll call this vector ~a‖~v.

3. What is the vector component of the acceleration vector that is orthogonal
to the velocity vector? We’ll call this vector ~a⊥~v.

4. Draw a picture that shows the relationship among ~v, ~a, ~a‖~v, and ~a⊥~v.

3.2.2 Integration, Arc Length, and More

In this section, we will develop ways to integrate along paths. Everything in
this section is a generalization of integration from first semester calculus. Try
the following exercise whose solution is provided in the footnotes.

Exercise Consider a function y = f(x) for a ≤ x ≤ b and assume that
f(x) ≥ 0. Imagine cutting the x-axis up into many little bits, where we use dx
to represent the length of each little bit. See 1 for a solution.

1The quantity dA = f(x)dx is the area of a rectangle whose base is dx wide and whose
height is f(x). If dx is really small, then the function f is almost constant, so f(x) and
f(x+ dx) are really close. The little bit of area dA is extremely close the actual area under f
that lies above the x axis between x and x+ dx, off by the small amount of the rectangle that
lies above the curve as shown below. This extra area becomes negligible as dx→ 0.

dx

f(x)

dx

f(x)

dA = f(x)dx

The area under f above dx is approximately dA.

As dx→ 0, the error becomes negligible.

To find the total area under the curve, all we have to do is add up the little bits of area. In
terms of Riemann sums, we would write

∑
dA. The integral symbol just means that we’re

letting dx→ 0, and so the total area is found using A =
∫
dA. To obtain the total area, we

just add up the little bits of area. When we replace dA with f(x)dx, we put the bounds x = a

to x = b on the integral to obtain A =
∫
dA =

∫ b
a f(x)dx.
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1. If we pick one of the tiny bits of length dx whose left endpoint is located
at x, what does the quantity dA = f(x)dx give us? Construct a picture
to illustrate this.

2. Why is the total area given by A =
∫ b
a
f(x)dx.

If an object moves at a constant speed, then the distance traveled is

distance = speed× time.

This requires that the speed be constant. What if the speed is not constant?
Over a really small time interval dt, the speed is almost constant, so we can
still use the idea above. The following problem will help you develop the key
formula for arc length.

Problem 3.20: Derivation of the arc length formula Suppose an ob-

ject moves along the path given by ~r(t) = (x(t), y(t)) for a ≤ t ≤ b. We know
that the velocity is d~r

dt , and so the speed is just the magnitude of this vector.

1. Show that we can write the object’s speed at any time t as

√(
dx

dt

)2

+

(
dy

dt

)2

.

2. If you move at constant speed

√(
dx

dt

)2

+

(
dy

dt

)2

for a time length dt,

what’s the distance ds you have traveled.

3. Explain why the length of the path given by ~r(t) for a ≤ t ≤ b is This is the arc length formula.
Ask me in class for an alternate
way to derive this formula.

s =

∫
ds =

∫ b

a

∣∣∣∣d~rdt
∣∣∣∣ dt =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Problem: Alternate derivation of arc length formula Suppose an ob-

ject moves along the path given by ~r(t) = (x(t), y(t)) for a ≤ t ≤ b. Imagine
slicing the path up into hundreds of tiny slices. Let ds represent the length of
each tiny slice.

1. Draw an appropriate diagram showing an arbitrary curve, a tiny chunk of
the curve of length ds, and a triangle so that the Pythagorean theorem
gives the approximation ds =

√
(dx)2 + (dy)2.

2. Use algebra to show that
√

(dx)2 + (dy)2 =
√

(dxdt )2 + (dydt )2dt.

3. Explain why the length of the path given by ~r(t) for a ≤ t ≤ b is

s =

∫
ds =

∫ b

a

∣∣∣∣d~rdt
∣∣∣∣ dt =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Now that we have a formula for computing arc length, let’s practice using
it with a few problems. First, we’ll have you actually evaluate an integral.
Next, we’ll walk through setting up a block of code to do the same thing in
Mathematica. Then, we’ll have you set up several more integrals to find the arc
length of several curves. You’ll find that arc length problems can become quite
messy and sometimes impossible to compute exactly because of the square root
term in the integrand.
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Problem 3.21 Find the length of the curve ~r(t) =

(
t3,

3t2

2

)
for t ∈ [1, 3]. See 11.2: 25-30

The notation t ∈ [1, 3] means 1 ≤ t ≤ 3. Be prepared to show us your integration
steps in class (you’ll need a substitution).

Problem 3.22 Now let’s use the parameterization from the previous prob-
lem to write a block of code in Mathematica to compute the arc length of a
parameterized curve. We’ll use the previous problem as a test problem.

1. First, define a vector function in Mathematica to represent the parame-

terized curve ~r(t) =

(
t3,

3t2

2

)
. In addition, define some variables to hold

the upper and lower limits for the parameter t (i.e., a = 1 and b = 3).

2. Add a line to your block of code that uses ParametricPlot[] to create a
graph of the function. This verifies that the function is defined correctly.

3. Using the vector function and limits you defined, add another line to your
block of code to set up and evaluate an integral that will compute the path
length of the curve. Use the derivative function in the integrand where
necessary. Hint: you may have to use a square root and a dot product to
find the magnitude of a vector function.

4. Copy the block of code that you created, then change the interval of
integration to 2 ≤ t ≤ 5.

5. Finally, copy your block of code one more time and use it to compute For more, visit
http://mathworld.wolfram.com/Involute.html
to see an animation of an involute
of a circle, as well as more details.

the length of the curve given by x = cos t + t sin t, y = sin t − t cos t, for
0 ≤ t ≤ 4π. This curve, called the involute of the circle, is the path you
would trace if you were skating around a barrel of radius 1 while holding
taut a string that was initially wound around the barrel.

Problem 3.23 For each curve below, set up an integral formula which would
give the length, and sketch the curve. Do not worry about integrating them. The reason I don’t want you to

actually compute the integrals is
that they will get ugly really fast.
Try doing one in Wolfram Alpha
and see what the computer gives.

1. The parabola ~r(t) = (t, t2) for t ∈ [0, 3].

2. The ellipse ~r(t) = (4 cos t, 5 sin t) for t ∈ [0, 2π].

3. The hyperbola ~r(t) = (tan t, sec t) for t ∈ [−π/4, π/4].

To actually compute the integrals above and find the lengths, we would use
a numerical technique to approximate the integral (something akin to adding
up the areas of lots and lots of rectangles as you did in first semester calculus).

Let’s finish this chapter with some examples that illustrate how the arc
length formula gives us much more than just length. This first problem comes
from physics and asks you to find the total charge on a rod if you know the
charge per length. The same type of problem shows up in engineering as finding
the total mass of wire whose density (mass per length) is known. Since we know
that density is mass per length, then all we have to do is times density by length
to obtain the mass.

Problem 3.24 A wire lies along the curve ~r(t) = (7 cos t, 7 sin t) for 0 ≤ t ≤ If the wire were a conductor, then
the charged particles (electrons)
would not stay put, but rather
flow freely along the wire until the
repulsive forces are minimized.
This wire is an insulator.

π. The wire contains charged particles where the charge per unit length at
location (x, y) is given by q(x, y) = y. In this problem we’ll compute the total
charge on the wire.

http://mathworld.wolfram.com/Involute.html
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1. Why is the charge over a small distance ds approximately given by dQ =
q(x, y)ds?

2. The total charge is the sum of the charges over all the little pieces on the
rod. This gives us the total charge as

Qtotal =

∫
C

dQ =

∫
C

q(x, y)ds =

∫ b

a

y

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Replace x and y with what they are in terms of t and then finish by
computing the integral above.

We can also use the arc length formula to find the surface area of some types
of surfaces. Expanding this idea, we could use the formula developed in the
next problem to compute the charge on a surface, the mass of a surface, and
much more. For now, let’s just compute the surface area.

Problem 3.25 A metal sheet lies above the parabola ~r(t) = (t2, t) for
0 ≤ t ≤ 2. Above the point (x, y), the height of the metal sheet is h(x, y) = y.
The picture below shows the sheet, sliced into 8 bits.

x

z

y

ds

h

1. If we slice the surface into many tiny vertical strips with base length
ds, explain why the surface area of each vertical strip is approximately
dσ = h(x, y)ds.

2. The total surface area is the sum of the surface areas over all the vertical
strips. This gives us the total surface area as

σ =

∫
C

dσ =

∫
C

h(x, y)ds =

∫ b

a

y

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Replace x and y with what they are in terms of t and then finish by
computing the integral above.

3.3 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to I-Learn and download the quiz. Once you have taken the
quiz, you can upload your work back to I-Learn and then download the key to
see how you did. If you still need to work on mastering some of the ideas, please
do so and then demonstrate your mastery though the quiz corrections.
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Exam 1 Review
At the end of each chapter, the following words appeared.

Once you have finished the problems in the section and feel comfort-
able with the ideas, create a short one page lesson plan that contains
examples of the key ideas. You will get a chance to teach from this
lesson plan prior to taking the exam.

I’ve summarized the objectives from each chapter below. For our in class review,
please come to class with examples to help illustrate each idea below. You’ll get
a chance to teach another member of class the examples you prepared. If you
keep the examples simple, you’ll have time to review each key idea.

Review

1. Give a summary of the ideas you learned in 112, including graphing, deriva-
tives (product, quotient, power, chain, trig, exponential, and logarithm
rules), and integration (u-sub and integration by parts).

2. Compute the differential dy of a function and use it to approximate the
change in a function.

3. Explain how to perform matrix multiplication and compute determinants
of square matrices.

4. Illustrate how to solve systems of linear equations, including how to express
a solution parametrically (in terms of t) when there are infinitely solutions.

Vectors

1. Define, draw, and explain what a vector is in 2 and 3 dimensions.

2. Add, subtract, and multiply (scalar, dot product, cross product) vectors.
Be able to illustrate each operation geometrically, where possible.

3. Use vector products to find angles, length, area, projections, and work.

4. Use vectors to give equations of lines and planes, and be able to draw lines
and planes in 3D.

Curves

1. Be able to graph and give equations of parabolas, ellipses, and hyperbolas.

2. Use a change-of-coordinates involving translation and stretching to give
an equation of and graph a curve.

3. Model motion in the plane using parametric equations.

4. Find derivatives and tangent lines for parametric equations. Explain how
to find velocity, speed, and acceleration from parametric equations.

5. Use integrals to find the length of a parametric curve and related quantities.



Chapter 4

New Coordinates

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Use a change-of-coordinates to convert between rectangular and another
coordinate system. In particular, be able to convert points and equations
between rectangular and polar coordinates.

2. Graph polar functions r = f(θ) in the xy plane, and set up the arc length
formula to find their length.

3. Given a change-of-coordinates, find the differentials dx and dy and write
them in both vector and matrix form. Use these to compute tangent
vectors, slope dy

dx , and equations of tangent lines.

4. Compute double integrals to find the area of regions in the xy plane, and
use the determinant to explain how area between different coordinate
systems is related.

5. Shade regions in the plane bounded by α ≤ θ ≤ β and r1(θ) ≤ r ≤ r2(θ),
and use double integrals to compute their area.

You’ll have a chance to teach your examples to your peers prior to the exam.

4.1 Polar Coordinates

Up to now, we most often give the location of a point (or coordinates of a vector)
by stating the (x, y) coordinates. These are called the Cartesian (or rectangular)
coordinates. Some problems are much easier to work with if we know how far a
point is from the origin, together with the angle between the x-axis and a ray
from the origin to the point.

Problem 4.1 There are two parts to this problem. See 11.3:5-10.

1. Consider the point P with Cartesian (rectangular) coordinates (2, 1). Find

the distance r from P to the origin. Consider the ray ~OP from the origin
through P . Find an angle between ~OP and the x-axis.

2. Given a generic point P = (x, y) in the plane, write a formula to find the
distance r from P to the origin (in terms of x and y) as well as a formula
to find the angle θ between the vector (1, 0) (the positive x-axis) and the
vector from the origin to P . [Hint: A picture of a triangle will help here.]

32
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Definition 4.1. Let P be be a point in the plane with Cartesian coordinates
(x, y). Let O = (0, 0) be the origin. We say that (r, θ) is a polar coordinates of

P if (1) we have | ~OP | = |r|, and (2) the angle between i = (1, 0) and ~OP is θ,
or coterminal with θ.

O
i

|
~
O
P
| =
|r
|

P

θ

Problem 4.2 The following points are given using polar coordinates. Plot See 11.3:5-10.

the points in the Cartesian plane, and give the Cartesian (rectangular) coordi-
nates of each point. The points are

(r, θ) = (1, π),
(

6,
π

4

)
,
(
−3,

π

4

)
,

(
3,

5π

4

)
, and

(
−2,−π

6

)
.

Finish by explaining why a general formula for x and y if we know a point has See page 647.

polar coordinates (r, θ) is x = r cos θ and y = r sin θ.

The equations above, namely

x = r cos θ, y = r sin θ

are a typical example of what we call a change-of-coordinates. We’ve seen
that these equations allow us transfer points back and forth between Cartesian
coordinates and polar coordinates. We can also use this change-of-coordinates
to transfer equations back and forth between coordinate system. The next two
problems have you do this.

Problem 4.3 Each of the following equations is written in the Cartesian See 11.3: 53-66.

(rectangular) coordinate system. Convert each to an equation in polar coordi-
nates, and then solve for r so that the equation is in the form r = f(θ). You’ll
want to use the change-of-coordinates to replace any x and y you see so that it
is in terms of r and θ.

1. x2 + y2 = 7

2. 2x+ 3y = 5

3. x2 = y

Problem 4.4 Each of the following equations is written using polar coordi- See 11.3: 27-52. I strongly suggest
that you do many of these as
practice.

nates. Convert each to an equation in using Cartesian coordinates (sometimes
called rectangular coordinates). You’ll want to use the change-of-coordinates to
replace any r and θ you see so that it is in terms of x and y.

1. r = 9 cos θ

2. r =
4

2 cos θ + 3 sin θ

3. θ = 3π/4

We’ve been writing the change-of-coordinates by listing the two equations
x = r cos θ, y = r sin θ. We can also write this in vector notation as(

x
y

)
=

(
r cos θ
r sin θ

)
.
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This is a vector equation in which you input polar coordinates (r, θ) and get out
Cartesian coordinates (x, y). So you input one thing to get out one thing, which

means that we have a function. We could also write ~T (r, θ) = (r cos θ, r sin θ),
where we’ve used the letter T as the name for the function because the function
is a transformation between coordinate systems.

To emphasize that the domain and range are both two dimensional systems,
we could also write ~T : R2 → R2. In the next chapter, we’ll spend more time
with this notation. The following problem will show you one way to graph a
change-of-coordinates, or coordinate transformation. When you’re done, you
should essentially have polar graph paper.

Problem 4.5 Consider the polar coordinate transformation For this problem, you are just
drawing many parametric curves.
This is what we did in the
previous chapter.

~T (r, θ) = (r cos θ, r sin θ).

1. Let r = 3 and then graph ~T (3, θ) = (3 cos θ, 3 sin θ) for θ ∈ [0, 2π] in the
xy plane. Remember, the notation θ ∈ [0, 2π] just means 0 ≤ θ ≤ 2π. If
you get a circle, you’re doing this right.

2. Let θ = π
4 and then, on the same axes as above, add the graph of

~T
(
r, π4

)
=
(
r
√
2
2 , r

√
2
2

)
for r ∈ [0, 5].

3. To the same axes as above, add the graphs of ~T (1, θ), ~T (2, θ), ~T (4, θ) for If you ended up circles and rays,
then you’re doing this correctly.
Congrats, you just drew a four
dimensional graph (we’ll talk more
about this in class).

θ ∈ [0, 2π] and ~T (r, 0), ~T (r, π/2), ~T (r, 3π/4), ~T (r, π) for r ∈ [0, 5].

Make sure you ask me in class to show you the corresponding graph in the rθ
plane, or come to class with it drawn and ready to share.

Problem 4.6 We have two equations x = r cos θ and y = r sin θ. Suppose
that a point is moving through space and x, y, r, θ all depend on time t.

1. Explain why dx
dt = dr

dt cos θ − r sin θ dθdt . Obtain a similar equation for dy
dt . Hint: Use implicit differentiation.

2. We can obtain the differential dx and dy in terms of r, θ, dr, and dθ if
we multiply through by dt. This gives dx = cos θdr − r sin θdθ and dy =?.
Write you answer as the vector equation(

dx
dy

)
=

(
cos θ

?

)
dr +

(
−r sin θ

?

)
dθ.

3. Find a 2 by 2 matrix so that we can write the above vector equation as
the matrix equation (

dx
dy

)
=

[
? ?
? ?

](
dr
dθ

)
.

The vector equation above is the sum of vectors times scalars. Matrix
multiplication was invented to abbreviate this type of sums. The vector are
placed in the columns of the matrix, and the scalars are placed in a column
vector to the right of the matrix.

Let’s try the last two problems with a different change-of-coordinates, of the
form x = au+ bv, y = cu+ dv. Any change of coordinates of this form we call
a linear change-of-coordinates. You should see that lines map to lines in your
work below.
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Problem 4.7 Consider the change-of-coordinates x = u−v, y = u+v, which

we could also write as the coordinate transformation ~T (u, v) = (u− v, u+ v).

1. In the table below, you’re given several (u, v) points. Find the correspond-
ing (x, y) pair.

(u, v) (x, y)

(0, 0) (0, 0)
(1, 0) (1− 0, 1 + 0) = (1, 1)
(0, 1) (0− 1, 0 + 1) = (−1, 1)
(1, 1)
(3, 3)
(2, 4)

(−2, 4)

u

v

2. In the graph above is a plot of the points from the table, graphed in the
uv plane. In addition, we see the parabola v = u2, the line v = u, and
the shaded box whose corners are the first few points. Construct a plot
(please make a grid) in the xy planes that contains the points from above.
Connect the points in your xy plot to show how the parabola, line, and
shaded box transform because of this change-of-coordinates.

Problem 4.8 Consider the change-of-coordinates from the problem above,

namely x = u− v, y = u+ v, or equivalently ~T (u, v) = (u− v, u+ v).

1. If we assume x, y, u, v are all functions of t, we can compute dx
dt and dy

dt .
Do so and then multiply your equations on both sides by dt to obtain the
differentials dx and dy. Write your answer as the vector equation(

dx
dy

)
=

(
?
?

)
du+

(
?
?

)
dv.

2. Find a 2 by 2 matrix so that we can write the above vector equation as
the matrix equation (

dx
dy

)
=

[
? ?
? ?

](
du
dv

)
.

3. If we use the change-of-coordinates x = 2u+ 3v, y = 4u+ 5v, then find
the differential dx and dy and write your answer as both(

dx
dy

)
=

(
?
?

)
du+

(
?
?

)
dv and

(
dx
dy

)
=

[
? ?
? ?

](
du
dv

)
.

4.2 Graphing Transformed Equations

You’ve spent a lot of time in your past graphing equations of the form y = f(x).
Let’s now graph equations of the form r = f(θ) in the xy plane.
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Problem 4.9 In the θr plane, graph the curve r = sin θ for θ ∈ [0, 2π]
(make a table where you pick several values for θ and then compute r). Then
graph the curve r = sin θ for θ ∈ [0, 2π] in the xy plane (add to your table the
corresponding x and y values). The graphs should look very different. If one
looks like a sine wave, and the other looks like a circle, you’re on the right track.
Here’s the start of a table to help you, as well as the axes you’ll need to put
your graphs on.

θ r x = r cos θ y = r sin θ

0 sin(0) = 0 0 0
π
6 sin π

6 = 1
2

1
2 cos π6 =

√
3
4

1
2 sin π

6 = 1
4

π
4

√
2
2

√
2
2 cos π4 = 1

2
1
2

π
3
π
2
...

...
...

...

θ

r

x

y

In general, to construct a graph of a polar curve in the xy plane, we create
an r, θ table. We choose values for θ that will make it easy to compute any trig
functions involved. If you need to, add x and y to your table before plotting
the location of the polar point in the xy plane. Then connect the points in a
smooth manner, making sure that your radius grows or shrinks appropriately
as your angle increases. Ask me in class to show you some animations of this,
or you can see these animations before class if you open up the Mathematica
Technology Introduction.

Problem 4.10 Graph the polar curve r = 2 + 2 cos θ in the xy plane. See 11.4: 1-20.

Problem 4.11 Graph the polar curve r = 2 sin 3θ in the xy plane. [Hint:
You’ll want to chose values for theta so that 3θ hits all multiples of ninety
degrees, the places where r attains it maximums and minimums.]

Problem 4.12: Mathematica Problem In this problem we’ll use Mathe-
matica to plot the polar curve r = a cos(nθ) for various values of a and n.

1. Use the command PolarPlot[] to plot the curve r = 3 cos 2θ for 0 ≤ θ ≤ 2π.

2. Use the command ParametricPlot[] to plot the curve r = 3 cos 2θ for the
same bounds. We know that x = r cos θ and y = r sin θ, so you just need
to plot ~r(t) = 〈(3 cos 2θ) cos θ, (3 cos 2θ) sin θ〉.

3. Use your code above to graph r = 3 cos(nθ) for 0 ≤ θ ≤ 2π for each integer
n from 2 to 8. What patterns do you see? Make a conjecture and then
plug in higher values for n to see if you are correct.

4. With software you can quickly change parts of a function to see how they
affect behavior. In the function r = a cos(nθ), how does the graph change
if instead of having a = 3 you pick a to be another number? What happens
if you pick n to be something other than an integer? What happens if you
change cos to sin?
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4.3 Calculus with Change-of-Coordinates

Problem 4.13 We saw in some previous problems that we can express the
differential dx and dy as the matrix product(

dx
dy

)
=

[
cos θ −r sin θ
sin θ r cos θ

](
dr
dθ

)
.

1. Use the matrix equation above to compute dx
dθ and dy

dθ in terms of r and Hint: Just multiply everything out
and divide by dθ.dr

dθ , if we assume that r is a function of θ.

2. Explain why the slope of a tangent line in the xy plane to the curve
r = f(θ) is

dy

dx
=
f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ
.

For parametric curves ~r(t) = (x(t), y(t)), to find the slope of the curve we
just compute

dy

dx
=
dy/dt

dx/dt
.

A polar curve of the form r = f(θ) is just the parametric curve (x, y) =
(f(θ) cos θ, f(θ) sin θ). The previous problem showed us that we can find the
slope by computing

dy

dx
=
dy/dθ

dx/dθ
.

Problem 4.14 Consider the polar curve r = 1 + 2 cos θ, graphed in the xy See 11.2: 1-14.

plane. (It wouldn’t hurt to provide a quick sketch of the curve.)

1. Compute both dx/dθ and dy/dθ.

2. Find the slope dy/dx of the curve at θ = π/2.

3. Give both a vector equation of the tangent line, and a Cartesian equation
of the tangent line at θ = π/2.

Problem 4.15 Consider the parabola v = u2 and the change-of-coordinates
x = 2u+ v, y = u− 2v.

1. Construct a graph of the parabola in the xy plane.

2. Compute both dx/du and dy/du. Then find the slope dy/dx of the
parabola at u = 1.

3. Give both a vector equation of the tangent line, and a Cartesian equation
of the tangent line at u = 1.

We showed in the curves section that you can find the arc length for a
parametric curve by using the formula

s =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

If we replace t with θ, this becomes a formula for the arc length of a curve given
in polar coordinates.
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Problem 4.16 Set up (do not evaluate) an integral formula to compute See 11.5: 21-28.

each of the following (draw the curve to be sure your bounds are correct - getting
the right bounds is perhaps the toughest part of this problem.):

1. The length of one petal of the rose r = 3 cos 2θ.

2. The length of the entire rose r = 2 sin 3θ.

We’ve now seen one example of how we can use a change-of-coordinates to
compute an integral, namely to find arc length. You’ve actually been using a
change-of-coordinates since first semester calculus, every time you performed
a substitution to complete an integral. The next problem has you revisit this,
and notice something crucial about differentials.

Problem 4.17 Consider the integral

∫ 2

−1
e−3x dx.

1. To complete this integral we use the substitution u = −3x. Solve for x
and compute the differential dx.

2. Now perform the substitution, filling in the missing parts of Note: When a definite integral
ends with du, the bounds should
be in terms of u. Many of you
have always ignored this step, and
instead would first compute∫
eu?du without bounds, replace

u with −3x, and then finish. We
need the approach on the left in
high dimensions.

∫ x=2

x=−1
e−3x dx =

∫ u=?

u=?

eu?du.

To find the u bounds, just ask, “If x = −1, then u =?” Don’t spend
any time completing the integral, rather just focus on completing the
substitution above.

3. The x values range from −1 to 2. This is an interval whose width is 3
units along the x-axis. Our substitution u = −3x gives us an interval
along the u-axis. How long is this interval, and what does your differential
equation dx = − 1

3du have to do with this?

4. The substitution u = −3x is a one-dimensional change-of-coordinates. We
can write the differential dx = − 1

3du in the matrix form(
dx
)

=
[
− 1

3

] (
du
)
.

We have not defined the determinant of a 1 by 1 matrix. What would you
define the determinant of a 1 by 1 matrix to be, and why?

We’ve now seen that the differential equation dx = dx
dudu tells us how to relate

lengths along the u-axis to lengths along the x-axis. The next two problems
have you focus on how a two dimensional change-of-coordinates helps us connect
areas in the uv plane to areas in the xy plane.

Problem 4.18 Consider the change-of-coordinates x = 2u, y = 3v.

1. The lines u = 0, u = 1, u = 2 and v = 0, v = 1, v = 2 correspond to lines
in the xy plane. Draw these lines in the xy-plane. [Hint: One option is to
find the xy coordinates of the (u, v) points (0, 0), (0, 1), (0, 2) and connect
the dots to make a line. Then repeat with the (u, v) coordinates (1, 0),
(1, 1), (1, 2) and draw another line. Eventually you’ll have a grid.]

2. The box in the uv plane with 0 ≤ u ≤ 1 and 1 ≤ v ≤ 2 should correspond
to a box in the xy plane. Draw and shade this box in the xy plane and
find its area.
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3. Compute the differentials dx and dy. State these differentials using both
the vector and matrix forms(

dx
dy

)
=

(
?
?

)
du+

(
?
?

)
dv and

(
dx
dy

)
=

[
? ?
? ?

](
du
dv

)
.

4. What’s the determinant of the matrix above, and what does the determi-
nant have to do with your picture?

5. Consider the box given by −1 ≤ u ≤ 1 and −1 ≤ v ≤ 1. State the area of
this box in both the uv plane and the xy plane.

6. Consider the circle u2 + v2 = 1. The area inside this circle in the uv plane
is A = π. Guess the area inside the corresponding ellipse in the xy plane.

Problem 4.19 Consider the change-of-coordinates x = 2u+ v, y = u− 2v.

1. The lines u = 0, u = 1, u = 2 and v = 0, v = 1, v = 2 correspond to lines
in the xy plane. Draw these lines in the xy-plane. [Hint: One option is
to find the xy coordinates of the (u, v) points (0, 0), (0, 1), (0, 2), (1, 0),
(1, 1), etc., and then just connect the dots to make a rotated grid.]

2. The box in the uv plane with 0 ≤ u ≤ 1 and 1 ≤ v ≤ 2 should correspond
to a parallelogram in the xy plane. Shade this parallelogram in your
picture above and find the area of the parallelogram.

3. Compute the differentials dx and dy. State these differentials using the
vector form (

dx
dy

)
=

(
?
?

)
du+

(
?
?

)
dv

What do the two vectors above have to do with your picture?

4. Write the differentials above in the matrix form(
dx
dy

)
=

[
? ?
? ?

](
du
dv

)
.

What’s the determinant of the matrix above, and what does the determi-
nant have to do with your picture?

The next problems have you analyze the integrals
∫
C
dx and

∫
C
dy, and from

them develop a way to compute area using double integrals.

Problem 4.20 Consider the ellipse given by the vector equation ~r(t) =
(3 cos t, 4 sin t) or the parametric equations x = 3 cos t and y = 4 sin t.

1. Start by drawing the curve and computing the differentials dx and dy.

2. The integral
∫
C
dx adds up little changes in x. Adding up lots of little

changes in x gives a total change in x. Verify this by computing

∫ t=π/2

t=0

dx

and comparing your result the physical change in x from t = 0 to t = π/2.

3. Compute

∫ t=π/2

t=0

dy. Explain how you could obtain this answer without

doing any integration.
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4. For each interval [a, b] given below, give the value of both

∫ t=b

t=a

dx and∫ t=b

t=a

dy by connecting the integral to your graph in part a.

[a, b]

∫ t=b

t=a

dx

∫ t=b

t=a

dy

[0, π]
[π/2, π]
[0, 3π/2]
[π, 2π]

Problem 4.21 Consider the region R between the functions y = x2 and
y = −x for 0 ≤ x ≤ 3. Draw both functions and shade the region R. Your goal

in this problem is to explain why the iterated integral

∫ x=3

x=0

(∫ y=x2

y=−x
dy

)
dx

gives the area of the region R.

1. Pick a value of x, such as x = 2. The inner integral

∫ y=x2

y=−x
dy adds up

little changes in y for that specific x value. Compute this integral when

x = 2 (so
∫ y=4

y=−2 dy) to verify that you get a total change in y of 6 units, the

vertical distance between the two points (2,−2) and (2, 4). Draw a vertical
line segment inside your region that connects these two points. Then
repeat this for various other values of x, adding appropriate segments.

2. Compute the integral

∫ y=x2

y=−x
dy for arbitrary x. Then explain what physical

quantity this integral measures.

3. Recall that dx is a small width. When we multiply the previous integral
by this width dx, we will obtain the area of a small region. Construct a
new picture that includes the original region R together with the small

region whose area is given by the product

(∫ y=x2

y=−x
dy

)
dx.

4. Explain why

∫ x=2

x=0

(∫ y=x2

y=−x
dy

)
dx gives the area of the region R.

Problem 4.22 Consider the double integral∫ y=2

y=−1

(∫ x=y+2

x=y2
dx

)
dy.

1. The bounds in the integral above describe a region in xy plane where
−1 ≤ y ≤ 2 and y2 ≤ x ≤ y + 2. Sketch this region.

2. Consider the inner integral
∫ x=y+2

x=y2
dx. What physical quantity does this

integral compute? Add to your sketch several line segments whose widths
are given by this integral.
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3. When we multiply a width
∫ x=y+2

x=y2
dx by a small height dy, we get a little

bit of area dA. Pick a value y between −1 and 2, and then at that height

draw a small rectangle whose area is given by dA =
(∫ x=y+2

x=y2
dx
)
dy.

4. Adding up little bits of area gives total area, so the double integral at the
start of this problem gives an area. Compute the integral.

Problem 4.23 The double integral

∫ x=b

x=a

(∫ y=f(x)

y=g(x)

dy

)
dx computes the

area of a region in the xy plane that you should be quite familiar with. Compute

the inner integral
∫ y=f(x)
y=g(x)

dy to obtain the single variable formula you should be

more familiar with. Provide a sketch of the region, using some specific functions
to illustrate this abstract idea.

Since area is a two dimensional quantity, a double integral provides a natural
way to compute the area. The above problems have shown that the area A of a
region R can be found by adding up little bits of area using any of

A =

∫ x=b

x=a

(∫ y=f(x)

y=g(x)

dy

)
dx =

∫ y=d

y=c

(∫ x=b(y)

x=a(y)

dy

)
dx.

We call these iterated integrals, as we iteratively give the bounds for each
variable. Notice that in each of the integrals above, we took a slice of the region,
thickened it up to get a thin rectangle whose area was dA, and then found the
area by adding up these thin rectangles.

Another way to compute the area of a region R is overlay the region with a
rectangular grid, where dx and dy are the distances between the vertical and
horizontal lines of the grid. To find the area of the region, we first determine
which of the rectangles contains a portion of the region R, and then add up the
areas of of all such rectangles. This will overestimate the area, but we then use
limits to shrink both dx and dy to zero to obtain the area.

Problem 4.24 Consider the polar curve r = 1 + cos θ. We will use the
approach described above this problem to estimate the area or region R that is
inside this polar curve. The bounds for each graph below are −1 ≤ x ≤ 2 and
−2 ≤ y ≤ 2. To present this problem in class, please print this page so you can
appropriate shade things as asked below.

dx = dy = 1 dx = dy = .5 dx = dy = .2

1. For the first picture above, there are 10 rectangles (shaded) that contain
a portion of the region R. Each of these rectangles has area dA = dxdy =
(1)(1) =, which means an overestimate for the area of R is A ≈ 10 dA = 10.
Describe a way to use these same rectangles to get an underestimate for
the area of R.
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2. Now use the middle picture above (where dx = dy = .5) to shade and then
count the number of rectangles that contain a portion of R. What is the
area dA of each little rectangle. Finish by giving an estimate for A.

3. Now use the last picture with dx = dy = .2 to estimate the area of R.

4. How can we obtain the exact value for the area of R?

We’ve been considering double integrals of the form∫ x=b

x=a

(∫ y=f(x)

y=g(x)

dy

)
dx and

∫ y=d

y=c

(∫ x=b(y)

x=a(y)

dy

)
dx.

These integrals give us the area of a region R in the (x, y) plane. Setting up
the bounds for these integrals requires being able to describe the bounds of the
region using inequalities of the form a ≤ x ≤ b and g(x) ≤ y ≤ f(x), or of the
form c ≤ y ≤ d and a(y) ≤ y ≤ b(y). This can become a problem if the region
is not easily described using rectangular coordinates.

Problem 4.25 Shade the region in the xy plane described by each set of
inequalities.

1. 0 ≤ θ ≤ π/4 and 0 ≤ r ≤ 4

2. 0 ≤ x ≤ 3 and 0 ≤ y ≤
√

9− x2

3. −π/6 ≤ θ ≤ π/6 and 0 ≤ r ≤ 2 cos 3θ

4. 0 ≤ θ ≤ 2π and 2 ≤ r ≤ 5 + 2 cos θ

Our goal now is to learn how to use double integrals to compute area if
the region is easily described using polar coordinates instead of rectangular
coordinates. Basically, we need to perform a substitution from (x, y) to (r, θ)
coordinates. Earlier we saw that for the change-of-coordinates x = 2u + v,
y = u− 2v, we can write the differentials dx and dy in the matrix form(

dx
dy

)
=

[
2 1
1 −2

](
du
dv

)
.

The determinant of the matrix above, namely 5, gave us the scale factor that
connected areas in the xy plane to areas in the uv plane. A rectangle with
width du and height dv in the uv plane would have an aread 5 times larger when
transformed to the xy plane. We can write this as dAxy = 5dudv. The next
problem has you repeat this process with polar coordinates.

Problem 4.26 Consider the change-of-coordinates x = r cos θ, y = r sin θ.

1. The lines r = 1, r = 2, r = 3 and θ = 0, θ = π
6 , θ = π

3 correspond to circles
and lines in the xy plane. Draw these circles and lines in the xy-plane.
The box in the rθ plane with 2 ≤ r ≤ 3 and π

6 ≤ θ ≤
π
3 corresponds to a

region in the xy plane. Shade this region in the xy plane.

2. Compute the differentials dx and dy. State these differentials using the
vector form (

dx
dy

)
=

(
?
?

)
dr +

(
?
?

)
dθ.
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3. Write the differentials above (at arbitrary r and θ) in the matrix form(
dx
dy

)
=

[
? ?
? ?

](
dr
dθ

)
.

Compute the determinant of the matrix above. Make a guess about what
the determinant has to do with your picture.

Did you obtain r as the determinant of the matrix in the last step above?
This means that a little rectange in the rθ plane will have its area increased
by a scale factor of r when transforming the region to the xy plane. We can
express this as dAxy = rdrdθ, or just dA = rdrdθ. The next problem has you
give a geometric proof of the same fact.

Problem 4.27 Let (r, θ) be an arbitray point. Our goal is to develop a A small polar rectancle, when
transformed into the xy plane,
looks like a rectangle whose width
and height are shaded red below.

Notice that the rectangle’s area
will increase as r increases.

formula for the area of the region R in the xy plane where the radius ranges
from r to r+ dr and the angle ranges from θ to θ+ dθ, shown in the diagram to
the right. Copy a similar diagram on to your paper and then do the following.

1. Add the labels r, θ, dr, dθ, r + dr, and θ + dθ to appropriate places in
your diagram.

2. The shaded region is approximately a rectangle. Explain why the area of
this rectangle is dA = rdrdθ by first finding the width and height.

Problem 4.28 Consider the region R in the xy plane bounded by and Here’s a typical region with
α ≤ θ ≤ β and 0 ≤ r ≤ f(θ).

θ = α

θ = β

r = f(θ)

α ≤ θ ≤ β and 0 ≤ r ≤ f(θ).

1. The area of a region R in the xy plane can be found using the double
integral A =

∫ ∫
R
dA. If it’s easy to describe the bounds using rect-

angular coordinates, then we can use either A =
∫ b
a

(∫ f(x)
g(x)

dy
)
dx or

A =
∫ d
c

(∫ b(y)
a(y)

dy
)
dx. However, if the bounds for a region in the xy plane

are given by the polar inequalities α ≤ θ ≤ β and 0 ≤ r ≤ f(θ), explain
why the area of the region in the xy plane is

A =

∫ β

α

∫ f(θ)

0

rdrdθ.

2. Now consider the region R bounded by α ≤ θ ≤ β and r1(θ) ≤ r ≤ r2(θ), Here’s a typical region with
α ≤ θ ≤ β and r1(θ) ≤ r ≤ r2(θ).

θ = α

θ = β

r = r2(θ)

r = r1(θ)

as show in the diagram to the right. Set up a double integral that would
give the area of this region R.

Let’s use what we have just developed to examine several polar integrals.

Problem 4.29 Complete both parts below.

1. Draw the region in the xy plane whose area is given by the polar integral∫ 3π/2

0

∫ 3+3 cos θ

1

rdrdθ.

2. Set up a double integral to find the area in the xy plane that is inside one
petal of the curve r = 3 sin 2θ.
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Problem 4.30 Find the area of the region enclosed by the positive x-axis
and the spiral r = 4 θ/3 for 0 ≤ θ ≤ 2π. The region looks like a snail shell.

Problem 4.31 Find the area enclosed by one leaf of the rose r = 5 cos 3θ (a You may need the power reduction

formula cos2(x) =
1 + cos(2x)

2
.sketch may help you define limits for θ). Compute the integral by hand.

For the remainder of the semester, any time an integral involves a power
reduction formula, you may use software to finish the integral.

Problem 4.32 For each region R described below, start by drawing the
region. Then set up a formula involving interated integral to find the area of R.

1. R is inside the cardioid r = 1 + cos θ but outside the circle r = 1.

2. R is inside both the circles r = cos θ and r = sin θ.

3. R is inside the circle r = 5 cos θ but to the right of the line r = 3 sec θ.

4.4 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to I-Learn and download the quiz. Once you have taken the
quiz, you can upload your work back to I-Learn and then download the key to
see how you did. If you still need to work on mastering some of the ideas, please
do so and then demonstrate your mastery though the quiz corrections.
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Functions

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Describe uses for, and construct graphs of, space curves and parametric
surfaces. Find derivatives of space curves, and use this to find velocity,
acceleration, and find equations of tangent lines.

2. Describe uses for, and construct graphs of, functions of several variables.
For functions of the form z = f(x, y), this includes both 3D surface plots
and 2D level curve plots. For functions of the form w = f(x, y, z), construct
plots of level surfaces.

3. Describe uses for, and construct graphs of, vector fields and transformations.
Develop the formulas for cylindrical and spherical coordinates.

4. If you are given a description of a vector field, curve, or surface (instead
of a function or parametrization), explain how to obtain a function for the
vector field, or a parametrization for the curve or surface.

You’ll have a chance to teach your examples to your peers prior to the exam.
Most of the work in this chapter requires graphing. You’ll find many links

throughout this chapter that point to SageMath and/or WolframAlpha plots
(see sagemath.org for more information about SageMath). Alternatively, you
can use this Mathematica Technology introduction to have technology create
plots for you. Please use technology to check how you are doing.

5.1 Function Terminology

A function is a set of instructions involving two sets (called the domain and
codomain). A function assigns to each element of the domain D exactly one
element in the codomain R. We’ll often refer to the codomain R as the target
space. We’ll write

f : D → R

when we want to remind ourselves of the domain and target space. In this class,
we will study what happens when the domain and target space are subsets of
Rn (Euclidean n-space). In particular, we will study functions of the form

f : Rn → Rm,

45

http://www.sagemath.org
https://www.dropbox.com/s/baq7ianj71987os/215-Tech-Introduction.zip?dl=0
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when m and n are 3 or less. The value of n is the dimension of the input vector
(or number of inputs). The number m is the dimension of the output vector (or
number of outputs). Our goal is to understand uses for each type of function,
and be able to construct graphs to represent the function.

We will focus most of our time this semester on two- and three-dimensional
problems. However, many problems in the real world require a higher number of
dimensions. When you hear the word “dimension”, it does not always represent
a physical dimension, such as length, width, or height. If a quantity depends
on 30 different measurements, then the problem involves 30 dimensions. As a
quick illustration, the formula for the distance between two points depends on 6
numbers, so distance is really a 6-dimensional problem. As another example, if
a piece of equipment has a color, temperature, age, and cost, we can think of
that piece of equipment being represented by a point in four-dimensional space
(where the coordinate axes represent color, temperature, age, and cost).

Problem 5.1 A pebble falls from a 64 ft tall building. Its height (in ft) above See Sage or Wolfram Alpha.
Follow the links to Sage or
Wolfram Alpha in all the problems
below to see how to get the
computer to graph the function.

the ground t seconds after it drops is given by the function y = f(t) = 64− 16t2.
What are n and m when we write this function in the form f : Rn → Rm?
Construct a graph of this function. How many dimensions do you need to graph
this function?

5.2 Parametric Curves: ~f : R→ Rm

Problem 5.2 A horse runs around an elliptical track. Its position at time t See Sage or Wolfram Alpha. See
also Chapter 3 of this problem set.
There’s a lot more practice of this
idea in 11.1. You’ll also find more
practice in 13.1: 1-8.

is given by the function ~r(t) = (2 cos t, 3 sin t). We could alternatively write this
as x = 2 cos t, y = 3 sin t.

1. What are n and m when we write this function in the form ~r : Rn → Rm?

2. Construct a graph of this function.

3. Next to a few points on your graph, include the time t at which the horse
is at this point on the graph. Include an arrow for the horse’s direction.

4. How many dimensions do you need to graph this function?

Notice in the problem above that we placed a vector symbol above the
function name, as in ~r : Rn → Rm. When the target space (codomain) is 2-
dimensional or larger, we place a vector above the function name to remind us
that the output is more than just a number.

Problem 5.3 Consider the pebble from problem 5.1. The pebble’s height See Sage or Wolfram Alpha. The
text has more practice in 13.1:
1-8.

was given by y = 64− 16t2. The pebble also has some horizontal velocity (it’s
moving at 3 ft/s to the right). If we let the origin be the base of the 64 ft building,
then the position of the pebble at time t is given by ~r(t) = (3t, 64− 16t2).

1. What are n and m when we write this function in the form ~r : Rn → Rm?

2. At what time does the pebble hit the ground (the height reaches zero)?
Construct a graph of the pebble’s path from when it leaves the top of the
building till when it hits the ground.

3. Find the pebble’s velocity and acceleration vectors at t = 1? Draw these See Section 3.2.1 and
Definition 3.3.vectors on your graph with their base at the pebble’s position at t = 1.

http://aleph.sagemath.org/?z=eJwrsS1LLNJQL1HXtOYqyMkv0TAz0TU00yqJM9JR0CjRMdAx0tQEAL5TCVo
http://wolfr.am/xoc07E
http://aleph.sagemath.org/?z=eJwrsS1LLNJQL1HX5CpILErMTS0pykyOL8jJL9GINtJKzi_WKNHUUTDWKs7MA7JidRQ0SnQMdIy0CjI1NQFWdRJT
http://wolfr.am/wAkR8l
http://aleph.sagemath.org/?z=eJwNxksKgCAUBdB5q3Dmh2eQfWZuJXmIgpAodtt_Dg6crKC92g1IXIfdLoPb6aXz4JowSgz9aVCZhAJZt540aRL89hQRBqM0L_lDq7NR6h-iAhhm
http://wolfr.am/ynm3kD
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4. At what speed is the pebble moving when it hits the ground?

In the next problem, we keep the input as just a single number t, but the
output is now a vector in R3.

Problem 5.4 A jet begins spiraling upwards to gain height. The position of See Sage or Wolfram Alpha. The
text has more practice in 13.1:
9-14.

the jet after t seconds is modeled by the equation ~r(t) = (2 cos t, 2 sin t, t). We
could alternatively write this as x = 2 cos t, y = 2 sin t, z = t.

1. What are n and m when we write this function in the form ~r : Rn → Rm?

2. Construct a graph of this function by picking several values of t and
plotting the resulting points (2 cos t, 2 sin t, t).

3. Next to a few points on your graph, include the time t at which the jet is
at this point on the graph. Include an arrow for the jet’s direction.

4. How many dimensions do you need to graph this function?

In all the problems above, you should have noticed that in order to draw
a function (provided you include arrows for direction, or use an animation to
represent “time”), you can determine how many dimensions you need to graph
a function by just summing the dimensions of the domain and codomain. This
is true in general.

Problem 5.5 Use the same set up as problem 5.4, namely See Section 3.2.1 and
Definition 3.3.

The text has more practice in 13.1:
19-22.

~r(t) = (2 cos t, 2 sin t, t).

You’ll need a graph of this function to complete this problem.

1. Find the first and second derivative of ~r(t).

2. Compute the velocity and acceleration vectors at t = π/2. Place these
vectors on your graph with their tails at the point corresponding to t = π/2.

3. Give an equation of the tangent line to this curve at t = π/2.

5.3 Parametric Surfaces: ~f : R2 → R3

We now increase the number of inputs from 1 to 2. This will allow us to graph
many space curves at the same time.

Problem 5.6 The jet from problem 5.4 is actually accompanied by several More practice in 16.5: 1-16.

jets flying side by side. As all the jets fly, they leave a smoke trail behind
them (it’s an air show). The smoke from each jet spreads outwards to mix
together, so that it looks like the jets are leaving wide sheet of smoke behind
them as they spiral upwards. The position of two of the many other jets is given
by ~r3(t) = (3 cos t, 3 sin t, t) and ~r4(t) = (4 cos t, 4 sin t, t). A function which
represents the smoke stream from these jets is ~r(a, t) = (a cos t, a sin t, t) for
0 ≤ t ≤ 4π and 2 ≤ a ≤ 4.

1. What are n and m when we write the function ~r(a, t) = (a cos t, a sin t, t)
in the form ~r : Rn → Rm?

http://aleph.sagemath.org/?z=eJxL0yjRtNUw0krOLwaydBSMtIoz88CsEk2ugsSixNzUkqLM5PiCnPwSjTQdBY0SHQMdBROtgkxNTQAYOxGO
http://www.wolframalpha.com/input/?i=parametric+plot+3D++%282+cos+t%2C+2+sin+t%2C+t%29+for+t+from+0+to+4+pi
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2. Start by graphing the position of the three jets ~r(2, t) = (2 cos t, 2 sin t, t),
~r(3, t) = (3 cos t, 3 sin t, t) and ~r(4, t) = (4 cos t, 4 sin t, t).

3. Let t = 0 and graph the curve r(a, 0) = (a, 0, 0) for a ∈ [2, 4], which
represents the segment along which the smoke has spread. Then repeat
this for t = π/2, π, 3π/2.

4. Describe the resulting surface, and make sure you check your answer with See Sage or Wolfram Alpha.

technology (use the links to the side).

We call the surface you drew above a parametric surface. The vector equation
describing the smoke screen is a parametrization of this surface.

Definition 5.1: Parametric Surface, Parametrization of a surface. A
parametrization of a surface is a collection of three equations to tell us the
position

x = x(u, v), y = y(u, v), z = z(u, v)

of a point (x, y, z) on the surface. We call u and v parameters, and these
parameters give us a two dimensional pair (u, v), the input, needed to obtain
a specific location (x, y, z), the output, on the surface. We can also write a
parametrization in vector form as

~r(u, v) = (x(u, v), y(u, v), z(u, v)).

We’ll often give bounds on the parameters u and v, which help us describe
specific portions of the surface. A parametric surface is a surface together with
a parametrization.

We draw parametric surfaces by joining together many parametric space
curves, as done in the previous problem. Just pick one variable, hold it constant,
and draw the resulting space curve. Repeat this several times, and you’ll have
a 3D surface plot. Most of 3D computer animation is done using parametric
surfaces. Woody’s entire body in Toy Story is a collection of parametric surfaces.
Car companies create computer models of vehicles using parametric surfaces, and
then use those parametric surfaces to study collisions. Often the mathematics
behind these models is hidden in the software program, but parametric surfaces
are at the heart of just about every 3D computer model.

Problem 5.7 Consider the parametric surface ~r(u, v) = (u cos v, u sin v, u2) See Sage or Wolfram Alpha.

for 0 ≤ u ≤ 3 and 0 ≤ v ≤ 2π. Construct a graph of this function. Remember,
to do so we just let u equal a constant (such as 1, 2, 3) and then graph the
resulting space curve where we let v vary. After doing this for several values of
u, swap and let v equal a constant (such as 0, π/2, etc.) and graph the resulting
space curve as u varies. [Hint: Did you get a satellite dish? Use the software
links to the right to make sure you did this right.]

5.4 Functions of Several Variables: f : Rn → R
In this section we’ll focus on functions where the output is a single number.
These functions take the form f : R2 → R1 and f : R3 → R1. In the next
problem, you should notice that the input is a vector (x, y) and the output is a
number z. There are two common ways we graph functions of this type. The
next two problems show you how.

http://aleph.sagemath.org/?z=eJxL0yjRUUjUtNVI1ErOL9Yo0QTytIoz88CsEk2ugsSixNzUkqLM5PiCnPwSjTQdBaAOAx0FE62CTKASjUQdBSMgT1OTCwBCiRSf
http://www.wolframalpha.com/input/?i=parametric+plot+3D++%28a+cos+t%2C+a+sin+t%2C+t%29+for+t+from+0+to+4+pi+and+a+from+2+to+4
http://aleph.sagemath.org/?z=eJxL0yjVUSjTtNUo1UrOL9Yo09RRKNUqzsyDsOKMNLkKEosSc1NLijKT4wty8ks00nQUQHoMdBRMgEo0ynQMdIy0CjI1NQFPyxVa
http://wolfr.am/A90cfW
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Problem 5.8 A computer chip has been disconnected from electricity and See Sage or Wolfram Alpha.

sitting in cold storage for quite some time. The chip is connected to power, and
a few moments later the temperature (in Celsius) at various points (x, y) on
the chip is measured. From these measurements, statistics is used to create a
temperature function z = f(x, y) to model the temperature at any point on the
chip. Suppose that this chip’s temperature function is given by the equation
z = f(x, y) = 9− x2 − y2. We’ll be creating a 3D model of this function in this
problem, so you’ll want to place all your graphs on the same x, y, z axes.

1. What is the temperature at (0, 0), (1, 2), and (−4, 3)? See 14.1: 1-4.

2. If you let y = 0, construct a graph of the temperature z = f(x, 0) =
9− x2 − 02, or just z = 9− x2. In the xz plane (where y = 0) draw this
upside down parabola.

3. Now let x = 0. Draw the resulting parabola in the yz plane.

4. Now let z = 0. Draw the resulting curve in the xy plane.

5. Once you’ve drawn a curve in each of the three coordinate planes, it’s
useful to pick an input variable (either x or y) and let it equal various
constants. So now let x = 1 and draw the resulting parabola in the plane
x = 1. Then repeat this for x = 2.

6. Describe the shape. Add any extra features to your graph to convey the
3D image you are constructing. See 14.1: 37-48.

Problem 5.9 We’ll be using the same function z = f(x, y) = 9− x2 − y2 as See Sage or Wolfram Alpha.

the previous problem. However, this time we’ll construct a graph of the function
by only studying places where the temperature is constant. We’ll create a graph
in 2D of the surface (similar to a topographical map).

1. Which points in the plane have zero temperature? Just let z = 0 in See 14.1: 13-16 and 31-36, 37-48.

z = 9 − x2 − y2. Plot the curve corresponding to these points in the
xy-plane with the same temperature, and write z = 0 next to this curve.
We call this curve a level curve. As long as you stay on this curve, your
temperature will remain level; it will not increase nor decrease. Because the function here

represents temperature, we can
also call this curve an isotherm. If
the function represented pressure,
we’d call it an isobar. There are
many names given to level curves.
We’ll use the words “level curve”
throughout the semester rather
than isotherm, isobar, isocline,
etc.

2. Which points in the plane have temperature z = 5? Add this level curve
to your 2D plot and write z = 5 next to it.

3. Repeat the above for z = 8, z = 9, and z = 1. What’s wrong with letting
z = 10?

4. Using your 2D plot, construct a 3D image of the function by lifting each
level curve to its corresponding height.

Definition 5.2. A level curve of a function z = f(x, y) is a curve in the xy-plane
found by setting the output z equal to a constant. Symbolically, a level curve
of f(x, y) is the curve c = f(x, y) for some constant c. A 2D plot consisting of
several level curves is called a contour plot of z = f(x, y).

Problem 5.10 Consider the function f(x, y) = x− y2. See Sage or Wolfram Alpha.More
practice is in 14.1: 37-48.

1. Construct a 3D surface plot of f . [So just graph in 3D the curves given by
x = 0 and y = 0 and then try setting x or y equal to some other constants,
like x = 1, x = 2, y = 1, y = 2, etc.]

http://aleph.sagemath.org/?z=eJxL06jQqdS0tdStiDPSrYwz4irIyS8xTtFI01EAyuga6xhrAlmVEJYmADAVC84
http://wolfr.am/wny0IF
http://aleph.sagemath.org/?z=eJydj81qwzAQhO9-iiWXWCCHJqbQHHTtExR6KI1RnBVWWWuNVibR21fOH_Ta2-7M7PCtqy86K7NvLoddkw-7aiJO7al2GorTtLpVZcq3SW1k4HOtqiGNVK8-EZY0pDPDyTuHEUMCSZlQgB30HBLP8RoSEIbMM_Q2gCCWdcQllAb8EwSekucgm5Wq7nq36IXoCfTg0Y9LMV8veqtf9Zvefy8qcTzaaD7ijLof7WTWP5jWT_7_FpM9IsmtFpwnMu-WBPVV73wgH_DuWpmwT1205RuzVdUvSwN0NA
http://wolfr.am/wny0IF
http://aleph.sagemath.org/?z=eJxL06jQqdS0rdCtjDPiKs7IL9coyMkvMU7RSNNRAErpGusYawJZlRCWpiZETXJ-Xkl-aVE8SC12lToKybmJBbbqWakl6kB2fk5-UVJikW1IUWmqTk5iUmpOMZitqQkAhh0mmg
http://wolfr.am/wBOk1b
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2. Construct a contour plot of f . [So just graph in 2D the curves given by
setting z equal to a few constants, like z = 0, z = 1, z = −4, etc.]

3. Which level curve passes through the point (2, 2)? Draw this level curve See 14.1: 49-52.

on your contour plot.

Notice that when we graphed the previous two functions (of the form z =
f(x, y)) we could either construct a 3D surface plot, or we could reduce the
dimension by 1 and construct a 2D contour plot by letting the output z equal
various constants. The next function is of the form w = f(x, y, z), so it has 3
inputs and 1 output. We could write f : R3 → R1. We would need 4 dimensions
to graph this function, but graphing in 4D is not an easy task. Instead, we’ll
reduce the dimension and create plots in 3D to describe the level surfaces of the
function.

Problem 5.11 Suppose that an explosion occurs at the origin (0, 0, 0). Heat See Sage. Wolfram Alpha
currently does not support
drawing level surfaces. You could
also use Mathematica or Wolfram
Demonstrations.
You can access more problems on
drawing level surfaces in 12.6:1-44
or 14.1:53-60.

from the explosion starts to radiate outwards. Suppose that a few moments
after the explosion, the temperature at any point in space is given by w =
T (x, y, z) = 100− x2 − y2 − z2.

1. Which points in space have a temperature of 99? To answer this, replace
T (x, y, z) by 99 to get 99 = 100− x2 − y2 − z2. Use algebra to simplify
this to x2 + y2 + z2 = 1. Draw this object.

2. Which points in space have a temperature of 96? of 84? Draw the surfaces.

3. What is your temperature at (3, 0,−4)? Draw the level surface that passes
through (3, 0,−4).

4. The 4 surfaces you drew above are called level surfaces. If you walk along
a level surface, what happens to your temperature?

5. As you move outwards, away from the origin, what happens to your
temperature?

Problem 5.12 Consider the function w = f(x, y, z) = x2+z2. This function See Sage.

has an input y, but notice that changing the input y does not change the output
of the function.

1. Draw a graph of the level surface w = 4. [When y = 0 you can draw one
curve. When y = 1, you should draw the same curve. When y = 2, again
you draw the same curve. This kind of graph is called a cylinder, and is
important in manufacturing where you extrude an object through a hole.]

2. Graph the surface 9 = x2 + z2 (so the level surface w = 9).

3. Graph the surface 16 = x2 + z2.

The examples I give you for functions of the form w = f(x, y, z) we can
draw by using our knowledge about conic sections. We can graph ellipses and
hyperbolas if there are only two variables. So the key idea is to set one of the
variables equal to a constant and then graph the resulting curve. Repeat this
with a few variables and a few constants, and you’ll know what the surface
is. Sometimes when you set a specific variable equal to a constant, you’ll get
an ellipse. If this occurs, try setting that variable equal to other constants, as
ellipses are generally the easiest curves to draw. If setting a variable equal to a

http://aleph.sagemath.org/?z=eJwrSyzSUK_QqdSpUtfkCtEAszRtDQ0MdCvijHQrgbgqzogrM7cgJzM5syS-ICe_xDhFA67Q1tJSRwHIUdA11lEw1gSyK8FsMLMKytRUAADtWRrw
http://demonstrations.wolfram.com/LevelSurfacesAndQuadraticSurfaces/
http://demonstrations.wolfram.com/LevelSurfacesAndQuadraticSurfaces/
http://aleph.sagemath.org/?z=eJwrSyzSUK_QqdSpUtfkStMAszRtK-KMtKvijLgycwtyMpMzS-ILcvJLjFM04ApsTXQUgGwFXWMdBWNNILsSzAYzq6BMTQUAEvYY4A
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contant gives you a hyperbola, try picking a different variable to set equal to a
constant. It gets really messy to graph several hyperbolas on the same 3D axes
by hand.

Problem 5.13 Consider the function w = f(x, y, z) = x2 − y2 + z2. See Sage. Remember you can find
more practice in 12.6:1-44 or 14.1:
53-64.

We’ll have a few people present
this problem.

1. Draw a graph of the level surface w = 1. [You need to graph 1 = x2−y2+z2.
Let x = 0 and draw the resulting curve. Then let y = 0 and draw the
resulting curve. Let either x or y equal some more constants (whichever
gave you an ellipse), and then draw the resulting ellipses.]

2. Graph the level surface w = 4. [Divide both sides by 4 (to get a 1 on the
left) and then repeat the previous part.]

3. Graph the level surface w = −1. [Try dividing both sides by a number to
get a 1 on the left. If y = 0 doesn’t help, try y = 1 or y = 2.]

4. Graph the level surface that passes through the point (3, 5, 4). [Hint: what
is f(3, 5, 4)?]

5.4.1 Vector Fields and Transformations: ~f : Rn → Rn

We’ve covered the following types of functions in the problems above.

• y = f(x) or f : R→ R (functions of a single variable)

• ~r(t) = (x, y) or f : R→ R2 (parametric curves)

• ~r(t) = (x, y, z) or f : R→ R3 (space curves)

• ~r(u, v) = (x, y, z) or f : R2 → R3 (parametric surfaces)

• z = f(x, y) or f : R2 → R (functions of two variables)

• z = f(x, y, z) or f : R3 → R (functions of three variables)

In this class, we will ignore functions of the form ~f : R3 → R2, though one way
to view these is to just create functions of the form fi : R3 → R.

The only examples that remain are functions where the dimension of the
input matches the dimension of the output. In our previous chapters we’ve look
at two examples of this form, namely vector fields and coordinate transformations
(change-of-coordinates). Let’s finish this section by revisiting these two types of
functions, namely

• ~F (x) = (M) = M i or f : R→ R (vector fields along a line)

• ~F (x, y) = (M,N) or f : R2 → R2 (vector fields in the plane)

• ~F (x, y, z) = (M,N,P ) or f : R3 → R3 (vector fields in space)

• T (u) = x or f : R→ R (1D change-of-coordinates)

• ~T (u, v) = (x, y) or f : R2 → R2 (2D change-of-coordinates)

• ~T (u, v, w) = (x, y, z) or f : R3 → R3 (3D change-of-coordinates)

http://aleph.sagemath.org/?z=eJwrSyzSUK_QqdSpUtfkStMAszRtK-KMdCvjjLSr4oy4MnMLcjKTM0viC3LyS4xTNOCKbA11FIBsBV1jHQVjTSC7EswGM6ugTE0FAIXAGhM
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Figure 5.1: Cylindrical and spherical coordinates.

The difference between vector fields and transformations has to do with how we
apply the function. Let’s examine this difference first by considering change of
coordinates in three dimensions.

The previous chapter focused quite a bit on how to work with a two-
dimensional change-of-coordinates. In particular, we’ve already seen examples
of coordinate transformations with polar coordinates. In three dimensions, some
common coordinate systems are cylindrical and spherical coordinates. The
equations for these coordinate systems are shown in the table below.

Cylindrical Coordinates Spherical Coordinates

x = r cos θ
y = r sin θ
z = z

x = ρ sinφ cos θ
y = ρ sinφ sin θ
z = ρ cosφ

The next two problems have you develop these equations, similar to the first
few problems in the previous chapter.

Problem 5.14 Let P = (x, y, z) be a point in space. This point lies on a See page 893.

cylinder of radius r, where the cylinder has the z axis as its axis of symmetry.
The height of the point is z units up from the xy plane. The point casts a
shadow in the xy plane at Q = (x, y, 0). The angle between the ray ~OQ and
the x-axis is θ. See Figure 5.1 for a picture. Use the graph and the information
above to explain why the equations for cylindrical coordinates are

x = r cos θ, y = r sin θ, z = z.

Problem 5.15 Let P = (x, y, z) be a point in space. This point lies on a See page 897.

sphere of radius ρ (“rho”), where the sphere’s center is at the origin O = (0, 0, 0).
The point casts a shadow in the xy plane at Q = (x, y, 0). The angle between the

ray ~OQ and the x-axis is θ, and we call the azimuth angle. The angle between
the ray ~OP and the z axis is φ (“phi”), and we call call the inclination angle,
polar angle, or zenith angle. See Figure 5.1 for a picture. Use this information
to develop the equations for spherical coordinates, in other words explain why

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.
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There is some disagreement between different scientific fields about the See the Wikipedia or MathWorld
for a discussion of conventions in
different disciplines.

notation for spherical coordinates. In some fields (like physics), φ represents
the azimuth angle and θ represents the inclination angle, swapped from what
we see here. In some fields, like geography, instead of the inclination angle, the
elevation angle is given — the angle from the xy-plane (lines of latitude are from
the elevation angle). Additionally, sometimes the coordinates are written in a
different order. You should always check the notation for spherical coordinates
before communicating to others with them. As long as you have an agreed upon
convention, it doesn’t really matter how you denote them.

Problem 5.16 Consider the spherical coordinates transformation

~T (ρ, φ, θ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ).

Graphing this transformation requires 3+3 = 6 dimensions. In this problem we’ll
construct parts of this graph by graphing various surfaces. We did something
similar for the polar coordinate transformation in problem 4.5.

1. Let ρ = 2 and graph the resulting surface. What do you get if ρ = 3? See Sage or Wolfram Alpha.

2. Let φ = π/4 and graph the resulting surface. What do you get if φ = π/2? See Sage or Wolfram Alpha.

3. Let θ = π/4 and graph the resulting surface. What do you get if θ = π/2?

Let’s now turn our focus to vector fields.

Problem 5.17 Consider the vector field ~F (x, y) = (2x + y, x + 2y). In See Sage or Wolfram Alpha. The
computer will shrink the largest
vector down in size so it does not
overlap any of the others, and
then reduce the size of all the
vectors accordingly. See 16.2:
39-44 for more practice.

this problem, you will construct a graph of this vector field by hand. We did
something quite similar in Problem 2.10 on page 13.

1. Compute ~F (1, 0). Then draw the vector ~F (1, 0) with its base at (1, 0).

2. Compute ~F (1, 1). Then draw the vector ~F (1, 1) with its base at (1, 1).

3. Repeat the above process for the points (0, 1), (−1, 1), (−1, 0), (−1,−1),
(0,−1), and (1,−1). Remember, at each point draw a vector. When you
finish, check your answer with software.

Problem 5.18: Spin field Consider the vector field ~F (x, y) = (−y, x). Use the links above to see the
computer plot this. See 16.2:
39-44 for more practice.

Construct a graph of this vector field. Remember, the key to plotting a vector
field is “at the point (x, y), draw the vector ~F (x, y) with its base at (x, y).” Plot
at least 8 vectors (a few in each quadrant), so we can see what this field is doing.

Drawing 3D vector fields by hand can be tough, luckily Sage and Mathematica
can help us visualize 3D vector fields. The sage example show a 3D visualization
of the vector field ~F (x, y, z) = (y, z, x).

5.5 Constructing Functions

We now know how to draw a vector field provided someone tells us the equation.
What we really need is to do the reverse. If we see vectors (forces, velocities,
etc.) acting on something, how do we obtain an equation of the vector field?
The spin field from the previous problem is directly related to the field you
would need to understand the forces at play on a merry-go-round or carousel.
The following problem will help you develop the gravitational vector field.

http://en.wikipedia.org/wiki/Spherical_coordinate_system
http://mathworld.wolfram.com/SphericalCoordinates.html
http://aleph.sagemath.org/?z=eJxVjsEKhDAMRO9-xeCpKTmId__C-1JEaEBtaPP_bLMirLe8ecOQNdRcGJqFYXm3RFjgWWxyhR5T3EoLt2K8hB__wosuaNAql2FcfWiZCdJGxkODpprO3apsHz2KhUcw7jnGxJijiie_zzp3oi_jZjWn
http://www.wolframalpha.com/input/?i=parametric+plot+3d+%282+sin+phi+cos+theta%2C+2+sin+phi+sin+theta%2C+2+cos+phi%29
http://aleph.sagemath.org/?z=eJxVjrEKwzAMRPd8xZHJMioNTdf8RfZiQsCCNha2_p9WyeJuuveOQ2uouTA0C8PybomwwFlscoQfpriVFi7F-BN-9MKLLmjQKodhXD0uKvcnQdrI6MCgqabPblW2l76Lhc4xrl3GxHhEFSfnn7eZMRN9AfBbOD8
http://www.wolframalpha.com/input/?i=parametric+plot+3d+%28rho+sin+%28pi%2F4%29+cos+theta%2C+rho+sin+%28pi%2F4%29+sin+theta%2C+rho+cos+%28pi%2F4%29%29+
http://aleph.sagemath.org/?z=eJxz06jQqdRUsFXQMNKq0K7UqdA20qrU5CrIyS-JL0tNLskvik_LTM1J0XDTUQAq1TU00DE00ASyK2FsTQCKaxIN
http://wolfr.am/y4gIgX
http://aleph.sagemath.org/?z=eJxz06jQqdSp0lSwVdAA0joVmlwFOfkl8WWpySX5RfFpmak5KcYpGm46CkCFusY6xpo6IIUQlkYVhKEJAOGFExs
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Problem 5.19: Radial fields Do the following: Use Sage to plot your vector fields.
See 16.2: 39-44 for more practice.

1. Let P = (x, y, z) be a point in space. At the point P , let ~F (x, y, z) be the

vector which points from P to the origin. Give a formula for ~F (x, y, z).

2. Give an equation of the vector field where at each point P in the plane,
the vector ~F2(P ) is a unit vector that points towards the origin.

3. Give an equation of the vector field where at each point P in the plane,
the vector ~F3(P ) is a vector of length 7 that points towards the origin.

4. Give an equation of the vector field where at each point P in the plane,
the vector ~G(P ) points towards the origin, and has a magnitude equal to
1/d2 where d is the distance to the origin.

If someone gives us parametric equations for a curve in the plane, we know
how to draw the curve. Again, what we really need is the ability to go backwards.
How do we obtain parametric equations of a curve that we can see? In problem
5.2, we were given the parametric equation for the path of a horse, namely
x = 2 cos t, y = 3 sin t or ~r(t) = (2 cos t, 3 sin t). From those equations, we drew
the path of the horse, and could have written a Cartesian equation for the path.
How do we work this in reverse, namely if we had only been given the ellipse
x2

4
+
y2

9
= 1, could we have obtained parametric equations ~r(t) = (x(t), y(t))

for the curve?

Problem 5.20 Give a parametrization of the top half (so y ≥ 0) of the Use Sage or Wolfram Alpha to
visualize your parameterizations.

ellipse
x2

a2
+
y2

b2
= 1. You can write your parametrization in the vector form

~r(t) = (?, ?), or in the parametric form x =?, y =?, and you’ll need to give
bounds for t of the form ? ≤ t ≤? so that we only obtain the top half. [Hint:
Read the paragraph above, and/or review Problem 5.2.]

Problem 5.21 Give a parametrization of the straight line from (a, 0) to
(0, b). You can write your parametrization in the vector form ~r(t) = (?, ?), or
in the parametric form x =?, y =?. Remember to include bounds for t. [Hint:
Review 2.9 and 3.12.]

We often use t as the parameter when writing equations for planar and space
curves, because we’ll often use the curve to describe the motion of an object
as time elapses. You are welcome to use whatever variable you want for your
parameter, such as x, y, z, θ, r, etc.

Problem 5.22 Give a parametrization (~r(?) = (?, ?)) of the parabola y = x2

from (−1, 1) to (2, 4). Remember the bounds for your parameter.

Problem 5.23 Give a parametrization of the function y = f(x) for x ∈ [a, b].
You can write your parametrization in the vector form ~r(?) = (?, ?), or in the
parametric form x =?, y =?. Include bounds for your parameter.

If someone gives us parametric equations for a surface, we can draw the
surface. This is what we did in problems 5.6 and 5.7. How do we work backwards
and obtain parametric equations for a given surface? This requires that we write
an equation for x, y, and z in terms of two parameters, i.e. input variables (see
5.6 and 5.7 for examples). Using function notation, we need a function of the
form ~r : R2 → R3.

http://aleph.sagemath.org/?z=eJxz06jQqdSp0lSwVdAA0joVmlwFOfkl8WWpySX5RfFpmak5KcYpGm46CkCFusY6xpo6IIUQlkYVhKEJAOGFExs
http://aleph.sagemath.org/?z=eJwrsS1LLNJQL1HX5CpILErMTS0pykyOL8jJL9GINtJKzi_WKNHUUTDWKs7MA7JidRQ0SnQMdIy0CjI1NQFWdRJT
http://wolfr.am/wAkR8l
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Problem 5.24 Consider the surface z = 9− x2 − y2 plotted in problem 5.8. Use Sage or Wolfram Alpha to
plot your parametrization. See
16.5: 1-16 for more practice.1. Give a parametrization ~r : R2 → R3 of the surface. In other words, you’ll

need to give equations

x =?, y =?, z =? or ~r(?, ?) = (?, ?, ?).

[Hint: You can use the parameters x and y to help you out. Then you just
have x = x, y = y, and z =?. This should be quite fast.]

2. What bounds must you place on x and y to obtain the portion of the
surface above the plane z = 0?

3. If z = f(x, y) is any surface, give a parametrization of the surface (i.e.,
x =?, y =?, z =? or ~r(?, ?) = (?, ?, ?).)

When a surface has a lot of symmetry, we can often use an appropriate
coordinate transformation ~T : R3 → R3 to obtain a parametrization of a surface.
Note that the coordinate transformation has three inputs and three outputs,
whereas the parametric surface has only two inputs. All we have to do is remove
one input variables by expressing it in terms of the others, and the function
instantly describes a surface. We did this already in problem 5.16, where we
obtained a 6 dimensional graph to represent spherical coordinates.

Problem 5.25 Again consider the surface z = 9− x2 − y2.

1. Using cylindrical coordinates, so ~T (r, θ, z) = (r cos θ, r sin θ, z), obtain a
parametrization ~r(r, θ) = (?, ?, ?) of the surface using the two parameters
r and θ. So you’ll need to give equations

x =?, y =?, z =? or ~r(r, θ) = (?, ?, ?).

[Hint: We already know x = r cos θ and y =? from cylindrical coordinates.
The equation z = 9− x2 − y2, when written in terms of r and θ, should
give you the last equation for your parametrization.

2. What bounds must you place on r and θ to obtain the portion of the Use Sage or Wolfram Alpha to
plot your parametrization with
your bounds (see 5.24 for
examples). See 16.5: 1-16 for
more practice.

surface above the plane z = 0? Make sure you use technology to graph
your parametric equations and verify that your bounds are correct.

Problem 5.26 Recall the spherical coordinate transformation We did very similar things in
problem 5.16. See 16.5: 1-16 for
more practice.~T (ρ, φ, θ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ).

This is a function of the form ~T : R3 → R3. If we hold one of the three inputs
constant, then we have a function of the form ~r : R2 → R3, which is a parametric
surface.

1. Give a parametrization of the sphere of radius 2, using φ and θ as your Use Sage or Wolfram Alpha to
plot each parametrization (see
5.24 for examples).

parameters.

2. What bounds should you place on φ and θ if you want to hit each point
on the sphere exactly once?

3. What bounds should you place on φ and θ if you only want the portion of
the sphere above the plane z = 1?

http://aleph.sagemath.org/?z=eJwL0ajQqdSp0lSwVYCyuAqKMvNKFJRCNKpsK7QrNRUyi5V0FGA8roLEosTc1JKizOT4gpz8Eg2YhA5Iv66xjjGIVQlhaQIALhka5w
http://wolfr.am/zk2KTu
http://aleph.sagemath.org
http://wolframalpha.com
http://aleph.sagemath.org
http://www.wolframalpha.com/
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Sometimes you’ll have to invent your own coordinate system when construct-
ing parametric equations for a surface. If you notice that there are lots of circles
parallel to one of the coordinate planes, try using a modified version of cylindrical
coordinates. Instead of circles in the xy plane (x = r cos θ, y = r sin θ, z = z),
maybe you need circles in the yz-plane (x = x, y = r cos θ, z = r sin θ) or the xz
plane. Just look for lots of symmetry, and then construct your parametrization
accordingly.

Problem 5.27 Find parametric equations for the surface x2 + z2 = 9. [Hint:
read the paragraph above.]

1. What bounds should you use to obtain the portion of the surface between Use Sage or Wolfram Alpha to
plot each parametrization (see
5.24 for examples).

y = −2 and y = 3?

2. What bounds should you use to obtain the portion of the surface above
z = 0?

3. What bounds should you use to obtain the portion of the surface with
x ≥ 0 and y ∈ [2, 5]?

We’ll finish the chapter with a few review problems.

Problem 5.28 Construct a graph of the surface z = x2 − y2. Do so in 2
ways. (1) Construct a 3D surface plot. (2) Construct a contour plot, which is
a graph with several level curves. Which level curve passes through the point
(3, 4)? Use Wolfram Alpha to know if you’re right.

Problem 5.29 Construct a plot of the vector field

~F (x, y) = (x+ y,−x+ 1)

by graphing the field at many integer points around the origin (I generally like to
get the 8 integer points around the origin, and then a few more). Then explain
how to modify your graph to obtain a plot of the vector field

F̂ (x, y) =
(x+ y,−x+ 1)√

(x+ y)2 + (1− x)2
.

Problem 5.30 For this problem, print the grid below which contains some
examples of the different types of functions and how we graph them. Once we
know the dimensions of the domain and codomain, there are specific ways we
graph the function. In each cell, I’ve given you the function form. Your job is
to select a function that fits this form, and then appropriately graph it. I’ve
filled in a few for you. Feel free to use examples from earlier in this chapter.

http://aleph.sagemath.org
http://www.wolframalpha.com/
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5.6 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to I-Learn and download the quiz. Once you have taken the
quiz, you can upload your work back to I-Learn and then download the key to
see how you did. If you still need to work on mastering some of the ideas, please
do so and then demonstrate your mastery though the quiz corrections.



Chapter 6

Differentials and the
Derivative

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Compute differentials and partial derivatives, and explain how they are
connected.

2. Explain how to obtain the total derivative from the partial derivatives
(using a matrix).

3. Find equations of tangent lines and tangent planes to surfaces.

4. Find derivatives of composite functions, using the chain rule (substitution
and matrix multiplication).

5. Give general chain rule formulas in terms of partial derivatives.

You’ll have a chance to teach your examples to your peers prior to the exam.

6.1 Differentials and Partial Derivatives

Let’s recall the definition of a differential. If y = f(x) is a function, then we say
the differential dy is the expression dy = f ′(x)dx. We can also write this in the
form dy = dy

dxdx.

Observation 6.1. Here’s the key. Think of differential notation dy = f ′(x)dx
in the following way:

A small change in the output y equals the derivative multiplied by a
small change in the input x. To get dy, we just need the derivative
times dx.

To get the derivative in all dimensions, we just substitute in vectors to obtain
the differential notation d~y = f ′(~x)d~x. The derivative is precisely the thing that
tells us how to get d~y from d~x. We’ll quickly see that the derivative is a matrix,
and the columns of that matrix we’ll call partial derivatives. We’ll start using
the notation Df instead of f ′.

Let’s examine some problems you have seen before.

59
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Problem 6.1 The volume of a right circular cylinder is V (r, h) = πr2h. See 3.10 for more practice.

Imagine that each of V , r, and h depends on t (we might be collecting rain
water in a can, or crushing a cylindrical concentrated juice can, etc.).

1. Compute dV
dt in terms of both dr

dt and dh
dt . Then multiply both sides by dt

to obtain the differential dV in terms of the differentials dr and dh. Write
your answer in the form

dV = (?)dr + (?)dh.

2. Show that we can write dV as the matrix product The matrix
[
2πrh ?

]
is the

derivative of V . The columns we
call the partial derivatives. The
partial derivatives make up the
whole.

dV =
[
2πrh ?

] [dr
dh

]
.

3. If h is constant, what is dV
dr ? Similarly, if r is constant, what is dV

dh ?

When h was held constant, you should have gotten dV
dr = 2πrh. We call this

the partial derivative of V with respect to r and we write ∂V
∂r = 2πrh. This

is the part of the differential that is multiplied by dr. Similarly, the partial
derivative of V with respect to h, which we write as ∂V

∂h , is the part of the
differential that we times by dh. Using the partial derivative notation, we have

dV =
∂V

∂r
dr +

∂V

∂h
dh.

Definition 6.2: Partial Derivative. Given a function f(x, y), we can write
the differential df in the form df = Mdx+Ndy. The partial derivative of f with
respect to x, written ∂f

∂x is the portion of this differential that we multiply by dx,

so ∂f
∂x = M . Similarly the partial derivative of f with respect to y, written ∂f

∂y

is the portion of this differential that we multiply by dy, ∂f∂y = N . Symbolically,
we can write the differential as

df =
∂f

∂x
dx+

∂f

∂y
dy.

We can extend this definition to functions with any number of inputs and/or Different disciplines use different
notations for the partial derivative.
Four common uses are
∂f
∂x

= ∂
∂x
f = fx = Dxf .

outputs. For example, for the vector field ~F (x, y, z), we have

d~F =
∂ ~F

∂x
dx+

∂ ~F

∂y
dy +

∂ ~F

∂z
dz.

Problem 6.2 The volume of a box is V (x, y, z) = xyz.

1. Compute the differential dV and write it in the form

dV = (?)dx+ (?)dy + (?)dz.

The matrix
[
yz ? ?

]
is the

derivative. The columns we call
the partial derivatives. The partial
derivatives make up the whole.

2. Show that we can write dV as the matrix product (fill in the blanks)

dV =
[
yz ? ?

] dxdy
dz

 .
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3. Compute ∂V
∂x . Then also state ∂V

∂y and ∂V
∂z . Read the paragraph before

this problem if you need help with the notation.

Problem 6.3 For each function below, you’ll first find the differential, then
find the corresponding partial derivatives, and finish by organizing your work
into a matrix product.

1. Let f(x, y) = 3x2 + 2xy. State df , and then ∂f
∂x and fy. Then fill in the

blanks in the matrix product

df =
[
? ?

] [dx
dy

]
.

2. Let g(r, s, t) = r2s3 + 4rt2. State dg, and then give the partials Drg, gs,
and ∂g

∂t . Then fill in the blanks in the matrix product

dg =
[
? ? ?

] drds
dt

 .
3. Let ~r(u, v) = (u cos v, u sin v, v). State d~r, and then give the partials ~ru

and ∂~r
∂v . Then fill in the blanks in the matrix product

d~r =
[
? ?

] [du
dv

]
.

Note, if you find the matrix has more than one row in this example, then
you are doing it correctly.

Review If you know that a line passes through the point (1, 2, 3) and is
parallel to the vector (4, 5, 6), give a vector equation, and parametric equations,
of the line. See 1 for an answer.

Problem 6.4 Consider the parametric surface ~r(a, t) = (a cos t, a sin t, t) for
2 ≤ a ≤ 4 and 0 ≤ t ≤ 4π. We encountered this parametric surface in chapter 5
when we considered a smoke screen left by multiple jets. Here’s a rough sketch of the

surface.

x

y

z

1. Compute the differential d~r which is the same as finding dx, dy, and dz.
Write your answer in both vector and matrix forms

d~r =

dxdy
dz

 =

?
?
?

 da+

?
?
?

 dt and d~r =

dxdy
dz

 =

? ?
? ?
? ?

(da
dt

)
.

2. Suppose an object is on this surface at the point ~r(3, π) = (−3, 0, π) (the
dot on the graph to the right). Evaluate the matrix above at this point.
Each column of the matrix above is an important vector, called a partial
derivative. Draw both vectors with their tail at the point ~r(3, π).

1A vector equation is ~r(t) = (4, 5, 6)t+ (1, 2, 3) or ~r(t) = (4t+ 1, 5t+ 2, 6t+ 3). Parametric
equations for this line are x = 4t+ 1, y = 5t+ 2, and z = 6t+ 3.
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3. Give vector equations for two tangent lines to the surface at ~r(3, π).

[Hint: You’ve got the point as ~r(3, π), and you’ve got two different direction
vectors as the columns of the matrix. Use the ideas from chapter 2 to get
an equation of a line, or see the review problem above.]

In the previous problem, you should have noticed that the columns of your
matrix are tangent vectors to the surface. Because we have two tangent vectors
to the surface, we should be able to use them to construct a normal vector to
the surface, and from that we can get the equation of a tangent plane.

Review If you know that a plane passes through the point (1, 2, 3) and has
normal vector (4, 5, 6), then give an equation of the plane. See 2 for an answer.

Problem 6.5 Consider again the parametric surface

~r(a, t) = (a cos t, a sin t, t)

for 2 ≤ a ≤ 4 and 0 ≤ t ≤ 4π. We’d like to obtain an equation of the tangent Here’s a rough sketch of the
surface with its tangent plane.

x

y

z

plane to this surface at the point ~r(3, 2π). Once you have a point on the plane,
and a normal vector to the surface, we can use the concepts in chapter 2 to get
an equation of the plane. Give an equation of the tangent plane.

[Hint: To get the point, what is ~r(3, 2π)? The columns of the matrix we
obtain, when computing the differential d~r, give us two tangent vectors. How
do we obtain a vector orthogonal to both these vectors?]

[Here’s an alternate version of this problem, for Mario Kart fans. Mario and
Luigi are booking it up rainbow road. About half way up, there is a glitch in the
computer game and the road temporarily disappears. Instead of following the
road, they instead are stuck on an infinite plane that meets the road tangentially
where the glitch occurred. Give an equation of this plane.]

Problem 6.6 We can use differential notation to approximate tolerances.

1. We showed that a change in the volume of a cylinder is approximately Make sure you ask me in class to
show you physically exactly how
you can see these differential
formulas.dV =

[
2πrh πr2

] [dr
dh

]
.

If we know that r = 3 and h = 4, and we know that r could increase by
about .1 and h could increase by about .2, then by about how much will
V increase by?

2. The volume of a box is given by V = xyz. We know the differential of

the volume is dV =
[
yz xz xy

] dxdy
dz

. If the current measurements

are x = 2, y = 3, and z = 5, and we know that dx = .01, dy = .02, and
dz = .03, then by about how much will the volume increase.

2An equation of the plane is 4(x− 1) + 5(y − 2) + 6(y − 3) = 0. If (x, y, z) is any point in
the plane, then the vector (x− 1, y − 2, z − 3) is a vector in the plane, and hence orthogonal
to (4, 5, 6). The dot product of these two vectors should be equal to zero, which is why the
plane’s equation is (4, 5, 6) · (x− 1, y − 2, z − 3) = 0.
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We have been finding partial derivatives by first finding the differential,
and then stating the partial derivatives as the parts of the differential that are
multiplied by each corresponding variable. Can we find the partial derivatives
first before finding the differential?

Problem 6.7 Consider the function f(x, y) = x2y + 3x+ 4 sin(5y).

1. Suppose that y is a constant, so f(x) = x2y+ 3x+ 4 sin(5y). Compute df
dx .

2. Suppose that x is a constant, so f(y) = x2y+ 3x+ 4 sin(5y). Compute df
dy .

3. Now compute the differential df , and write your answer in both vector
and matrix forms as

df = (?)dx+ (?)dy and df =
[
? x2 + 20 cos(5y)

] [dx
dy

]
.

4. How can you obtain the partial derivatives of a function without first
computing the entire differential?

If your answer above was something along the lines of “The partial derivative
of f with respect to x is the regular derivative of f , provided we hold every
every input variable constant except x,” then you nailed it. We’ll finish this
section with one final problem, which will require you to grab your textbook
and do some practice.

Problem 6.8 Open your calculus textbook to the section on partial deriva-
tives (14.3 in Thomas’s Calculus). The first 40 problems ask you to compute
partial derivatives (with no mention of a differential). Do lots of the odd num-
bered problems (so you can check your work) until you are getting them correct
each time. Then neatly organize your work from a few problems to illustrate
the key ideas you learned as you practiced computing partial derivatives. You’ll
get to share this with the class.

6.2 The Derivative

In the previous section, we found differentials and partial derivatives. Most of
the problems had your express your answer in both vector form, and matrix
form. The derivative is precisely the matrix you obtained. You should have
noticed that the columns of this matrix are the partial derivatives.

Definition 6.3: Derivatives and Partial Derivatives. Let f be a function.
The derivative of f is a matrix. The columns of the derivative are the partial
derivatives of f . When there’s more than one input variable, we’ll use Df rather
than f ′ to talk about the derivative. The order of the columns matches the order
you list the variables in the function. For example, if the function is f(x, y),

then the derivative is Df(x, y) =
[
∂f
∂x

∂f
∂y

]
. If the function is V (x, y, z), then

the derivative is DV (x, y, z) =
[
∂V
∂x

∂V
∂y

∂V
∂z

]
.

We’ve added one new definition, so let’s practice.

Problem 6.9 Compute the partial derivatives, the derivative, and then the If you haven’t yet, then please go
back and see 14.3: 1-40 in
Thomas’s Calculus for more
practice. I strongly suggest you
practice until you can compute
partial derivatives with ease.

differential, as requested below.
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1. For f(x, y) = x2+2xy+3y2, compute
∂f

∂x
and fy. Then state the derivative

Df(x, y) and then finally the differential df .

2. For f(x, y, z) = x2y3z4, compute all three of fx,
∂f

∂y
, and Dzf . Then state

the derivative Df(x, y, z) and then the differential df .

Remember, the partial derivative of a function with respect to x is just the regular
derivative with respect to x, provided you hold all other variables constant. We
put the partials into the columns of a matrix to obtain the (total) derivative.

Your textbook has lots of examples to help you with partial derivatives in
section 14.3. However, the textbook leaves out the actual derivative (putting the
parts into a single matrix). The exercise below has 6 problems, with solutions,
that you can use as extra practice for total derivatives. Complete the exercise
below before moving on.

Exercise For each function below, compute the total derivative.

1. f(x, y) = 9− x2 + 3y2

2. ~r(t) = (t, cos t, sin t)

3. f(x, y, z) = xy2z3

4. ~r(u, v) = (u2, v2, u− v)

5. ~F (x, y) = (−y + 3x, x+ 4y)

6. ~T (r, θ, z) = (r cos θ, r sin θ, z).

See 3 for answers.

Problem 6.10 Compute the requested partial and total derivatives.

1. Consider the parametric surface ~r(u, v) = (u, v, v cos(uv)). Compute both
∂~r

∂u
and

∂~r

∂v
. Then state D~r(u, v) and the differential d~r. If you end up

with a 3 by 2 matrix for the derivative, you did this correctly.

2. Consider the vector field ~F (x, y) = (−y, xe3y). Compute both
∂ ~F

∂x
and

∂ ~F

∂y
. Then state D~F (x, y) and the differential d~F .

As you completed the problems above, did you notice any connections
between the size of the matrix and the size of the input and output vectors?
Make sure you ask in class about this. We’ll make a connection.

We’ve now seen that the derivative of z = f(x, y) is a matrix Df(x, y) =[
fx fy

]
. This is a function itself that has inputs x and y, and outputs fx and

fy. This means it has 2 inputs and 2 outputs, so it’s a vector field. What does
the vector field tell us about the original function?

3The derivatives of each function are shown below.

1. Df(x, y) =
[
−2x 6y

]

2. D~r(t) =

 1
− sin t
cos t



3. Df(x, y, z) =
[
y2z3 2xyz3 3xy2z2

]

4. D~r(u, v) =

2u 0
0 2v
1 −1


5. D~F (x, y) =

[
3 −1
1 4

]

6. D~T (r, θ, z) =

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

.
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Problem 6.11 Consider the function f(x, y) = x2− y, whose derivate is the
vector field Df(x, y) =

[
2x −1

]
.

1. In the xy plane, carefully draw several level curves of f (maybe z = 0,
z = 1, z = −4, etc.) Write the height on each curve (so you’re making a
topographical map). You should end up with several parabolas. You need
this graph to be fairly close to scale, or you will completely miss the point
of this problem. So if your graph is sloppy, then draw it again neatly.

2. On the same graph, we’ll now draw the vector field. To do this, pick
several points in the xy plane that lie on the level curves you already drew
(such as (0, 0), (1, 1), (2, 4), and more). At these points, add the vector
given by the derivative. (So at (0,0), you’ll need to draw the vector (0,−1).
At (1,1), you’ll need to draw the vector (2,−1).) Add at least 8 vectors to
your picture.

3. How are the vectors you drew related to the curves? There are lots of
right answers here, just give an observation.

We’ll come back to this problem more in chapter 7 as we discuss optimization.
There are lots of connections between the derivative and level curves.

Since a partial derivative is a function, we can take partial derivatives of
that function as well. This gives us second-order partial derivatives.

Definition 6.4: Second-Order Partial Derivatives. The second-order par-
tial derivative of f is a partial derivative of one of the partial derivatives of f .
The the second-order partial of f with respect to x and then y is the quantity
∂
∂y

[
∂f
∂x

]
, so we first compute the partial of f with respect to x, and then compute

the partial of the result with respect to y. Alternate notations exist, for example
the same second-order partial above we can write as Did you notice the swap in order

between the fractional notation
and the subscript notation?∂

∂y

[
∂f

∂x

]
= fxy =

∂

∂y

∂

∂x
f =

∂

∂y

∂f

∂x
=

∂2f

∂y∂x
.

The subscript notation fxy is easiest to write. In upper-level courses, we will use
subscripts to mean other things. At that point, we’ll have to use the fractional
partial notation to avoid confusion.

Problem 6.12 Consider the functions f(x, y, z) = xy2z3 and g(x, y) =
x cos(xy).

1. Compute fx, fxy, fxyy, and ∂2f
∂z2 .

2. Compute gx and gxy, and then compute gy and gyx.

Problem 6.13: Mixed Partials Agree Complete the following:

1. Let f(x, y) = 3xy3 + ex. Compute the four second partials

∂2f

∂x2
,

∂2f

∂y∂x
,

∂2f

∂y2
, and

∂2f

∂x∂y
.

2. For f(x, y) = x2 sin(y) + y3, compute both fxy and fyx.

3. Make a conjecture about a relationship between fxy and fyx. Then use
your conjecture to quickly compute fxy if

f(x, y) = 3xy2 + tan2(cos(x))(x49 + x)1000.
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6.3 Tangent Planes

We can obtain most of the results in multivariate calculus by replacing the x and
y in dy = f ′dx with ~x and ~y. As an example, we can use differential notation to
find an equation of the tangent plane to a function of the form z = f(x, y). Let’s
first review how to do it for functions of the form y = f(x), and then generalize.

Example 6.5: Tangent Lines. Consider the function y = f(x) = x2.

1. The derivative is f ′(x) = 2x. When x = 3 this means the derivative is
f ′(3) = 6 and the output y is y = f(3) = 9.

2. We know the tangent line passes through the point P = (3, 9). We let
Q = (x, y) be any other point on the tangent line, and then a vector

between these points is ~PQ = (x, y)− (3, 9) = (x− 3, y − 9). This vector
tells us that when our change in x is dx = x− 3, then the change in y is
dy = y − 9.

3. Differential notation states that a change in the output dy equals the
derivative times a change in the input dx. In symbols, we have the
equation dy = f ′(3)dx. We then replace dx, dy, and f ′(3) with what we
know they equal from the parts above to obtain

y − 9︸ ︷︷ ︸
dy

= 6︸︷︷︸
f ′(3)

(x− 3)︸ ︷︷ ︸
dx

.

This is an equation of the tangent line.

dx = x− 3

dy = y − 9

(3,9)

(x,y)

dy

dx
= f ′(3)

dy = f ′(3)dx

In first semester calculus, differential notation is dy = f ′dx. At x = c, the
line passes through the point P = (c, f(c)). If Q = (x, y) is any other point on

the line, then the vector ~PQ = (x− c, y − f(c)) tells us that when dx = x− c
we have dy = y − f(c). Substitution give us an equation for the tangent line
tangent line as

y − f(c)︸ ︷︷ ︸
dy

= f ′(c) (x− c)︸ ︷︷ ︸
dx

.

This equation tells us that a change in the output (y−f(c)) equals the derivative
times a change in the input (x− c). We now repeat this for the next problem,
where the output is z and input is (x, y), which means differential notation says

dz = Df

[
dx
dy

]
.

Problem 6.14 Consider the function z = f(x, y) = 9 − x2 − y2. If you See Sage for a picture.

See 14.6: 9-12 for more practice.haven’t yet, read the example above.

1. Compute the derivativeDf(x, y) and differential df . Then at (x, y) = (2, 1),
evaluate the derivative Df(2, 1) and the output z = f(2, 1).

2. One point on the tangent plane to the surface at (2, 1) is the point
P = (2, 1, f(2, 1)). Let Q = (x, y, z) be another point on this plane. Use

the vector ~PQ obtain dz when dx = x− 2 and dy = y − 1.

3. We’d like an equation of the tangent plane to f(x, y) when x = 2 and
y = 1. Differential notation tells us that

dz = Df(2, 1)

[
dx
dy

]
or z−? =

[
−4 ?

] [x− 2
?

]
Fill in the blanks and compute this matrix product. When you are done
you should have an equation of a plane.

http://aleph.sagemath.org/?z=eJx9kUtvAiEYRff8CqImA8qYkUkTu2DdfbdNbSYMKOkIBFCH_voCPprax2YyX_Jx7uUg0UgiZo_1uKF13FBgA0OUrIjMX4wBmMqD5kEZDTvdQ2uUDsAyO5jQ9kiSdL5uSYsJipcfaGzHVYisWT5gYBesnEE2EMjNYByrnOgrAr36EIw2OQLygzsKX5Y71-1FcIq_5QyU-LlMZKkMgbe0b6iwU_xdC-9Zi-EUpt1fSZTERBoZLaR4R9o6IXSqdQdL67ngUfBgnAdyZHLZK5k4GMh4HeL5ojnmvIleVqQhciwWXzHxoXOBZQdf_PUtO4phMKfqJ6TJl49XCPyfYlynt6LKQu3QafGHznitNUdjTfHiwp-jWK_SdH73oropfpKp5u5d1yljF_YDmjyLHioPZ8n5jMCn7LDMSdtsgoHfmROy-BN9Vrcb
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4. Rewrite the equation you got in the form A(x−a)+B(y−b)+C(z−c) = 0
and state a normal vector to the plane.

The first semester calculus tangent line equation, with differential notation,
generalizes immediately to the tangent plane equation for functions of the form
z = f(x, y). Let’s try this on another problem.

Problem 6.15 Let f(x, y) = x2 + 4xy+ y2. Give an equation of the tangent See Sage.

See 14.6: 9-12 for more practice.plane at (3,−1), and then state a normal vector to this plane. [Hint: find
Df(x, y), Df(3,−1), df , dx, dy, and dz. Then substitute, as done in the
previous problem.]

Let’s now return to the function z = 9− x2 − y2, and show how parametric
surfaces can add more light to unlocking the derivative and its geometric meaning.
With a parametrization, partial derivatives are vectors, instead of just numbers.
Once we have vectors, we can describe motion. This makes it easier to visualize.

Problem 6.16 Let z = f(x, y) = 9 − x2 − y2. We can parameterize this See 16.5: 27-30 for more practice.
Here’s a picture of the surface on
which you can draw your partial
derivatives.

x

y

z

function by writing x = x, y = y, z = 9− x2 − y2, or in vector notation

~r(x, y) = (x, y, f(x, y)).

1. Compute
∂~r

∂x
and

∂~r

∂y
and then evaluate these partials at (x, y) = (2, 1).

The surface is drawn to the right, where x = 2 is highlighted in red and
y = 1 is highlighted in blue. Based at the point (2, 1, 4), draw both of
these partial derivatives (they are vectors).

2. You should see that the partial derivatives above are tangent vectors to
the surface. Cross them to obtain a normal vector to the tangent plane.

3. Give an equation of the tangent plane to the surface at (2, 1, 4).

The next problem generalizes the tangent plane and normal vector calcula-
tions above to work for any parametric surface ~r(u, v).

Problem 6.17 Let ~r(u, v) = (u cos v, u sin v, u), a parametrization of a cone. See 16.5: 27-30 for more practice.

x

y

z1. Give vector equations of two tangent lines to the surface at ~r(2, π/2) (so
u = 2 and v = π/2).

2. Give a normal vector to the surface at ~r(2, π/2) and an equation of the
tangent plane at ~r(2, π/2).

We now have two different ways to compute tangent planes. One way

generalizes differential notation dy = f ′dx to dz = Df

[
dx
dy

]
and then uses matrix

multiplication. This way will extend to tangent objects in EVERY dimension.
It’s the key idea needed to work on really large problems. The other way requires
that we parametrize the surface z = f(x, y) as ~r(x, y) = (x, y, f(x, y)) and then
use the cross product on the partial derivatives to obtain a normal vector. The
next problem has you give a general formula for a tangent plane. To tackle this
problem, you’ll need to make sure you can use symbolic notation. The review
problem should help with this.

http://aleph.sagemath.org/?z=eJx9kk-PwiAQxe_9FERNCu1oWusmXjjvfa8bNaQFJVsLAdSyn36havefuycCmfm9N28QuAdPaL9d5qusz3zut8tEO4ormJcghoOQJJmKU1c7qTrEugZpJTuXaDqcWDtAtWqVoanhTQrIyndOlwVJdE51q1zVYAFBqIAVAexhXkFJACnNauk8LRZPUQHVJ3Pmdmhihh25M7LexX4cegc3nkY3gO6sb7LuIOu3jltLK4KmKNY-ZFXgA6oPVZE0urmh9obzLszwgxbKo8Uzr50yNhE9FYtGisAhifD3ix9HxtdK_FoGp6K_5rghYB0zjsbEPgXWo7jnbasu6W9KAWF8P1LQ_xhlWLfnaQxVt6zjf0TqR2MZ7ucVye8KGfZ5Ga637X_J-9Hy1nCT1Sej20H24I4tnrzwBkmLZnETM0DPMdnhIYQ5m5DEHtQFa0DM6jDmzrDwv2gIrIRFuSEf2ELG4w
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Review Joe wants to to find the tangent line to y = x3 at x = 2. He knows
the derivative is y = 3x2, and when x = 2 the curve passes through 8. So he
writes an equation of the tangent line as y − 8 = 3x2(x − 2). What’s wrong?
What part of the general formula y − f(c) = f ′(c)(x− c) did Joe forget? See 4

for an answer.

Problem 6.18: Tangent Plane General Formula First read the review

problem above, and its solution. Now, consider the function z = f(x, y). Prove
that an equation of the tangent plane to f at (x, y) = (a, b) is given by

z − f(a, b) =
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b).

Then give an equation of the tangent plane to f(x, y) = x2 + 3xy at (3,−1).
[Hint: Use either differential notation or a parametrization. Try both ways.]

6.4 The Chain Rule (or just Substitution)

Suppose we know that the temperature at points in the plane is given by some
function T = f(x, y). We also know that an object is traveling around the
plane following the curve ~r(t) = (x(t), y(t)). As the object moves around, it
encounters different temperatures. One function f tells us the temperature
based on position. The other function ~r tells position based on time. Combining
these two functions together (function composition f(~r(t)) we can compute the
temperature based on time. These functions are like a chain of events. Changing
t causes position to change, which in turn causes the temperature to change.
This might cause something else to change. The chain rule helps us see how to
compute the derivative of a function that is composed of several smaller pieces.

Problem 6.19 Consider f(x, y) = 9 − x2 − y2 and ~r(t) = (2 cos t, 3 sin t).
Imagine the following scenario. A horse runs around outside in the cold. The
horse’s position at time t is given parametrically by the elliptical path ~r(t). The
function T = f(x, y) gives the temperature of the air at any point (x, y).

1. At time t = 0, what is the horse’s position ~r(0), and what is the temperature
f(~r(0)) at that position? Find the temperatures at t = π/2, t = π, and
t = 3π/2 as well.

2. In the plane, draw the path of the horse for t ∈ [0, 2π]. Then, on the same If you end up with an ellipse and
several concentric circles, then
you’ve done this right.

2D graph, include a contour plot of the temperature function f . Make
sure you include the level curves that pass through the points in part 1,
and write the temperature on each level curve you draw.

3. As the horse runs around, the temperature of the air around the horse is This idea leads to an optimization
technique, Lagrange multipliers,
later in the semester.

constantly changing. At which t does the temperature around the horse
reach a maximum? A minimum? Explain, using your graph.

4. As the horse moves past the point at t = π/4, is the temperature of the

surrounding air increasing or decreasing? In other words, is
df

dt
positive or

negative? Use your graph to explain.

4Joe forgot to replace x with 2 in the derivative. The equation should be y− 8 = 12(x− 2).
The notation f ′(c) is the part he forgot. He used f ′(x) = 3x2 instead of f ′(2) = 12.
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Notice above that we wanted df
dt , the rate of change of temperature with

respect to time, even though the function f(x, y) does not explicitly have t as

an input. The proper notation would be d(f◦r)
dt , but this is so cumbersome that

it’s generally avoided.

Problem 6.20 Consider again f(x, y) = 9−x2−y2 and ~r(t) = (2 cos t, 3 sin t),
which means x = 2 cos t and y = 3 sin t.

1. At the point ~r(t), we’d like a formula for the temperature f(~r(t)). What
is the temperature of the horse at any time t? [In f(x, y), replace x and y
with what they are in terms of t.]

2. Compute df/dt (the derivative as you did in first-semester calculus).

3. Construct a graph of f(t) (use software to draw this if you like). From
your graph, at what time values do the maxima and minima occur?

4. What is df
dt at t = π/4?

Let’s now look at the same problem, but first compute differentials before
we do any substitution.

Problem 6.21 Consider again f(x, y) = 9−x2−y2 and ~r(t) = (2 cos t, 3 sin t).

1. Compute both Df(x, y) and D~r(t) as matrices. One should have two
columns. The other should have one column (but two rows).

2. State the differential df in terms of x, y, dx, and dy. Then state the
differential d~r in terms of t and dt.

3. Remember that ~r = (x, y), so clearly state dx and dy in terms of t and dt.

4. Use substitution to write df in terms of t and dt, and then state df
dt (it

should match the previous problem).

Problem 6.22 A horse walks on a curved path given by (x, y)(t) = (5 cos t+
3, 2 sin t). The temperature of the air at points along the path is given by
f(x, y) = x2ey + y3.

1. Compute the composite function f(~r(t)) which gives the temperature
encountered by the horse at time t. Then compute the derivative of the
temperature with respect to time, namely df

dt .

2. Compute the differential df in terms of x, y, dx, dy. Then compute the
differential d(x, y) in terms of t and dt. Then use substitution to obtain
df in terms of t and dt, and finally state df

dt .

3. Verify that the two computations above both yield the same result.

Did you notice in the previous problems that you can get the same answer
by either first substituting and then differentiating, or instead you can first
differentiate and then substitute. The order does not matter, as the result will
be the same. Let’s look at a problem where the order does matter.
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Problem 6.23 Suppose a horse walks along the parabolic path (x, y) =
(3t, t2). The temperature encountered, f(x, y), is currently unknown (another
team is currently trying to figure out this function). We need to obtain a formula
for the rate of the change of the horse’s temperature as t increases.

1. Why is computing the composite function f(~r(t)) and simplifying not
possible?

2. Even though we do not know a formula currently for f , why do we know
df = ∂f

∂xdx+ ∂f
∂y dy?

3. Compute both dx and dy in terms of t and dt. Then use substitution to
obtain df in terms of t and dt.

4. Use your work on the previous part to show that df
dt = 3∂f∂x + 2t∂f∂y .

When a formula for a function is currently unknown, we can still compute
derivatives of a composite function by first differentiating and then substituting.
Wait. How often in life do you look at something and see a formula written
on it to describe the function involved? We know that the temperature of
points on the earth at a specific time are given by some function f(x, y, z), but
do we know the formula for that function? To find oil or natural gas under
the earth, we would love to know before we start digging what the density of
material under the earth is (so f(x, y, z)), but this function is now known either.
In fact, the world before us NEVER has a function provided, rather we have
to construct these functions. The class after this, differential equations, uses
precisely the ideas we are learning now to work backwards and find formulas for
f(x, y, z) from knowledge about velocities (derivatives) and forces (mass time
acceleration).

What we need to do now is learn how to compute derivatives of composite
functions when some (or all) of the functions involved are currently not fully
known. Let’s start with a problem related to notation.

Problem 6.24 Consider the two functions f(x, y) and g(x, y, z).

1. Because of the definition of partial derivatives, we know that

df = fxdx+ fydy.

Give a formula for dg in terms of its partial derivatives.

2. Use the formula above to explain why df
dx = fx+ fy

dy
dx . Then give a similar

formula for dg
dz .

3. Consider now the specific function f(x, y) = x2y + xy3. The regular
derivative df

dx assumes that all other variables depend on x when computing
a derivative, whereas the partial derivative fx assumes that all other
variables are constants when computing a derivative. Compute both df

dx

and ∂f
∂x , and then compare the results.

Problem 6.25 Consider the two functions ~r(t) = (x, y)(t) (a parametrization
of a curve) and ~r(u, v) = (x, y, z)(u, v) (a parametrization of a surface).
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1. Using the function ~r(t) = (x, y)(t) together with the fact that dx = dx
dt dt

and a similar fact for dy, we obtain the differential

d~r =

[
dx
dy

]
=

[
dx
dt dt
dy
dt dt

]
=

[
dx
dt
dy
dt

]
dt.

Obtain a formula for the differential of (x, y, z)(u, v). [Hint: your answer
can be written in the form below.]

d~r =

dxdy
dz

 =

?
?
?

 du+

∂x∂v?
?

 dv.
2. For the first function, compare and contrast d~r

dt and ∂~r
∂t ?

3. For the second function, compare and contrast d~r
du and ∂~r

∂u?

Let’s now apply what we’ve learned above to develop some formulas for the
composition of two functions. These formulas are called “chain rule” formulas.

Problem 6.26 Suppose w is a function of x and y (so w = f(x, y)) and
suppose x and y are functions of t (so (x, y) = ~r(t)). The previous two problems
showed that

df =
∂f

∂x
dx+

∂f

∂y
dy and d~r =

[
dx
dy

]
=

[
dx
dt dt
dy
dt dt

]
.

Use substitution to show that

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

Then obtain a similar function if w is a function of x, y, and z (so w = f(x, y, z))
which are all functions of t (so (x, y, z) = ~r(t)).

Problem 6.27 Suppose w is a function of x and y (so w = f(x, y)) and
suppose x and y are functions of u and v (so (x, y) = ~r(u, v)). Your work on
previous problems showed that

df =
∂f

∂x
dx+

∂f

∂y
dy and d~r =

dxdy
dz

 =

 ∂x∂udu+ ∂x
∂v dv

∂y
∂udu+ ∂y

∂vdv
∂z
∂udu+ ∂z

∂vdv

 .
Use substitution and some rearranging to show that (fill in the blank)

df =

(
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u

)
du+ (?) dv.

What is ∂f
∂u? What is fv?
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6.5 Matrices and the Chain Rule

This section focuses on using matrices to develop the chain rule. We’ll find
that the first semester calculus chain rule will generalize to all dimensions,
if we replace f ′ with the matrix Df . First. let’s recall the chain rule from
first-semester calculus.

Theorem (The Chain Rule). Let x be a real number and f and g be functions
of a single real variable. Suppose f is differentiable at g(x) and g is differentiable
at x. The derivative of f ◦ g at x is

(f ◦ g)′(x) =
d

dx
(f ◦ g)(x) = f ′(g(x)) · g′(x).

Please complete this review problem to make sure you are comfortable with
the notation of the chain rule.

Exercise Suppose we know that f ′(x) =
sin(x)

2x2 + 3
and g(x) =

√
x2 + 1.

Notice we don’t know f(x). See 5 for an answer. Not knowing a function f is
actually quite common in real life.
We can often measure how
something changes (a derivative)
without knowing the function
itself.

1. State f ′(x) and g′(x).

2. State f ′(g(x)), and explain the difference between f ′(x) and f ′(g(x)).

3. Use the chain rule to compute (f ◦ g)′(x).

In the previous section, we focused on using differentials to compute deriva-
tives, as the following example shows.

Example 6.6. Suppose that y = f(u) and that u = g(x). This means we have
the differentials

dy = f ′(u)du and du = g′(x)dx.

Simple substitution tells us that

dy = f ′(g(x)︸︷︷︸
u

) g′(x)dx︸ ︷︷ ︸
du

.

This means instantly that the derivative of y with respect to x must be the
product f ′(g(x))g′(x).

Problem 6.28 Suppose that f(x, y) = 3xy2 + sinx and ~r(t) = (e2t, t3),
which is just shorthand for saying x(t) = e2t and y(t) = t3.

1. State the composite function f(~r(t)). Then compute the derivative df
dt

directly.

2. Find the differential df in terms of x, y, dx, and dy. Then find dx and dy
in terms of t and dt. Then use substitution to obtain the derivative df

dt .

3. Compute the derivative Df(x, y) and the derivative D~r(t). How can you
combine these two matrices to obtain the derivative df

dt?

5 We have f ′(x) =
sin(x)

2x2+3
and g′(x) = 1

2
(x2+1)−1/2(2x). We have f ′(g(x)) =

sin((
√

x2+1))

2(
√

x2+1)2+3
.

The difference between f ′(x) and f ′(g(x)) is whether we’ve replaced x in f with g(x) or not.

The final derivative is (f ◦ g)′(x) = f ′(g(x))g′(x) =
sin((
√

x2+1))

2(
√

x2+1)2+3

1
2

(x2 + 1)−1/2(2x).
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Did you see that multiplying together the two matrices above gives you
the derivative? Matrix multiplication was invented precisely so that we can
generalize the chain rule to higher dimensions. Since the chain rule in first
semester calculus states (f(g(x))′ = f ′(g(x))g′(x), then in high dimensions, with

matrices, it states D(~f(~g(~x)) = D~f(~g(~x))D~g(~x), the product of two matrices.

Problem 6.29 In problem 6.1, we showed that for a circular cylinder with
volume V = πr2h, the derivative is

DV (r, h) =
[
2πrh πr2

]
.

Suppose that the radius and height are both changing with respect to time,
where r = 3t and h = t2. We’ll write this parametrically as (r, h)(t) = (3t, t2).

1. In V = πr2h, replace r and h with what they are in terms of t. Then

compute
dV

dt
.

2. Now instead, compute dV in terms of r, h, dr, and dh. Then compute
(dr, dh) in terms of t and dt. Finish by using substitution to obtain dV in
terms of t and dt.

3. We know DV (r, h) =
[
2πrh πr2

]
and D(r, h)(t) =

[
3
2t

]
. In first semester

calculus, the chain rule was the product of derivatives. Compute the matrix
product

DV ((r, h)(t)) ·D(r, h)(t)

and verify that you get
dV

dt
.

4. To get the correct answer to the previous part, you had to replace r
and h with what they equaled in terms of t. What part of the notation
dV

dt
= DV ((r, h)(t)) · D(r, h)(t) tells you to replace r and h with what

they equal in terms of t?

Theorem 6.7 (The Chain Rule). Let ~x be a vector and ~f and ~g be functions

so that the composition ~f(~g(~x)) makes sense (we can use the output of g as an

input to f). Suppose ~f is differentiable at ~g(~x) and that ~g is differentiable at ~x.

Then the derivative of ~f ◦ ~g at ~x is the matrix product

D(~f ◦ ~g)(~x) = D~f(~g(~x)) ·D~g(~x).

This is exactly the same as the chain rule in first-semester calculus. The only
difference is that now we have vectors above every variable and function, and
we replaced the one-by-one matrices f ′ and g′ with potentially larger matrices
Df and Dg. If we write everything in vector notation, the chain rule in all
dimensions is the EXACT same as the chain rule in one dimension.

Problem 6.30 Suppose that f(x, y) = x2 + xy and that x = 2t + 3 and See 14.4: 1-6 for more practice.
Don’t use the formulas in the
chapter, rather practice using
matrix multiplication. The
formulas are just a way of writing
matrix multiplication without
writing down the matrices, and
only work for functions from
Rn → R. Our matrix
multiplication method works for
any function from Rn → Rm.

y = 3t2 + 4.

1. Use substitution to express f in terms of t. Then compute df
dt .

2. Compute the differential df in terms of x, y, dx and dy. Then compute
dx and dy in terms of t and dt. Then use substitution to obtain df

dt .
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3. Rewrite the parametric equations x = 2t + 3 and y = 3t2 + 4 in vector
form, so we can apply the chain rule. This means you need to create a

function ~r(t) = ( , ). Then compute the
derivatives Df(x, y) and D~r(t), and multiply the matrices together to

obtain
df

dt
. How can you make your answer only depend on t (not x or y)?

4. The chain rule states that D(f ◦ ~r)(t) = Df(~r(t))D~r(t). Explain why we
write Df(~r(t)) instead of Df(x, y).

Problem 6.31 Suppose f(x, y, z) = x+ 2y+ 3z2 and x = u+v, y = 2u−3v, See 14.4: 7-12 for more practice.

and z = uv. Our goal is to find how much f changes if we were to change u (so
∂f/∂u) or if we were to change v (so ∂f/∂v).

1. Compute ∂f/∂u and ∂f/∂v by first substituting to get f written in terms
of u and v, and then computing partial derivatives.

2. Compute ∂f/∂u and ∂f/∂v by first obtaining differentials and then using
substitution.

3. Compute ∂f/∂u and ∂f/∂v by first obtaining the derivatives of f(x, y, z)
and ~r(u, v), and then multiplying the two matrices together.

Review Suppose f(x, y) = x2 + 3xy and (x, y) = ~r(t) = (3t, t2). Compute
both Df(x, y) and D~r(t). Then explain how you got your answer by writing
what you did in terms of partial derivatives and regular derivatives. See 6 for
an answer.

Problem 6.32: General Chain Rule Formulas Complete the following: See 14.4: 13-24 for more practice.
Practice these problems by using
matrix multiplication. The
examples problems in the text use
a “branch diagram,” which is just
a way to express matrix
multiplication without having to
introduce matrices.

1. Suppose that w = f(x, y, z) and that x, y, z are all function of one variable
t (so x = g(t), y = h(t), z = k(t)). Use the chain rule with matrix
multiplication to explain why

dw

dt
=
∂f

∂x

dg

dt
+
∂f

∂y

dh

dt
+
∂f

∂z

dk

dt
.

which is equivalent to writing

dw

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
.

[Hint: Rewrite the parametric equations for x, y, and z in vector form
~r(t) = (x, y, z) and compute Dw(x, y, z) and D~r(t).]

2. Suppose that R = f(V, T, n, P ), and that V, T, n, P are all functions of x.

Give a formula (similar to the above) for
dR

dx
.

Problem 6.33 Suppose z = f(s, t) and s and t are functions of u, v and w. Make sure you practice problems
14.4: 13-24. Use matrix
multiplication, rather than the
“branch diagram” referenced in the
text.

Use the chain rule to give a general formula for ∂z/∂u, ∂z/∂v, and ∂z/∂w.

6We have Df(x, y) =
[
2x+ 3y 3y

]
and D~r(t) =

[
3
2t

]
. We just computed fx and fy , and

dx/dt and dy/dt, which gave us Df(x, y) =
[
∂f/∂x ∂f/∂y

]
and D~r(t) =

[
dx/dt
dy/dt

]
.
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Review If w = f(x, y, z) and x, y, z are functions of u and v, obtain formulas

for
∂f

∂u
and

∂f

∂v
. See 7 for an answer.

You’ve now got the key ideas needed to use the chain rule in all dimensions.
The chain rule shows up many places in upper-level math, physics, and engi-
neering courses as the key tool needed to develop new formulas. The following
problem will show you one such use, namely how you can use the general chain
rule to get an extremely quick way to perform implicit differentiation from
first-semester calculus.

Problem 6.34 Suppose z = f(x, y). If z is held constant, this produces a See 14.4: 25-32 to practice using
the formula you developed. To
practice the idea developed in this
problem, show that if
w = F (x, y, z) is held constant at
w = c and we assume that
z = f(x, y) depends on x and y,

then ∂z
∂x

= −Fx
Fz

and ∂z
∂y

= −Fy
Fz

.

This is done on page 798 at the
bottom.

level curve. As an example, if f(x, y) = x2 + 3xy − y3 then 5 = x2 + 3xy − y3
is a level curve. Our goal in this problem is to find dy/dx in terms of partial
derivatives of f .

1. Suppose x = x and y = y(x), so y is a function of x. We can write this
in parametric form as ~r(x) = (x, y(x)). We now have z = f(x, y) and
~r(x) = (x, y(x)). Compute both Df(x, y) and D~r(x) symbolically. Don’t
use the function f(x, y) = x2 + 3xy − y3 until you get to part 4 below.

2. Use the chain rule to compute D(f(~r(x))). What is dz/dx (i.e., df/dx)?

3. Since z is held constant, we know that dz/dx = 0. Use this fact, together

with part 2 to explain why
dy

dx
= −fx

fy
= −∂f/∂x

∂f/∂y
.

4. For the curve 5 = x2 + 3xy − y3, use this formula to compute dy/dx.

Problem: Optional Suppose ~F (u, v) = (3u − v, u + 2v, 3v), ~G(x, y, z) =

(x2 + z, 4y − x), and ~r(t) = (t3, 2t+ 1, 1− t). We want to examine ~F (~G(~r(t)).

This means that ~F ◦ ~G ◦ ~r is a function from Rn → Rm for what n and m?
Similar to first-semester calculus, since we have several functions nested inside
of each other, we’ll just need to apply the chain rule twice. Our goal is to find
d~F/dt. Try to do this problem without looking at the steps below.

1. Compute D~F (u, v), D~G(x, y, z), and D~r(t).

2. Use the chain rule (matrix multiplication) to find the derivative of ~F with
respect to t. What size of matrix should we expect for the derivative? See
8 for an answer.

7 We have Df(x, y, z) =

[
∂f

∂x

∂f

∂y

∂f

∂z

]
. The parametrization ~r(u, v) =

(x, y, z) has derivative D~r =


∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v
∂z

∂u

∂z

∂v

. The product is D(f(~r(u, v))) =

[
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
+
∂f

∂z

∂z

∂u

∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
+
∂f

∂z

∂z

∂v

]
. The first column is

∂f

∂u
, and the

second column is
∂f

∂v
.

8 The requested derivatives are

D~F (u, v) =

3 −1
1 2
0 3

 , D ~G(x, y, z) =

[
2x 0 1
−1 4 0

]
, D~r(t) =

3t2

2
−1

 .
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6.6 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to I-Learn and download the quiz. Once you have taken the
quiz, you can upload your work back to I-Learn and then download the key to
see how you did. If you still need to work on mastering some of the ideas, please
do so and then demonstrate your mastery though the quiz corrections.

The product of these matrices is

d~F

dt
= D(~F ( ~G(~r(t)))) = D~F ( ~G(~r(t)))D~G(~r(t))D~r(t)

=

3 −1
1 2
0 3

[2x 0 1
−1 4 0

]3t2

2
−1

 =

18xt2 + 3t2 − 11

6xt2 − 6t2 + 15

24− 9t2


=

18(t3)t2 + 3t2 − 11

6(t3)t2 − 6t2 + 15

24− 9t2

 .
The final step comes from noting that x = t3, y = 2t+ 1, and z = 1− t, so we replace x with
t3 so that all variables are in terms of t.
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Exam 2 Review
At the end of each chapter, the following words appeared.

Once you have finished the problems in the section and feel comfort-
able with the ideas, create a short one page lesson plan that contains
examples of the key ideas. You will get a chance to teach from this
lesson plan prior to taking the exam.

I’ve summarized the objectives from each chapter below. For our in class review,
please come to class with examples to help illustrate each idea below. You’ll get
a chance to teach another member of class the examples you prepared. If you
keep the examples simple, you’ll have time to review each key idea.

New Coordinates

1. Use a change-of-coordinates to convert between rectangular and another
coordinate system. In particular, be able to convert points and equations
between rectangular and polar coordinates.

2. Graph polar functions r = f(θ) in the xy plane, and set up the arc length
formula to find their length.

3. Given a change-of-coordinates, find the differentials dx and dy and write
them in both vector and matrix form. Use these to compute tangent
vectors, slope dy

dx , and equations of tangent lines.

4. Compute double integrals to find the area of regions in the xy plane, and
use the determinant to explain how area between different coordinate
systems is related.

5. Shade regions in the plane bounded by α ≤ θ ≤ β and r1(θ) ≤ r ≤ r2(θ),
and use double integrals to compute their area.

Functions

1. Describe uses for, and construct graphs of, space curves and parametric
surfaces. Find derivatives of space curves, and use this to find velocity,
acceleration, and find equations of tangent lines.

2. Describe uses for, and construct graphs of, functions of several variables.
For functions of the form z = f(x, y), this includes both 3D surface plots
and 2D level curve plots. For functions of the form w = f(x, y, z), construct
plots of level surfaces.

3. Describe uses for, and construct graphs of, vector fields and transformations.
Develop the formulas for cylindrical and spherical coordinates.

4. If you are given a description of a vector field, curve, or surface (instead
of a function or parametrization), explain how to obtain a function for the
vector field, or a parametrization for the curve or surface.
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Differentials and The Derivative

1. Compute differentials and partial derivatives, and explain how they are
connected.

2. Explain how to obtain the total derivative from the partial derivatives
(using a matrix).

3. Find equations of tangent lines and tangent planes to surfaces.

4. Find derivatives of composite functions, using the chain rule (substitution
and matrix multiplication).

5. Give general chain rule formulas in terms of partial derivatives.



Chapter 7

Optimization

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Explain the properties of the gradient, its relation to level curves and level
surfaces, and how it can be used to find directional derivatives.

2. Find equations of tangent planes using the gradient and level surfaces.
Use the derivative (tangent planes) to approximate functions, and use this
in real world application problems.

3. Explain the second derivative test in terms of eigenvalues. Use the second
derivative test to optimize functions of several variables.

4. Use Lagrange multipliers to optimize a function subject to constraints.

You’ll have a chance to teach your examples to your peers prior to the exam.

7.1 The Gradient

When we take the derivative of single valued function, the derivative is a matrix
with just a single row. The derivative of f(x, y, z) is the matrix Df(x, y, z) =[
fx fy fz

]
. Because the number of input variables matches the number of

entries in the matrix, we can think of such a derivative as a vector field. When
we want to use the derivative as a vector field, we call it the gradient of f .

Definition 7.1: Gradient. Let ~f : Rn → R. When we want to emphasize
that the derivative of f is a vector field, we call Df the gradient of f and write
Df = ~∇f . The symbol ~∇f is read “the

gradient of f” or “del f.”

Problem 7.1 Consider the functions f(x, y) = 9− x2− y2, g(x, y) = 2x− y,
and h(x, y) = sinx cos y. You’ll want a computer to help

you construct the graphs,
particularly h. Please use the
Mathematica introduction or Sage.
You could use Wolfram Alpha (use
the links in the function chapter if
you forgot how to graph vector
fields and/or contour plots).

1. Compute ~∇f(x, y). Then draw both ~∇f and several level curves of f on

See Sage. You can modify these
commands to help in the plots
below too.

the same axes.

2. Compute ~∇g(x, y). Then draw both ~∇g and several level curves of g on
the same axes.

3. Compute ~∇h(x, y). Then draw both ~∇h and several level curves of h on
the same axes.

79

http://aleph.sagemath.org/?z=eJxljLEOwiAURXe-oltBHybSyeFtjV_gXIIIEYM-QqmWvxejm8vNyc3J8XyFKvAg10nJOik2-u_Dpdqs0LWtgrGElh6FlqxTpMI9NEkOMAjg9Qc-xIhHE2cH9m4S9jdXerAUKZ9NxlNenGBpi5-AfjpbKGsfXLzw0UP312vubr7Si5s5NVlnUwLhXrwBPnA2AQ


CHAPTER 7. OPTIMIZATION 80

4. What relationships do you see between the gradient vector field and level
curves?

When you present in class, be prepared to provide rough sketches of the level
curves and gradients of each function.

The next few problems will focus on explaining why the relationships you
saw are always true.

Problem 7.2 Suppose ~r(t) is a level curve of f(x, y).

1. Suppose you know that at t = 0, the value of f at ~r(0) is 7. What is the
value of f at ~r(1)? [What does it mean to be on a level curve?]

2. As you move along the level curve ~r, how much does f change? Use this

to tell the class what
df

dt
must equal.

3. At points along the level curve ~r, we have the composite function f(~r(t)).

Compute the derivative
df

dt
using the chain rule.

4. Use your work from the previous parts to explain why the gradient always
meets the level curve at a 90◦ angle. We say that the gradient is normal
to level curves (i.e., a gradient vector is orthogonal to the tangent vector
of the curve).

In the derivative chapter, we extended differential notation from dy = f ′dx
to d~y = D~fd~x. The key idea is that a small change in the output variables
is approximated by the product of the derivative and a small change in the
input variables. As a quick refresher, if we have the function z = f(x, y), then
differential notation states that

dz =
[
fx fy

] [dx
dy

]
where the derivative is Df(x, y) =

[
fx fy

]
.

Problem 7.3 Suppose the temperature at a point in the plane is given by the
function T (x, y) = x2 − xy − y2 degrees Fahrenheit. A particle is at P = (2, 3).

1. Use differentials to estimate the change in temperature if the particle moves
1 unit in the direction of ~u = (3, 4). [Hint: In the formula df = Dfd~x, the
differential d~x should be a unit vector in the direction of ~u.]

2. What is the actual change in temperature if the particle moves 1 unit in
the direction of ~u = (3, 4)?

3. Use differentials to estimate the change in temperature if the particle
moves about .2 units in the direction of ~u = (3, 4).

We can define partial derivatives solely in terms of differential notation. We
can define derivatives in any direction in terms of differential notation.

Problem 7.4 Suppose that z = f(x, y) is a differentiable function (so the
derivative is the matrix

[
fx fy

]
). Remember to use differential notation in

this problem.
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1. If (dx, dy) = (1, 0), which means we’ve moved one unit in the x direction
while holding y constant, what is dz?

2. If (dx, dy) = (0, 1), which means we’ve moved one unit in the y direction
while holding x constant, what is dz?

3. Consider the direction ~u = (2, 3). Find a unit vector in the direction of
~u. If we move one unit in the direction of ~u, what is dz? [It’s all right to
leave you answer as a dot product.]

Definition 7.2. The directional derivative of f in the direction of the unit
vector ~u at a point P is defined to be

D~uf(P ) = Df(P )~u = ~∇f · ~u.

We dot the gradient of f with the direction vector ~u. The partial derivative
of f with respect to x is precisely the directional derivative of f in the (1, 0)
direction. Similarly, the partial derivative of f with respect to y is precisely
the directional derivative of f in the (0, 1) direction. This definition extends to
higher dimensions.

Note that in the definition above, we require the vector ~u to be a unit vector.
If you are asked to find a directional derivative in some direction, make sure
you start by finding a unit vector in that direction. We want to deal with unit
vectors because when we say something has a slope of m units, we want to say
“The function rises m units if we run 1 unit.”

Problem 7.5 Consider the function f(x, y) = 9− x2 − y2.

1. Draw several level curves of f .

2. At the point P = (2, 1), place a dot on your graph. Then draw a unit
vector based at P that points in the direction ~u = (3, 4) [not to the point
(3, 4), but in the direction ~u = (3, 4)]. If you were to move in the direction
(3, 4), starting from the point (2, 1), would the value of f increase or
decrease?

3. Find the slope of f at P = (2, 1) in the direction ~u = (3, 4) by finding the
directional derivative. This should agree with your previous answer.

4. If you stand at Q = (−2, 3) and move in the direction ~v = (1,−1), will f
increase or decrease? Find the directional derivative of f in the direction
~v = (1,−1) at the point Q = (−2, 3).

Problem 7.6 Recall that the directional derivative of ~f in the direction ~u is

the dot product ~∇f · ~u = |~∇f ||~u| cos θ.

1. Why is the directional derivative of ~f the largest when ~u points in the
exact same direction as ~∇f? [Hint: What angle maximizes cos θ?]

2. When ~u points in the same direction as ~∇f , show that D~uf = |~∇f |. In
other words, explain why the length of the gradient is precisely the slope of
f in the direction of greatest increase (the slope in the steepest direction).

3. Which direction points in the direction of greatest decrease?
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Problem 7.7 Suppose you are looking at a topographical map (see Wikipedia
for an example). On this topographical map, each contour line represents 100 ft
in elevation. You notice in one section of the map that the contour lines are
really close together, and they start to form circles around a spot on the graph.
You notice in another section of the map that the contour lines are spaced quite
far apart. Let f(x, y) be the elevation of the land, so that the topographical
map is just a contour plot of f .

1. Where is the slope of the terrain larger, in the section with closely packed
contour lines, or the section with contour lines that are spread out. In
which section will the gradient be a longer vector?

2. At the very top of a mountain, or the very bottom of a valley, will the
gradient be a long vector or a small vector? How do you locate a peak in
a topographical map?

3. Create you own topographical map to illustrate the ideas above. Just make If you’re stuck, look at a contour
plot of
f(x, y) = (x+1)3−3(x+1)2−y2+2
in Sage. Then make your own
example.

sure your map has a section with some contours that are closely packed
together, and some that are far apart, as well as a contour that intersects
itself. Then on your topographical map, please add a few gradient vectors,
where you emphasize which ones are long, and which ones are short. Show
us how to find a peak, as well as what the gradient vector would be at the
peak.

Theorem 7.3. Let f be a continuously differentiable function, with ~r a level
curve of the function.

• The gradient is always normal to level curves, meaning ~∇f · d~r
dt

= 0.

• The gradient points in the direction of greatest increase.

• The directional derivative of f in the direction of the gradient is the length
of the gradient. Symbolically, we write D~∇ff = |~∇f |.

• At a maximum or minimum, the gradient is the zero vector.

The next few problems have you practice using differentials, and then obtain
tangent lines and planes to curves and surfaces using differentials.

Problem 7.8 The volume of a cylindrical can is V (r, h) = πr2h. Any
manufacturing process has imperfections, and so building a cylindrical can with
designed dimensions (r, h) will result in a can with dimensions (r + dr, h+ dh).

1. Compute both DV (the derivative of V ) and dV (the differential of V ).

2. If the can is tall and slender (h is big, r is small), which will cause a larger
change in volume: an error in r or an error in h? Use dV to explain your
answer.

3. If the can is short and wide (like a tuna can), which will cause a larger
change in volume: an error in r or an error in h? Use dV to explain your
answer.

http://en.wikipedia.org/wiki/Topographic_map
http://aleph.sagemath.org/?z=eJxL06jQqdS01ajQNtSMM9Y11oKwjHQr44y0jbiS8_NK8kuL4gty8ks00nSAinWNdIw0dRQ0KqGs5Pyc_KKkxCLbkKLSVE0AbVIWvQ
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Problem 7.9 Consider the function f(x, y) = x2 + y2. Consider the level
curve C given by f(x, y) = 25. Our goal is to find an equation of the tangent
line to C at P = (3,−4).

1. Draw C. Compute ~∇f and add to your graph the vector ~∇f(P ).

2. We know the point P = (3,−4) is on the tangent line. Let Q = (x, y)
represent another point on the tangent line. Add to your graph the point
Q and the vector ~PQ = (x− 3, y + 4).

3. Why are ~∇f(P ) and ~PQ orthogonal? Use this fact to write an equation
of the tangent line.

4. What is a normal vector to the line?

The previous problem had you give an equation of the tangent line to a level
curve, by using differential notation. The next problems asks you to repeat this
idea and give an equation of a tangent plane to a level surface.

Problem 7.10 Consider the function f(x, y, z) = x2 + y2 + z2. Consider the
level surface S given by f(x, y, z) = 9. Our goal is to find an equation of the
tangent plane to S at P = (1, 2,−2).

1. Draw S.

2. Compute ~∇f . Add to your graph the vector ~∇f(P ), with its base at P .

3. We know the point P = (1, 2,−2) is on the tangent plane. Let Q = (x, y, z)
be any other point on the tangent plane. What is the component form of
the vector ~PQ?

4. Why are ~∇f(P ) and ~PQ orthogonal? Use this fact to write an equation
of the tangent plane.

5. What is a normal vector to the plane?

Problem 7.11 Find an equation of the tangent plane to the hyperboloid of
one sheet 1 = x2 − y2 + z2 at the point (−3, 3, 1).

Problem 7.12 The two surfaces x2 + y2 + z2 = 14 and 3x + 4y − z = −1
intersect in a curve C. Draw both surfaces, and show us the curve C. Then,
at the point (2,−1, 3), find an equation of the tangent line to this curve. [Hint:
The line is in both tangent planes, so it is orthogonal to both normal vectors.
The cross product gets you a vector that is orthogonal to two vectors.]

7.2 The Second Derivative Test

We start with a review problem from first-semester calculus.

Problem 7.13 Let f(x) = x3 − 3x2. Find the critical values of f by solving
f ′(x) = 0. Then use the second derivative test to determine if each critical
value leads to a local maximum or local minimum (look up the second derivative
test if you don’t remember it). State the local maxima/minima of f . End by
sketching the function using the information you discovered.
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We now generalize the second derivative test to all dimensions. We’ve already
seen that the second derivative of a function such as z = f(x, y) is a square
matrix. The second derivative test relied on understanding if a function was
concave up or concave down. We need a way to examine the concavity of f as
we approach a point (x, y) from any of the infinitely many directions. Such a
method exists, and leads to an eigenvalue/eigenvector problem. I’m assuming
that most of you have never heard the word “eigenvalue.” We could spend an
entire semester just studying eigenvectors. We’d need a few weeks to discover
what they are from a problem-based approach. Instead, here is an example of
how to find eigenvalues and eigenvectors.

Definition 7.4. Let A be a square matrix, so in 2D we have A =

(
a b
c d

)
.

The identity matrix I is a square matrix with 1’s on the diagonal and zeros

everywhere else, so in 2D we have I =

(
1 0
0 1

)
. The eigenvalues of A are the

solutions λ to the equation |A− λI| = 0. Remember that |A| means, “Compute
the determinant of A.” So in 2D, we need to find the value λ so that∣∣∣∣(a b

c d

)
− λ

(
1 0
0 1

)∣∣∣∣ =

∣∣∣∣a− λ b
c d− λ

∣∣∣∣ = 0.

This definition extends to any square matrix. In 3D, the eigenvalues are the
solutions to the equation∣∣∣∣∣∣

a b c
d e f
g h i

− λ
1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a− λ b c
d e− λ f
g h i− λ

∣∣∣∣∣∣ = 0.

An eigenvector of A corresponding to λ is a nonzero vector ~x such that A~x = λx.

As you continue taking more upper level science courses (in physics, engi-
neering, mathematics, chemistry, and more) you’ll soon see that eigenvalues and
eigenvectors play a huge role. You’ll start to see them in most of your classes.
For now, we’ll use them without proof to apply the second derivative test. In
class, make sure you ask me to show you pictures with each problem we do, so
we can see how eigenvalues and eigenvectors appear in surfaces.

Theorem 7.5 (The Second Derivative Test). Let f(x, y) be a function so that
all the second partial derivatives exist and are continuous. The second derivative
of f , written D2f and sometimes called the Hessian of f , is a square matrix.
Let λ1 be the largest eigenvalue of D2f , and λ2 be the smallest eigenvalue. Then
λ1 is the largest possible second derivative obtained in any direction. Similarly,
the smallest possible second derivative obtained in any direction is λ2. The
eigenvectors give the directions in which these extreme second derivatives are
obtained. The second derivative test states the following.

Suppose (a, b) is a critical point of f , meaning Df(a, b) =
[
0 0

]
.

• If all the eigenvalues of D2f(a, b) are positive, then in every
direction the function is concave upwards at (a, b) which means
the function has a local minimum at (a, b).

• If all the eigenvalues of D2f(a, b) are negative, then in every
direction the function is concave downwards at (a, b). This
means the function has a local maximum at (a, b).
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• If the smallest eigenvalue of D2f(a, b) is negative, and the
largest eigenvalue of D2f(a, b) is positive, then in one direction
the function is concave upwards, and in another the function is
concave downwards. The point (a, b) is called a saddle point.

• If the largest or smallest eigenvalue of f equals 0, then the
second derivative tests yields no information.

Example 7.6. Consider the function f(x, y) = x2− 2x+xy+ y2. The first and
second derivatives are

Df(x, y) =
[
2x− 2 + y, x+ 2y

]
and D2f =

[
2 1
1 2

]
.

The first derivative is zero (the zero matrix) when both 2x − 2 + y = 0 and
x+ 2y = 0. We need to solve the system of equations 2x+ y = 2 and x+ 2y = 0.
Double the second equation, and then subtract it from the first to obtain
0x − 3y = 2, or y = −2/3. The second equation says that x = −2y, or that
x = 4/3. So the only critical point is (4/3,−2/3).

We find the eigenvalues of D2f(4/3,−2/3) by solving the equation In this example, the second
derivative is constant, so the point
(4/3,−2/3) did not change the
matrix. In general, the point will
affect your matrix. See Sage to see
a graph which shows the
eigenvectors in which the largest
and smallest second derivatives
occur.

∣∣∣∣2− λ 1
1 2− λ

∣∣∣∣ = (2− λ)(2− λ)− 1 = 0.

Expanding the left hand side gives us 4 − 4λ + λ2 − 1 = 0. Simplifying
and factoring gives us λ2 − 4λ + 3 = (λ − 3)(λ − 1) = 0. This means the
eigenvalues are λ = 1 and λ = 3. Since both numbers are positive, the
function is concave upwards in every direction. The critical point (4/3,−2/3)
corresponds to a local minimum of the function. The local minimum is the
output f(4/3,−2/3) = (4/3)2 − 2(4/3) + (4/3)(−2/3) + (−2/3)2.

Problem 7.14 Consider the function f(x, y) = x2 + 4xy + y2. See 14.7 for more practice.

1. Find the critical points of f by finding when Df(x, y) is the zero matrix.

2. Find the eigenvalues of D2f at any critical points.

3. Label each critical point as a local maximum, local minimum, or saddle
point, and state the value of f at the critical point.

Problem 7.15 Consider the function f(x, y) = x3 − 3x+ y2 − 4y.

1. Find the critical points of f by finding when Df(x, y) is the zero matrix.

2. Find the eigenvalues of D2f at any critical points. [Hint: First compute
D2f . Since there are two critical points, evaluate the second derivative
at each point to obtain 2 different matrices. Then find the eigenvalues of
each matrix.]

3. Label each critical point as a local maximum, local minimum, or saddle
point, and state the value of f at the critical point.

Problem 7.16 Consider the function f(x, y) = x3 + 3xy + y3.

1. Find the critical points of f by finding when Df(x, y) is the zero matrix.

2. Find the eigenvalues of D2f at any critical points.

http://aleph.sagemath.org/?q=775b0c4a-fc2c-4d39-8c30-ac5256cfb68a
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3. Label each critical point as a local maximum, local minimum, or saddle
point, and state the value of f at the critical point.

You now have the tools needed to find optimal solutions to problems in any
dimension. Here’s a silly problem that demonstrates how we can use what we’ve
just learned.

Problem 7.17: Optional For my daughter’s birthday, she has asked for a

Barbie princess cake. I purchased a metal pan that’s roughly in the shape of
a paraboloid z = f(x, y) = 9 − x2 − y2 for z ≥ 0. To surprise her, I want to
hide a present inside the cake. The present is a bunch of small candy that can
pretty much fill a box of any size. I’d like to know how large (biggest volume)
of a rectangular box I can fit under the cake, so that when we start cutting the
cake, she’ll find her surprise present. The box will start at z = 0 and the corners
of the box (located at (x,±y) and (−x,±y)) will touch the surface of the cake
z = 9− x2 − y2.

1. What is the function V (x, y) that we are trying to maximize?

2. If you find all the critical points of V , you’ll discover there are 9. However,
only one of these critical points makes sense in the context of this problem.
Find that critical point.

3. Use the second derivative test to prove that the critical point yields a
maximum volume.

4. What are the dimensions of the box? What’s the volume of the box?

The only thing left for me is to now determine how much candy I should buy to
fill the box. I’ll take care of that.

In this problem, we’ll derive the version of the second derivative test that is
found in most multivariate calculus texts. The test given below only works for
functions of the form f : R2 → R. The eigenvalue test you have been practicing
will work with a function of the form f : Rn → R, for any natural number n.

Problem 7.18: Optional Suppose that f(x, y) has a critical point at (a, b).

1. Find a general formula for the eigenvalues of D2f(a, b). Your answer will
be in terms of the second partials of f .

2. Let D = fxxfyy − f2xy.

• If D < 0, explain why f has a saddle point at (a, b).

• If D = 0, explain why the second derivative test fails.

• If D > 0, explain why f has either a maximum or minimum at (a, b).

• If D > 0, and fxx(a, b) > 0, does f have a local max or local min at
(a, b). Explain.

3. The only critical point of f(x, y) = x2 + 3xy + 2y2 is at (0, 0). Does this
point correspond to a local maximum, local minimum, or saddle point?
Give the eigenvalues (which should come instantly out of part 1). Find D,
from part 2, to answer the question.
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7.3 Lagrange Multipliers

The last problem was an example of an optimization problem where we wish
to optimize a function (the volume of a box) subject to a constraint (the box
has to fit inside a cake). If you are economics student, this section may be the
key reason why you were asked to take multivariate calculus. In the business
world, we often want to optimize something (profit, revenue, cost, utility, etc.)
subject to some constraint (a limited budget, a demand curve, warehouse space,
employee hours, etc.). An aerospace engineer will build the best wing that can
withstand given forces. Everywhere in the engineering world, we often seek to
create the “best” thing possible, subject to some outside constraints. Lagrange
discovered an extremely useful method for answering this question, and today
we call it “Lagrange Multipliers.”

Rather than introduce Cobb-Douglass production functions (from economics)
or sheer-stress calculations (from engineering), we’ll work with simple examples
that illustrate the key points. Sometimes silly examples carry the message across
just as well.

Problem 7.19 Suppose an ant walks around the circle g(x, y) = x2 +y2 = 1.
As the ant walks around the circle, the temperature is f(x, y) = x2 + y+ 4. Our
goal is to find the maximum and minimum temperatures reached by the ant as
it walks around the circle. We want to optimize f(x, y) subject to the constraint
g(x, y) = 1.

1. Draw the circle g(x, y) = 1. Then, on the same set of axes, draw several
level curves of f . The level curves f = 3, 4, 5, 6 are a good start. Then
add more (maybe at each 1/4th). If you make a careful, accurate graph,
it will help a lot below.

2. Based solely on your graph, where does the minimum temperature occur?
What is the minimum temperature?

3. If the ant is at the point (0, 1), and it moves left, will the temperature rise
or fall? What if the ant moves right?

4. On your graph, place a dot(s) where you believe the ant reaches a maximum
temperature (it may occur at more than one spot). Explain why you believe
this is the spot where the maximum temperature occurs. What about the
level curves tells you that these spots should be a maximum.

5. Draw the gradient of f at the places where the minimum and maximum
temperatures occur. Also draw the gradient of g at these spots. How are
the gradients of f and g related at these spots?

Theorem 7.7 (Lagrange Multipliers). Suppose f and g are continuously dif-
ferentiable functions. Suppose that we want to find the maximum and minimum
values of f subject to the constraint g(x, y) = c (where c is some constant). Then
if a maximum or minimum occurs, it must occur at a spot where the gradient
of f and the gradient of g point in the same, or opposite, directions. So the
gradient of g must be a multiple of the gradient of f . To find the maximum and
minimum values (if they exist), we just solve the system of equations that result
from

~∇f = λ~∇g, and g(x, y) = c

where λ is the proportionality constant. The maximum and minimum values
will be among the solutions of this system of equations.
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Problem 7.20 Suppose an ant walks around the circle x2 + y2 = 1. As the
ant walks around the circle, the temperature is T (x, y) = x2 + y + 4. Our goal
is to find the maximum and minimum temperatures T reached by the ant as it
walks around the circle.

1. What function f(x, y) do we wish to optimize? What is the constraint
g(x, y) = c?

2. Find the gradient of f and the gradient of g. Then solve the system of The most common error on this
problem is to divide both sides of
an equation by x, which could be
zero. If you do this, you’ll only get
2 ordered pairs.

equations that you get from the equations

~∇f = λ~∇g, x2 + y2 = 1.

You should obtain 4 ordered pairs (x, y).

3. At each ordered pair, find the temperature. What is the maximum
temperature obtained? What is the minimum temperature obtained.

Problem 7.21 Consider the curve xy2 = 54 (draw it). The distance from See 14.8 for more practice.

each point on this curve to the origin is a function that must have a minimum
value. Find a point (a, b) on the curve that is closest to the origin.

[The distance to the origin is d(x, y) =
√
x2 + y2. This distance is minimized

when f(x, y) = x2 + y2 is minimized. So use f(x, y) = x2 + y2 as the function
you wish to minimize. What’s the constraint g(x, y) = c?]

Problem 7.22 Find the dimensions of the rectangular box with maximum
volume that can be inscribed inside the ellipsoid

x2

22
+
y2

32
+
z2

52
= 1.

[What is the function f you wish to optimize? What is the constraint g = c?
Try solving each equation for λ so you can eliminate it from the problem.]

Problem 7.23 Repeat problem 7.17, but this time use Lagrange multipliers.
Find the dimensions of the rectangular box of maximum volume that fits
underneath the surface z = f(x, y) = 9− x2 − y2 for z ≥ 0.

[Hint: Let f(x, y, z) = (2x)(2y)(z) and g(x, y, z) = z+x2+y2 = 9. You’ll get
a system of 4 equations with 4 unknowns (x, y, z, λ). Try solving each equation
for lambda. You know x, y, z can’t be zero or negative, so ignore those possible
cases.]

7.4 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to I-Learn and download the quiz. Once you have taken the
quiz, you can upload your work back to I-Learn and then download the key to
see how you did. If you still need to work on mastering some of the ideas, please
do so and then demonstrate your mastery though the quiz corrections.
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Line Integrals

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Describe how to integrate a function along a curve. Use line integrals to
find the area of a sheet of metal with height z = f(x, y) above a curve
~r(t) = (x, y) and the average value of a function along a curve.

2. Find the following geometric properties of a curve: centroid, mass, center
of mass.

3. Compute the work (flow, circulation) and flux of a vector field along and
across piecewise smooth curves.

4. Determine if a field is a gradient field (hence conservative), and use the
fundamental theorem of line integrals to simplify work calculations.

You’ll have a chance to teach your examples to your peers prior to the exam.
Table 8.1 contains a summary of the key ideas for this chapter.

Surface Area σ =
∫
C
dσ =

∫
C
fds =

∫ b
a
f
∣∣d~r
dt

∣∣ dt
Average Value f̄ =

∫
fds∫
ds

Work, Flow, Circulation W =
∫
C
dWork =

∫
C

(~F · ~T )ds =
∫
C
~F · d~r =

∫
C
Mdx+Ndy

Flux Flux =
∫
C
dFlux =

∫
C
~F · ~nds =

∮
C
Mdy −Ndx

Mass m =
∫
C
dm =

∫
C
δds

Centroid (x̄, ȳ, z̄) =
( ∫

xds∫
C
ds
,
∫
yds∫
C
ds
,
∫
zds∫
C
ds

)
Center of Mass (x̄, ȳ, z̄) =

( ∫
xdm∫
C
dm
,
∫
ydm∫
C
dm
,
∫
zdm∫
C
dm

)
Fund. Thm of Line Int. f(B)− f(A) =

∫
C
~∇f · d~r

Table 8.1: A summary of the ideas in this unit.

I have created a YouTube playlist to go along with this chapter. Each video
is about 4-6 minutes long.

89
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• YouTube playlist for 08 - Line Integrals.

• A PDF copy of the finished product (so you can follow along on paper).

You’ll also find the following links to Sage can help you speed up your time spent
on homework. Thanks to Dr. Jason Grout at Drake university for contributing
many of these (as well as being a constant help with editing, rewriting, and
giving me great feedback). Thanks Jason.

• Sage Links

• Mathematica Notebook (If you have installed Mathematica)

If you would like homework problems from the text that line up with the
ideas we are studying, please use the following table.

Topic (12th ed.) Sec Basic Practice Good Problems Thy/App Comp

Line integrals 16.1 1-8, 9-26, 33-42 27-32 43-46

Work, Flow, Circulation, Flux 16.2 7-12, 19-24, 31-36, 47-50 13-18, 25-30, 37-38, 51-54 55-60

Gradient Fields 16.2 1-6

Gradient Fields 14.5 1-10

Potentials 16.3 1-12,13-24 25-33 34-38

8.1 Work, Flow, Circulation, and Flux

Now that we can describe motion, let’s turn our attention to the work done by
a vector field as we move through the field. Recall that work is a transfer of
energy. Consider the following examples:

• A tornado picks up a couch and applies forces to the couch as it swirls
around the center. Work is the transfer of the energy from the tornado to
the couch, giving the couch its kinetic energy.

• When an object falls, gravity does work on the object. The work done by
gravity converts potential energy to kinetic energy.

• If we consider the flow of water down a river, it is gravity that gives the
water its kinetic energy. We can place a hydroelectric dam next to a river
to capture a lot of this kinetic energy. Work transfers the kinetic energy
of the river to rotational energy of the turbine, which eventually ends up
as electrical energy available in our homes.

When we study work, we are really studying how energy is transferred. This is
one of the key components of modern life.

Let’s start with a review. Recall that the work done by a vector field ~F
through a displacement ~d is the dot product ~F · ~d.

Review An object moves from A = (6, 0) to B = (0, 3). Along the way, it

encounters the constant force ~F = (2, 5). How much work is done by ~F as the
object moves from A to B? See 1.

Problem 8.1 An object moves from A = (6, 0) to B = (0, 3). A parametriza-
tion of the object’s path is ~r(t) = (−6, 3)t+ (6, 0) for 0 ≤ t ≤ 1.

1The displacement is B −A = (−6, 3). The work is ~F · ~d = (2, 5) · (−6, 3) = −12 + 15 = 3.

http://www.youtube.com/playlist?list=PL04DF68E73B7ECD54
http://db.tt/dAFBcMB7
http://bmw.byuimath.com/dokuwiki/doku.php?id=sage_links
https://content.byui.edu/file/3e8d885f-db47-4e74-9e04-c3d72627c835/1/_zips/215-Tech-Introduction.zip
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1. For 0 ≤ t ≤ .5, the force encountered is ~F = (2, 5). For .5 ≤ t ≤ 1, the
force encountered is (2, 6). How much work is done in the first half second?
How much work is done in the last half second? How much total work is
done?

2. If we encounter a constant force ~F over a small displacement d~r, explain

why the work done is dW = ~F · d~r = F · d~r
dt
dt.

3. Suppose that the force constantly changes as we move along the curve. At You can visualize what’s
happening in this problem as
follows. Attach a clothesline
between the points (maybe
representing two trees in your
backyard). Put a cub scout space
derby ship on the clothesline.
Then the wind starts to blow. As
the ship moves along the
clothesline, the wind changes
direction.

t, we’ll assume we encountered the force F (t) = (2, 5 + 2t), which we could
think of as the wind blowing stronger and stronger to the north. Explain
why the total work done by this force along the path is

W =

∫
~F · d~r =

∫ 1

0

(2, 5 + 2t) · (−6, 3)dt.

Then compute this integral. It should be slightly larger than the first part.

4. (Optional) If you are familiar with the units of energy, complete the

following. What are the units of ~F , d~r, and dW .

If a force F acts through a displacement d, then the most basic definition
of work is W = Fd, the product of the force and the displacement. This basic
definition has a few assumptions.

• The force F must act in the same direction as the displacement.

• The force F must be constant throughout the displacement.

• The displacement must be in a straight line.

We used the dot product to remove the first assumption when we showed that
the work is simply the dot product

W = ~F · ~r,

where ~F is a force acting through a displacement ~r. The previous problem
showed that we can remove the assumption that ~F is constant to obtain

W =

∫
~F · d~r =

∫ b

a

F · d~r
dt
dt,

provided we have a parametrization of ~r with a ≤ t ≤ b. The next problem gets
rid of the assumption that ~r is a straight line.

Problem 8.2 Suppose that we move along the circle C parametrized by Watch a YouTube video about
work.~r(t) = (3 cos t, 3 sin t). As we move along C, we encounter a rotational force

~F (x, y) = (−2y, 2x).

1. Draw C. Then at several points on the curve, draw the vector field
~F (x, y). For example, at the point (3, 0) you should have the vector
~F (3, 0) = (−2(0), 2(3)) = (0, 6), a vector sticking straight up 6 units. Are
we moving with the vector field, or against the vector field?

2. Explain why we can state that a little bit of work done over a small
displacement is dW = ~F · d~r. Why does it not matter that ~r moves in a
straight line?

http://www.youtube.com/watch?v=9TGZIIpEaHw&list=PL04DF68E73B7ECD54&index=2&feature=plpp_video
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3. Since a little work done by ~F along a small bit of C is dW = ~F · d~r, we
know that the total work done is

∫
dW =

∫
~F · d~r. This gives us We put the C under the integral∫

C to remind us that we are
integrating along the curve C.
This means we need to get a
parametrization of the curve C,
and give bounds before we can
integrate with respect to t.

W =

∫
C

(−2y, 2x) · d~r =

∫ 2π

0

(−2(3 sin t), 2(3 cos t)) · (−3 sin t, 3 cos t)dt.

Complete the integral, showing that the work done by ~F along C is 36π.

Definition 8.1. The work done by a vector field ~F , along a curve C with
parametrization ~r(t) for a ≤ t ≤ b, is

W =

∫
C

~F · d~r =

∫ b

a

~F (~r(t)) · d~r
dt
dt.

If we let ~F = (M,N) and we let ~r(t) = (x, y), so that d~r = (dx, dy), then we
can write work in the differential form

W =

∫
C

~F · d~r =

∫
C

(M,N) · (dx, dy) =

∫
C

Mdx+Ndy.

Review Consider the curve y = 3x2−5x for −2 ≤ x ≤ 1. Give a parametriza-
tion of this curve. See 2.

Problem 8.3 Consider the parabolic curve y = 4− x2 for −1 ≤ x ≤ 2, and Please use this Sage link to check
your work.the vector field ~F (x, y) = (2x+ y,−x).

1. Give a parametrization ~r(t) of the parabolic curve that starts at (−1, 3)
and ends at (2, 0). See the review problem above if you need a hint.

2. Compute d~r and state dx and dy. What are M and N in terms of t?

3. Compute the work done by ~F on an object that moves along the parabola
from (−1, 3) to (2, 0) (i.e. compute

∫
C
Mdx+Ndy). Click the link to check your

answer with Sage.

4. How much work is done by ~F to move an object along the parabola from
(2, 0) to (−1, 3). In other words, if you traverse along a path backwards,
how much work is done?

Problem 8.4 Again consider the vector field ~F (x, y) = (2x+ y,−x). In the

previous problem we considered how much work was done by ~F as an object
moved along the the parabolic curve y = 4− x2 for −1 ≤ x ≤ 2. We now want
to know how much work is done to move an object along a straight line from
(−1, 3) to (2, 0).

1. Give a parametrization ~r(t) of the straight line curve that starts at (−1, 3)
and ends at (2, 0). Make sure you give bounds for t.

2. Compute d~r and state dx and dy. What are M and N in terms of t?

3. Compute the work done by ~F to move an object along the straight line
path from (−1, 3) to (2, 0). Check your answer with Sage. When you enter your curve in

Sage, remember to type the times
symbol in “(3*t-1, ...)”.
Otherwise, you’ll get an error.

2Whenever you have a function of the form y = f(x), you can always use x = t and
y = f(t) to parametrize the curve. So we can use ~r(t) = (t, 3t2 − 5t) for −2 ≤ t ≤ 1 as a
parametrization.

http://bmw.byuimath.com/dokuwiki/doku.php?id=work_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=work_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=work_calculator
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4. Optional (we’ll discuss this in class if you don’t have it). How much work
does it take to go along the closed path that starts at (2, 0), follows the
parabola y = 4− x2 to (−1, 3), and then returns to (2, 0) along a straight
line. Show that this total work is W = −9.

The examples above showed us that we can compute work along any curve.
All we have to do is parametrize the curve, take a derivative, and then compute
dW = ~F · d~r. This gives us a little bit of work along a curve, and we sum up
the little bits of work (integrate) to find the total work.

In the examples above, the vector fields represented forces. However, vector
fields can represent much more than just forces. The vector field might represent
the flow of water down a river, or the flow of air across an airplane wing. When
we think of the vector field as a velocity field, we might ask how much of the
fluid flows along our curve. Alternately, we could ask how much of the fluid
flows across our curve. These two questions lead to flow along a curve, and
flux across a curve. The flow along a curve is directly related to the lift of an
airplane wing (which occurs when the flow along the top of the wing is different
than the flow below the wing). The flux across a curve takes us to powering a
wind mill as wind flows across the surface of a blade (once we hit 3D integrals).

Review Consider the unit vector ~T =
(3, 4)

5
. Give two unit vectors that are

orthogonal to ~T . See 3.

Problem 8.5: Intro to Flux Consider the curve ~r(t) = (5 cos t, 5 sin t) and

the vector field ~F (x, y) = (3x, 3y). This is a radial field that pushes things
straight outwards (away from the origin).

1. Compute the work W =

∫
C

(M,N) · (dx, dy) and show it equals zero. (Can

you give a reason why it should be zero?) See Sage for the work calculation.

2. Compute the integral Φ =

∫
C

(M,N) · (dy,−dx) and show it equals 150π. See Sage for this flux computation.

3. How does the vector (dy,−dx) relate to the tangent vector (dx, dy)? Make

a guess as to what Φ =

∫
C

(M,N) · (dy,−dx) measures.

Definition 8.2: Flow, Circulation, and Flux. Suppose C is a smooth curve • Watch a YouTube video
about flow and circulation.

• Watch a YouTube video
about flux.

with parametrization ~r(t) = (x, y). Suppose that ~F (x, y) is a vector field that
represents the velocity of some fluid (like water or air).

• We say that C is a closed curve if C begins and ends at the same point.

• We say that C is a simple curve if C does not cross itself.

• The flow of ~F along C is the integral

Flow =

∫
C

(M,N) · (dx, dy) =

∫
C

Mdx+Ndy.

http://bmw.byuimath.com/dokuwiki/doku.php?id=work_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=flux_calculator
http://www.youtube.com/watch?v=6WcN36FbeWc&list=PL04DF68E73B7ECD54
http://www.youtube.com/watch?v=6WcN36FbeWc&list=PL04DF68E73B7ECD54
http://www.youtube.com/watch?v=5DNdI72XEYY&list=PL04DF68E73B7ECD54&index=4&feature=plpp_video
http://www.youtube.com/watch?v=5DNdI72XEYY&list=PL04DF68E73B7ECD54&index=4&feature=plpp_video
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• If C is a simple closed curve parametrized counter clockwise, then the flow
of ~F along C is called circulation, and we write Any time you see a circle around

an integral, it means that you’re
integrating along a closed curve.

Circulation =

∮
C

Mdx+Ndy.

• The flux of ~F across C is the flow of the fluid across the curve (an
area/second). If C is a simple closed curve parametrized counter clockwise,
then the outward flux is the integral

Flux = Φ =

∮
C

(M,N) · (dy,−dx) =

∮
C

Mdy −Ndx.

Problem 8.6 Consider the vector field ~F (x, y) = (2x+ y,−x+ 2y). When If you haven’t yet, please watch
the YouTube videos for

• work,

• flow and circulation, and

• flux.

you construct a plot of this vector field, you’ll notice that it causes objects to spin
outwards in the clockwise direction. Suppose an object moves counterclockwise
around a circle C of radius 3 that is centered at the origin. (You’ll need to
parameterize the curve.)

1. Should the circulation of ~F along C be positive or negative? Make a guess,
and then compute the circulation

∮
C
Mdx + Ndy. Whether your guess

was right or wrong, explain why you made the guess.

2. Should the flux of ~F across C be positive or negative? Make a guess, and
then actually compute the flux

∮
C
Mdy −Ndx. Whether your guess was

right or wrong, explain why you made the guess.

3. Please use this Sage link to check both computations.

We’ll tackle more work, flow, circulation, and flux problems as we proceed
through this chapter.

8.2 Area and Average Value

In first semester calculus, we learned that the area under a function f(x) above

the x-axis is given by A =
∫ b
a
f(x)dx. The quantity dA = f(x)dx represents a

small bit of area whose length is dx and whose height is f(x). To get the total
area, we just added up the little bits of area, which is why

A =

∫
dA =

∫ b

a

f(x)dx.

We found earlier this semester that we can obtain the surface area of a region
that lies above a curve ~r(t) in the xy plane with height f(x, y) by using the
formula

σ =

∫
dσ =

∫
C

f(x, y)ds =

∫
C

f(x(t), y(t))

∣∣∣∣∣ ~dr(t)dt

∣∣∣∣∣ dt.
The next exercise reminds us of this process.

Exercise Consider the surface in space that is below the function f(x, y) = Watch a YouTube video.

9 − x2 − y2 and above the curve C parametrized by ~r(t) = (2 cos t, 3 sin t) for
t ∈ [0, 2π]. Think of this region as a metal sheet that has been stood up with its
edge along C, where the height above each spot is given by z = f(x, y). Follow

http://www.youtube.com/watch?v=9TGZIIpEaHw&list=PL04DF68E73B7ECD54&index=2&feature=plpp_video
http://www.youtube.com/watch?v=6WcN36FbeWc&list=PL04DF68E73B7ECD54
http://www.youtube.com/watch?v=5DNdI72XEYY&list=PL04DF68E73B7ECD54&index=4&feature=plpp_video
http://bmw.byuimath.com/dokuwiki/doku.php?id=both_flux_and_work
http://www.youtube.com/watch?v=sYsMcqtXBrc&list=PL04DF68E73B7ECD54&index=1&feature=plpp_video
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this Sage link for a picture of the sheet. If we cut the curve up into lots of tiny See Problem 6.19

bits, the length of each bit is approximately given by the arc length differential

ds =

∣∣∣∣d~rdt
∣∣∣∣ dt =

√
(−2 sin t)2 + (3 cos t)2dt.

The height of the surface above each little arc is given by f(x, y), and so the
surface area of a little part of the surface is

dσ = fds = (9− 4 cos2 t− 9 sin2 t)
√

(−2 sin t)2 + (3 cos t)2dt.

This means the total area of the metal sheet that lies above C and under f is
given by the integral

σ =

∫
C

fds =

∫ 2π

0

(9− (2 cos t)2 − (3 sin t)2)︸ ︷︷ ︸
f(~r(t))

√
(−2 sin t)2 + (3 cos t)2dt︸ ︷︷ ︸

ds

.

This Sage worksheet will compute the integral for you.

Our results from the exercise above suggest the following definition.

Definition 8.3: Line Integral. Let f be a function and let C be a piecewise The line integral is also called the
path integral, contour integral, or
curve integral.

smooth curve whose parametrization is ~r(t) for t ∈ [a, b]. We’ll require that
the composition f(~r(t)) be continuous for all t ∈ [a, b]. Then we define the line
integral of f over C to be the integral∫

C

fds =

∫ b

a

f(~r(t))
ds

dt
dt =

∫ b

a

f(~r(t))

∣∣∣∣d~rdt
∣∣∣∣ dt.

Notice that this definition suggests the following four steps. These four steps
are the key to computing any line integral. When we ask you to set up a line

integral, it means that you should
do steps 1–3, so that you get an
integral with a single variable and
with bounds that you could plug
into a computer or complete by
hand.

1. Start by getting a parametrization ~r(t) for a ≤ t ≤ b of the curve C.

2. Find the speed by computing the velocity
d~r

dt
and then the speed

∣∣∣∣d~rdt
∣∣∣∣.

3. Multiply f by the speed, and replace each x, y, and/or z with what it
equals in terms of t.

4. Integrate the product from the previous step. Practice doing this by hand You should use the Sage line
integral calculator to check all
your answers.

on every problem, unless it specifically says to use technology. Some of
the integrals are impossible to do by hand.

Problem 8.7 Let f(x, y, z) = x2 +y2−2z and let C be two coils of the helix See 16.1: 9-32. Some problems
give you a parametrization, some
expect you to come up with one
on your own.

Check your answer with Sage.

~r(t) = (3 cos t, 3 sin t, 4t), starting at t = 0. Remember that the parameterization
means x = 3 cos t, y = 3 sin t, and z = 4t. Compute

∫
C
fds. [You will have to

find the end bound yourself. How much time passes to go around two coils?]

Problem 8.8 Consider the function f(x, y) = 3xy + 2. Let C be a circle of To practice matching
parameterizations to curves, try
16.1:1-8.

Check your answer with Sage.

radius 4 centered at the origin. Compute
∫
C
fds. [You’ll have to come up with

your own parameterization.]

Problem 8.9 Let f(x, y, z) = x2 + 3yz. Let C be the straight line segment If you’ve forgotten how to
parametrize line segments, see 2.9.

Check your answer with Sage.
from (1, 0, 0) to (0, 4, 5). Compute

∫
C
fds.

http://aleph.sagemath.org/?z=eJx1j8EOgyAQRO98hTeBroniqQe-pFFjECupFQJro39ftPXQxN5mknk7sz1dYGXymi21yNZaEE-RSSq4siEqSEoezBQVI-jb6a4lRchBcGcY8UU0c4xv0C2vINlFUcHMe8o3Ezk1-5durENjpyA7o5AqO1ovU6-7FHAw6jHpEGT5zQbpWt8-NXqjGjdapHtRHtd8NgDnP0fZ5RQoGPzJkzBojSc1B0Dn-GRxjA-XPf8GnQ5jSA
http://bmw.byuimath.com/dokuwiki/doku.php?id=line_integral_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=line_integral_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=line_integral_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=line_integral_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=line_integral_calculator
http://bmw.byuimath.com/dokuwiki/doku.php?id=line_integral_calculator
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Problem 8.10 Let f(x, y) = x2 + y2 − 25. Let C be the portion of the See 5.20 if you forgot how to
parametrize plane curves.

Check your answer with Sage.
parabola y2 = x between (1,−1) and (4, 2). We want to compute

∫
C
fds.

1. Draw the curve C and the function f(x, y) on the same 3D xyz axes.

2. Without computing the line integral
∫
C
fds, determine if the integral

should be positive or negative. Explain why this is so by looking at the
values of f(x, y) at points along the curve C. Is f(x, y) positive, negative,
or zero, at points along C?

3. Parametrize the curve and set up the line integral
∫
C
fds. [Hint: if you

let y = t, then x =? What bounds do you put on t?]

4. Use technology to compute
∫
C
fds to get a numeric answer. Was your

answer the sign that you determined above?

8.3 Average Value

The concept of averaging values together has many applications. In first-semester
calculus, we saw how to generalize the concept of averaging numbers together to
get an average value of a function. We’ll review both of these concepts. Later,
we’ll generalize average value to calculate centroids and center of mass.

Problem 8.11 Suppose a class takes a test and there are three scores of 70,
five scores of 85, one score of 90, and two scores of 95. We will calculate the
average class score, s̄, four different ways to emphasize four ways of thinking
about the averages. We are emphasizing the pattern of the calculations in this
problem, rather than the final answer, so it is important to write out each

calculation completely in the form s̄ = before calculating the number s̄.

1. Compute the average by adding 11 numbers together and dividing by the s̄ =
∑

values
number of values

number of scores. Write down the whole computation before doing any
arithmetic.

2. Compute the numerator of the fraction in the previous part by multiplying s̄ =
∑

(value·weight)∑
weight

each score by how many times it occurs, rather than adding it in the sum
that many times. Again, write down the calculation for s̄ before doing any
arithmetic.

3. Compute s̄ by splitting up the fraction in the previous part into the sum s̄ =
∑

(value · (% of stuff))

of four numbers. This is called a “weighted average” because we are
multiplying each score value by a weight.

4. Another way of thinking about the average s̄ is that s̄ is the number so (number of values)s̄ =
∑

values
(
∑

weight)s̄ =
∑

(value · weight)that if all 11 scores were the same value s̄, you’d have the same sum of
scores. Write this way of thinking about these computations by taking
the formulas for s̄ in the first two parts and multiplying both sides by the
denominator.

3We just reverse the order and change a sign to get ~N1 =
(−4, 3)

5
and ~N1 =

(4,−3)

5
as

orthogonal unit vectors.

http://bmw.byuimath.com/dokuwiki/doku.php?id=line_integral_calculator
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In the next problem, we generalize the above ways of thinking about averages
from a discrete situation to a continuous situation. You did this in first-semester
calculus when you did average value using integrals.

Problem 8.12 Suppose the price of a stock is $10 for one day. Then the
price of the stock jumps to $20 for two days. Our goal is to determine the
average price of the stock over the three days.

1. Why is the average stock price not $15? Use any of the methods from the
previous problem to show that the average price is f̄ = 50/3.

2. We can use the function f(t) =

{
10 0 ≤ t < 1

20 1 ≤ t ≤ 3
to model the price of the

stock for the three-day period. The graph to the right shows both f and
f̄ over the three day period. Compute the area under both f and f̄ for
0 ≤ t ≤ 3, and show that the two areas are equal. 0 1 2 3

f̄

0

10

20

The solid line shows the graph of
f while the dashed line shows the
average price f̄ .

3. The average value of a function over an interval [a, b] is a constant value f̄
so that the areas under both f and f̄ are equal, which means∫ b

a

f̄dx =

∫ b

a

fdx.

Solve for f̄ symbolically (without doing any of the integrals). This quantity
we call the average value of f over [a, b].

Ask me in class about the “ant farm” approach to average value.

Problem 8.13 Consider the elliptical curve C given by the parametrization Watch a YouTube video.

~r(t) = (2 cos t, 3 sin t). Let f be the function f(x, y) = 9− x2 − y2.

1. Draw the surface f in 3D. Add to your drawing the curve C in the xy plane.
Then draw the sheet whose area is given by the integral

∫
C
fds. Please head

to http://bmw.byuimath.com/dokuwiki/doku.php?id=surface area example
to check your work.

2. What’s the maximum height and minimum height of the sheet? See problem 6.19.

3. We’d like to find a constant height f̄ so that the area under f , above C, is
the same as the area under f̄ , above C. This height f̄ we call the average
value of f along C. Explain why the average value of f along C is Please read Isaiah 40:4 and Luke

3:5. These scriptures should help
you remember how to find average
value.f̄ =

∫
C
fds∫

C
ds

.

[Hint: The area under f̄ above C is
∫
C
f̄ds. The area under f above C is∫

C
fds. Set them equal and solve for f̄ . ]

4. Use a computer to evaluate the integrals
∫
C
fds and

∫
C
ds, and then give

an approximation to the average value of f along C. How does your
average value compare to the maximum and minimum of f along C?

http://www.youtube.com/watch?v=t7T0MzfgV0Q&list=PL04DF68E73B7ECD54&index=5&feature=plpp_video
http://bmw.byuimath.com/dokuwiki/doku.php?id=surface_area_example
https://www.lds.org/scriptures/ot/isa/40.4?lang=eng#3
https://www.lds.org/scriptures/nt/luke/3.5?lang=eng#4
https://www.lds.org/scriptures/nt/luke/3.5?lang=eng#4
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Problem 8.14 The temperature T (x, y, z) at points on a wire helix C given
by ~r(t) = (sin t, 2t, cos t) is known to be T (x, y, z) = x2 + y + z2. What are the
temperatures at t = 0, t = π/2, t = π, t = 3π/2 and t = 2π? You should notice
the temperature is constantly changing. Make a guess as to what the average
temperature is (share with the class why you made the guess you made—it’s
OK if you’re wrong). Then compute the average temperature of the wire using
the integral formula from the previous problem. Do the computations by hand.

8.4 Physical Properties

A number of physical properties of real-world objects can be calculated using the
concepts of averages and line integrals. We explore some of these in this section.
Additionally, many of these concepts and calculations are used in statistics.

8.4.1 Centroids

Definition 8.4: Centroid. Let C be a curve. If we look at all of the x-
coordinates of the points on C, the “center” x-coordinate, x̄, is the average of
all these x-coordinates. Likewise, we can talk about the averages of all of the y
coordinates or z coordinates of points on the function (ȳ or z̄, respectively). The
centroid of an object is the geometric center (x̄, ȳ, z̄), the point with coordinates
that are the average x, y, and z coordinates. The average value formula gives Watch a YouTube video.

the coordinates of the centroid as These are the formulas for the
centroid.

x̄ =

∫
C
xds∫

C
ds

, ȳ =

∫
C
yds∫

C
ds

, and z̄ =

∫
C
zds∫

C
ds

.

Notice that the denominator in each case is just the arc length s =
∫
C
ds.

Problem 8.15 Let C be the semicircular arc ~r(t) = (a cos t, a sin t) for t ∈
[0, π]. Without doing any computations, make an educated guess for the centroid
(x̄, ȳ) of this arc. Then compute the centroid using the integral formulas above.
Share with the class your guess, even if it was incorrect.

8.4.2 Mass and Center of Mass

Density is generally a mass per unit volume. However, when talking about a
curve or wire, as in this chapter, it’s simpler to let density be the mass per
unit length. Sometimes an object is made out of a composite material, and the
density of the object is different at different places in the object. For example,
we might have a straight wire where one end is aluminum and the other end
is copper. In the middle, the wire slowly transitions from being all aluminum
to all copper. The centroid is the midpoint of the wire. However, since copper
has a higher density than aluminum, the balance point (the center of mass)
would not be at the midpoint of the wire, but would be closer to the denser
and heavier copper end. In this section, we’ll develop formulas for the mass and
center of mass of such a wire. Such composite materials are engineered all the
time (though probably not our example wire). In future mechanical engineering
courses, you would learn how to determine the density δ (mass per unit length)
at each point on such a composite wire.

http://www.youtube.com/watch?v=t7T0MzfgV0Q&list=PL04DF68E73B7ECD54&index=5&feature=plpp_video
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Problem 8.16: Mass Suppose a wire C has the parameterization ~r(t) for Watch a YouTube video.

t ∈ [a, b]. Suppose the wire’s density (mass per unit length) at a point (x, y, z)
on the wire is given by the function δ(x, y, z). Since density is a mass per length,
multiplying density by a small length ds gives us the mass of a small portion of
the curve. We represent this symbolically using dm = δ(~r(t0))ds.

1. Explain why the mass m of the wire is given by the formulas below (explain
why each equal sign is true):

m =

∫
C

dm =

∫
C

δds =

∫ b

a

δ(~r(t))

∣∣∣∣d~rdt
∣∣∣∣ dt.

2. Now suppose a wire lies along the straight segment from (0, 2, 0) to (1, 1, 3).
A parametrization of this line is ~r(t) = (t,−t+2, 3t) for t ∈ [0, 1]. The wire’s
density (mass per unit length) at a point (x, y, z) is δ(x, y, z) = x+ y + z.

(a) Is the wire heavier at (0, 2, 0) or at (1, 1, 3)?

(b) What is the total mass of the wire?

The center of mass of an object is the point where the object balances. Wikipedia has some interesting
applications of center of mass.In order to calculate the x-coordinate of the center of mass, we average the

x-coordinates, but we weight each x-coordinate with its mass. Similarly, we can
calculate the y and z coordinates of the center of mass.

The next problem helps us reason about the center of mass of a collection of
objects. Calculating the center of mass of a collection of objects is important,
for example, in astronomy when you want to calculate how two bodies orbit
each other.

Problem 8.17 Suppose two objects are positioned at the points P1 =
(x1, y1, z1) and P2 = (x2, y2, z2). Our goal in this problem is to understand the
difference between the centroid and the center of mass.

1. Find the centroid of two objects.

2. Suppose both objects have the same mass of 2 kg. Find the center of mass.

3. Suppose we now have 7 objects, all with the same mass of 2 kg. Two of
the objects are at P1, and 5 of the objects are at P2. Find the center of
mass of the 7 objects.

4. Suppose there are two objects, but the mass of the object at point P1 is
2 kg, and the mass of the object at point P2 is 5 kg. Will the center of
mass be closer to P1 or P2? Give a physical reason for your answer before
doing any computations. Then find the center of mass (x̄, ȳ, z̄) of the two
points. [Hint: You should get x̄ = 2x1+5x2

2+5 .]

Problem 8.18: Center of mass In problem 8.17, we focused on a system Watch a YouTube video.

with two points (x1, y1) and (x2, y2) with masses m1 and m2. The center of
mass in the x direction is given by

x̄ =
x1m1 + x2m2

m1 +m2
=

∑2
i=1 ximi∑2
i=1mi

1. If we consider a system with 3 points, what formula gives the center of
mass in the x direction? What if there are 4 points, 5 points, or n points?

http://www.youtube.com/watch?v=mz-Udq5TeS4&list=PL04DF68E73B7ECD54&index=6&feature=plpp_video
http://en.wikipedia.org/wiki/Center_of_mass
http://www.youtube.com/watch?v=mz-Udq5TeS4&list=PL04DF68E73B7ECD54&index=6&feature=plpp_video
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2. Suppose now that we have a wire located along a curve C. The density
of the wire is known to be δ(x, y, z) (which could be different at different
points on the curve). Imagine cutting the wire into a thousand or more
tiny chunks. Each chunk would be centered at some point (xi, yi, zi) and
have length dsi. The mass of each little chunk would be approximately
dmi ≈ δdsi. Give a formula for the center of mass in the y direction of
these thousands of points (xi, yi, zi), each with mass dmi. [This should
almost be an exact copy of the first part.]

3. Explain why

ȳ =

∫
C
ydm∫

C
dm

=

∫
C
yδds∫

C
δds

.

Ask me in class to show you another way to obtain the formula for center of
mass. It involves looking at masses weighted by their distance (called a moment
of mass). Many of you will have already seen an idea similar to this in statics,
but in that class you are talking about moments of force, not moments of mass.

For quick reference, the formulas for the centroid of a wire along C are

x̄ =

∫
C
xds∫

C
ds

, ȳ =

∫
C
yds∫

C
ds

, and z̄ =

∫
C
zds∫

C
ds

. (Centroid)

If the wire has density δ, then the formulas for the center of mass are The quantity
∫
C xdm is

sometimes called the first moment
of mass about the yz-plane (so
x = 0). Notationally, some people
write Myz =

∫
C xds. Similarly, we

could write Mxz =
∫
C ydm and

Mxy =
∫
C zdm. With this

notation, we could write the
center of mass formulas as

(x̄, ȳ, z̄) =

(
Myz

m
,
Mxz

m
,
Mxy

m

)
.

x̄ =

∫
C
xdm∫

C
dm

, ȳ =

∫
C
ydm∫

C
dm

, and z̄ =

∫
C
zdm∫

C
dm

, (Center of mass)

where dm = δds. Notice that the denominator in each case is just the mass
m =

∫
C
dm.

We’ll often use the notation (x̄, ȳ, z̄) to talk about both the centroid and the
center of mass. If no density is given in a problem, then (x̄, ȳ, z̄) is the centroid.
If a density is provided, then (x̄, ȳ, z̄) refers to the center of mass. If the density
is constant, it doesn’t matter (the centroid and center of mass are the same).

Problem 8.19 Suppose a wire with density δ(x, y) = x2 + y lies along the
curve C which is the upper half of a circle around the origin with radius 7.

1. Parametrize C (find ~r(t) and the domain for t).

2. Where is the wire heavier, at (7, 0) or (0, 7)? [Compute δ at both.]

3. In problem 8.15, we showed that the centroid of the wire is (x̄, ȳ) =(
0, 2(7)π )

)
. We now seek the center of mass. Before computing, will x̄

change? Will ȳ change? How will each change? Explain.

4. Set up the integrals needed to find the center of mass. Then use technology
to compute the integrals. Give an exact answer (involving fractions), rather
than a numerical approximation.
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8.5 The Fundamental Theorem of Line Integrals

In this final section we’ll return to the concept of work. Many vector fields are
actually the derivative of a function. When this occurs, computing work along
a curve is extremely easy. All you have to know is the endpoints of the curve,
and the function f whose derivative gives you the vector field. This function is
called a potential for a vector field. Once we are comfortable finding potentials,
we’ll show that the work done by such a vector field is the difference in the
potential at the end points. This makes finding work extremely fast.

Definition 8.5: Gradients and Potentials. Let ~F be a vector field. Watch a YouTube Video.

• A potential for the vector field is a function f whose derivative equals ~F .
So if Df = ~F , then we say that f is a potential for ~F .

• When we want to emphasize that the derivative of f is a vector field, we
call Df the gradient of f and write Df = ~∇f . The symbol ~∇f is read “the

gradient of f” or “del f.”

• If ~F has a potential, then we say that ~F is a gradient field.

We’ll quickly see that if a vector field has a potential, then the work done
by the vector field is the difference in the potential. If you’ve ever dealt with
kinetic and potential energy, then you hopefully recall that the change in kinetic
energy is precisely the difference in potential energy. This is the reason we use
the word “potential.”

Problem 8.20 Let’s practice finding gradients and potentials. Watch a YouTube Video.

1. Let f(x, y) = x2 + 3xy + 2y2. Find the gradient of f , i.e. find Df(x, y).
Then compute D2f(x, y) (you should get a square matrix). What are fxy
and fyx?

2. Consider the vector field ~F (x, y) = (2x+ y, x+ 4y). Find the derivative of
~F (x, y) (it should be a square matrix). Then find a function f(x, y) whose

gradient is ~F (i.e. Df = ~F ). What are fxy and fyx?

3. Consider the vector field ~F (x, y) = (2x+ y, 3x+ 4y). Find the derivative See problem 6.13.

of ~F . Why is there no function f(x, y) so that Df(x, y) = ~F (x, y)? [Hint:
look at fxy and fyx.]

Based on your observations in the previous problem, we have the following
key theorem.

Theorem 8.6. Let ~F be a vector field that is everywhere continuously differen-
tiable. Then ~F has a potential if and only if the derivative D~F is a symmetric
matrix. We say that a matrix is symmetric if interchanging the rows and columns
results in the same matrix (so if you replace row 1 with column 1, and row 2
with column 2, etc., then you obtain the same matrix).

Problem 8.21 For each of the following vector fields, start by computing If you haven’t yet, please watch
this YouTube video.the derivative. Then find a potential, or explain why none exists.

1. ~F (x, y) = (2x− y, 3x+ 2y)

2. ~F (x, y) = (2x+ 4y, 4x+ 3y)

3. ~F (x, y) = (2x+ 4xy, 2x2 + y)

http://www.youtube.com/watch?v=8Tk2pEIOnwg&list=PL04DF68E73B7ECD54&index=9&feature=plpp_video
http://www.youtube.com/watch?v=8Tk2pEIOnwg&list=PL04DF68E73B7ECD54&index=9&feature=plpp_video
http://www.youtube.com/watch?v=8Tk2pEIOnwg&list=PL04DF68E73B7ECD54&index=9&feature=plpp_video
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4. ~F (x, y, z) = (x+ 2y + 3z, 2x+ 3y + 4z, 2x+ 3y + 4z)

5. ~F (x, y, z) = (x+ 2y + 3z, 2x+ 3y + 4z, 3x+ 4y + 5z)

6. ~F (x, y, z) = (x+ yz, xz + z, xy + y)

7. ~F (x, y) =

(
x

1 + x2
+ arctan(y),

x

1 + y2

)

If a vector field has a potential, then there is an extremely simple way to
compute work. To see this, we must first review the fundamental theorem of
calculus. The second half of the fundamental theorem of calculus states,

If f is continuous on [a, b] and F is an anti-derivative of f , then

F (b)− F (a) =
∫ b
a
f(x)dx.

If we replace f with f ′, then an anti-derivative of f ′ is f , and we can write,

If f is continuously differentiable on [a, b], then

f(b)− f(a) =

∫ b

a

f ′(x)dx.

This last version is the version we now generalize.

Theorem 8.7 (The Fundamental Theorem of Line Integrals). Suppose f is a Watch a YouTube video.

continuously differentiable function, defined along some open region containing
the smooth curve C. Let ~r(t) be a parametrization of the curve C for t ∈ [a, b].
Then we have

f(~r(b))− f(~r(a)) =

∫ b

a

Df(~r(t))D~r(t) dt.

Notice that if ~F is a vector field, and has a potential f , which means ~F = Df ,
then we could rephrase this theorem as follows.

Suppose ~F is a a vector field that is continuous along some open
region containing the curve C. Suppose ~F has a potential f . Let A
and B be the start and end points of the smooth curve C. Then the
work done by ~F along C depends only on the start and end points,
and is precisely

f(B)− f(A) =

∫
C

~F · d~r =

∫
C

Mdx+Ndy.

The work done by ~F is the difference in a potential.

If you are familiar with kinetic energy, then you should notice a key idea here.
Work is a transfer of energy. As an object falls, energy is transferred from
potential energy to kinetic energy. The total kinetic energy at the end of a fall is
precisely equal to the difference between the potential energy at the top of the
fall and the potential energy at the bottom of the fall (neglecting air resistance).
So work (the transfer of energy) is exactly the difference in potential energy.

Problem 8.22: Proof of Fundamental Theorem Suppose f(x, y) is con-The proof of the fundamental
theorem of line integrals is quite
short. All you need is the
fundamental theorem of calculus,
together with the chain rule (6.7).

tinuously differentiable, and suppose that ~r(t) for t ∈ [a, b] is a parametrization

of a smooth curve C. Prove that f(~r(b))− f(~r(a)) =
∫ b
a
Df(~r(t))D~r(t) dt. [Let

g(t) = f(~r(t)). Why does g(b)− g(a) =
∫ b
a
g′(t)dt? Use the chain rule (matrix

form) to compute g′(t). Then just substitute things back in.]

http://www.youtube.com/watch?v=5ZsCN6NN3yg&list=PL04DF68E73B7ECD54&index=11&feature=plpp_video
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Problem 8.23 For each vector field and curve below, find the work done by Watch a YouTube video.

~F along C. In other words, compute the integral
∫
C
Mdx+Ndy or

∫
C
Mdx+

Ndy + Pdz.

1. Let ~F (x, y) = (2x+ y, x+ 4y) and C be the parabolic path y = 9− x2 for See Sage for a picture.

x from −3 to 2.

2. Let ~F (x, y, z) = (2x+ yz, 2z + xz, 2y+ xy) and C be the straight segment See Sage for a picture.

from (2,−5, 0) to (1, 2, 3).

[Hint: If you parametrize the curve, then you’ve done the problem the HARD
way. You don’t need any parameterizations at all. Did you find a potential, and
then plug in the end points?]

Problem 8.24 Let ~F = (x, z, y). Let C1 be the curve which starts at (1, 0, 0) See Sage—C1 and C2 are in blue,
and several possible C3 are shown
in red.

and follows a helical path (cos t, sin t, t) to (1, 0, 2π). Let C2 be the curve which
starts at (1, 0, 2π) and follows a straight line path to (2, 4, 3). Let C3 be any
smooth curve that starts at (2, 4, 3) and ends at (0, 1, 2).

• Find the work done by ~F along each path C1, C2, C3. If you are parameterizing the
curves, you’re doing this the really
hard way. Are you using the
potential of the vector field?

• Find the work done by ~F along the path C which follows C1, then C2,
then C3.

• If C is any path that can be broken up into finitely many smooth sub-paths,
and C starts at (1, 0, 0) and ends at (0, 1, 2), what is the work done by ~F
along C?

In the problem above, the path we took to get from one point to another
did not matter. The vector field had a potential, which meant that the work
done did not depend on the path traveled.

Definition 8.8: Conservative Vector Field. We say that a vector field is
conservative if the integral

∫
C
~F · d~r does not depend on the path C. We say

that a curve C is piecewise smooth if it can be broken up into finitely many
smooth curves.

Review Compute

∫
x√

x2 + 4
dx. See 4.

Problem 8.25 The gravitational vector field is directly related to the radial

field ~F =
(−x,−y,−z)

(x2 + y2 + z2)3/2
. Show that this vector field is conservative, by

finding a potential for ~F . Then compute the work done by an object that moves
from (1, 2,−2) to (0,−3, 4) along ANY path that avoids the origin.

[See the review problem just before this if you’re struggling with the integral.]

4 Let u = x2 + 4, which means du = 2xdx or dx = du
2x

. This means∫
x

√
x2 + 4

dx =

∫
x
√
u

du

2x
=

1

2

∫
u−1/2du =

1

2

u1/2

1/2
=
√
u =

√
x2 + 4.

http://www.youtube.com/watch?v=5ZsCN6NN3yg&list=PL04DF68E73B7ECD54&index=11&feature=plpp_video
http://aleph.sagemath.org/?z=eJxz06jQqdS01TDSqtCu1KnQNtGq1OQqyMkviS9LTS7JL4pPy0zNSdFw01EAKtQ11jHSBLIqdQx0LDU1tUHqNCx1K-KMdGCymgDJPhZ0
http://aleph.sagemath.org/?z=eJwVi7EKgDAMRPd-hWPSRtCIo6s_IdJBKwhFRYo0_XrT6R5372bIJFRwArbZiS3Etris2bAVBUHzxDv5L2zpfv1xhrgPO8zU6LMnRgWhdqwEhToaEF08rwALcO27aqiow4rmBwN1HWM
http://aleph.sagemath.org/?z=eJytkM1uhCAUhfc-hTsueMmMYNOV23mJydQYpR1SK0TItPr0hVFbm5kumnQBl597zvngUg9APKHJAT5wxImWoU440sRY78pWNx78WTevvXKulDSxpe2Mry6q8WaonrXqWtnCAdOg4zkKGlYj8gILijAhl_hIgyorbT3Ub8oPuqmiA0BjHPjQ7nR_rXGAxz0KZjVFxiLBVdrpXsER8q-7FAQWKOkJ07UtzkfSmM4M5FSSQbVkI53bgy567Le6e2SCr0wFmykZ5Dzu5bJfUa3eiR-ov3oxwfzO6tVSsm-7B_YPhuFgLllnXiDPIrPns92SEzPnhzyJP-RlMe-qvX3CbWa-4G0-a3N4P9adzTtYmnwCd8u7lQ
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Problem 8.26 Suppose ~F is a gradient field. Let C be a piecewise smooth

closed curve. Compute
∫
C
~F · d~r (you should get a number). Explain how you

know your answer is correct.

8.6 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to I-Learn and download the quiz. Once you have taken the
quiz, you can upload your work back to I-Learn and then download the key to
see how you did. If you still need to work on mastering some of the ideas, please
do so and then demonstrate your mastery though the quiz corrections.



Chapter 9

Integration

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Set up and compute iterated double, triple, and surface integrals to
compute area, volume, and surface area.

2. Explain how to interchange the bounds of integration, and recognize when
swapping the bounds is needed.

3. Set up and compute integrals in different coordinate systems using a Jaco-
bian. In particular, show how to change between any two of rectangular,
polar, cylindrical, and spherical coordinates.

4. Find mass, centroids, centers of mass.

You’ll have a chance to teach your examples to your peers prior to the exam.

9.1 Double and Triple Integrals

It’s time to revisit a topic we began earlier in the semester, namely double
integrals. Let’s start by describing regions in the plane. In first semester calculus,
we often use the inequalities a ≤ x ≤ b and f(x) ≤ y ≤ g(x) to describe the
region above f below g for x between a and b. We trapped x between two
constants, and y between two functions. Sometimes we wrote c ≤ y ≤ d where
f(y) ≤ x ≤ g(y) to describe the region to the right of f and left of g for y
between c and d. We need to practice writing inequalities in both forms, as
these inequalities provide us the bounds of integration for double integrals.

Problem 9.1 Consider the region R in the xy-plane that is below the line
y = x+ 2, above the line y = 2, and left of the line x = 5. We can describe this
region by saying for each x with 0 ≤ x ≤ 5, we want y to satisfy 2 ≤ y ≤ x+ 2.
In set builder notation, we write

R = {(x, y) ∈ R2 | 0 ≤ x ≤ 5, 2 ≤ y ≤ x+ 2}.

We use the symbols { and } to enclose sets and the symbol | for “such that”.
We read the above line as “R equals the set of (x, y) in the plane such that zero
is less than x which is less than 5, and 2 is less than y which is less than x+ 2.”

We can use the iterated double integral
∫ 5

0

∫ x+2

2
dydx to compute the area of

this region.

105
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1. Draw this region.

2. Describe the region R by saying for each y with c ≤ y ≤ d, we want x
to satisfy a(y) ≤ x ≤ b(y). In other words, find constants c and d, and
functions a(y) and b(y), so that for each y between c and d, the x values
must be between the functions a(y) and b(y). Write your answer using
the set builder notation

R = {(x, y) | c ≤ y ≤ d, a(y) ≤ x ≤ b(y)}.

3. Finish setting up the iterated double integral
∫ ?

?

∫ ?

?
dxdy.

[Hint: If you’re struggling, then draw the 4 curves given by 0 = x, x = 5, 2 = y
and y = x + 2. Then shade either above, below, left, or right of the line (as
appropriate).]

Definition 9.1: Double and Iterated Integrals. Given a region R, we write∫∫
R

f(x, y)dA for the double integral of f over R. We just have to state what

the region R is to talk about a double integral. The formal definition of a
double integrals involves slicing the region R up into tiny rectangles of area
dxdy, multiplying each rectangle by a function f , and then summing over all
rectangles. This process is repeated as the length and width of the rectangles
shrinks to zero at similar rates, with the double integral being the limit of this
process.

An iterated integral is an integral where we have actually specified the
order of integration and given bounds for each integral. For double integral
there are two options, namely∫ b

a

∫ d(x)

c(x)

f(x, y)dydx and

∫ d

c

∫ b(y)

a(y)

f(x, y)dxdxy.

We’ll focus mostly on setting up iterated integrals in this course.

Just as with line integrals, we can compute the mass of a region by adding
up the little bits of mass given by dm = δ(x, y)dA to obtain the mass as

m =

∫∫
R

δ(x, y)dA =

∫∫
R

δ(x, y)dxdy =

∫∫
R

δ(x, y)dxdy.

Note that if δ(x, y) = 1, then this reduces to the formula for the area of R.

Problem 9.2 For each region R below, draw the region. Then use the given
density to set up an iterated double integral which would give the mass. You do
not need to fully compute each integral, rather just set it up.

1. The region R is above the line x+ y = 1 and inside the circle x2 + y2 = 1.
The density is δ(x, y) = x.

2. The region R is below the line y = 8, above the curve y = x2, and to the
right of the y-axis. The density is δ(x, y) = xy2.

3. The region R is bounded by 2x+ y = 3, y = x, and x = 0. The density is
δ(x, y) = 7.
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Problem 9.3 Consider the iterated integral

∫ 3

0

∫ 3

x

ey
2

dydx.

1. Write the bounds as two inequalities (0 ≤ x ≤ 3 and ? ≤ y ≤?). Then
draw and shade the region R described by these two inequalities.

2. Swap the order of integration from dydx to dxdy. This forces you to
describe the region using two inequalities of the form c ≤ y ≤ d and
a(y) ≤ x ≤ b(y).

3. Use your new bounds to compute the integral by hand.

4. Why is the original integral

∫ 3

0

∫ 3

x

ey
2

dydx impossible to compute without

first swapping the order of integration? [Hint: Try computing the inner

integral
∫ 3

x
ey

2

dy – why can’t you?]

Problem 9.4 Compute the iterated integral

∫ 2
√
π

0

∫ √π
y/2

sin(x2)dxdy.

Problem 9.5 Consider the region in the plane that is bounded by the curves
x = y2 − 3 and x = y − 1. A metal plate occupies this region in space, and its
temperature function on the plate is given by the function T (x, y) = 2x + y.
Find the average temperature of the metal plate. Compute any integrals.

Just as we’ve used double integral to compute the area and mass for regions
in the plane, we can use triple integrals to compute volume and mass for solids in
space. A triple integral is an integral of the form

∫∫∫
D
dV , where dV represents

a small portion of volume of the solid region D. However, now there are six
different possible orders of integration when we want to create iterated integrals.
For example if we pick the order dzdydx, then to set up the integral we’ll need
a ≤ x ≤ b, c(x) ≤ y ≤ d(x), and e(x, y) ≤ z ≤ f(x, y). Note that the outermost
bounds must be always be constant, whereas the innermost bounds can depend
on all of the other variables.

Problem 9.6 Do not evaluate the integrals below. Our focus is setting up
the bounds for triple integrals.

1. The iterated triple integral

∫ 1

−1

∫ 4

0

∫ y2

0

dzdxdy gives the volume of the

solid D that lies under the surface z = y2, above the xy-plane, and bounded
by the planes y = −1, y = 1, x = 0, and x = 4. Sketch this region.

2. Set up an iterated triple integral that gives the volume of the solid in
the first octant that is bounded by the coordinate planes (x = 0, y = 0,
z = 0), the plane y + z = 2, and the surface x = 4− y2, using the order of
integration dxdzdy. Make sure you sketch the region.

3. Set up an integral to give the volume of the pyramid in the first octant

that is below the planes
x

3
+
z

2
= 1 and

y

5
+
z

2
= 1. [Hint, don’t let z be

the inside bound. Try an order such as dydxdz.]
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Just as we computed centroids in the line integral chapter, we can compute
centroids for planar regions and solids in space. Recall that to find x̄, we solved

for x̄ in the equation
∫
C
x̄dm =

∫
C
xdm to obtain x̄ =

∫
C
xdm∫

C
dm

. As this process

has nothing to do with the curve or little bit of mass, for solids D in space we

obtain x̄ =
∫∫∫

D
xdm∫∫∫

D
dm

. Since mass if found by taking a density (mass per unit

volume) and multiplying it by a volume, we know dm = δdV = δdxdydz. For
solid regions in space this gives the formulas

x̄ =

∫∫∫
D
xδdV∫∫∫

D
δdV

, ȳ =

∫∫∫
D
yδdV∫∫∫

D
δdV

, and z̄ =

∫∫∫
D
zδdV∫∫∫

D
δdV

.

Similar formulas hold for planar regions, using double integrals and dA instead.

Problem 9.7 Consider the triangular wedge D that is in the first octant,

bounded by the planes
y

7
+
z

5
= 1 and x = 12. In the yz plane, the wedge forms

a triangle that passes through the points (0, 0, 0), (0, 7, 0), and (0, 0, 5). Draw
the solid and then set up integral formulas that give the centroid (x̄, ȳ, z̄) of D.
Actually compute the integrals for ȳ. Then state x̄ and z̄ from symmetry.

Problem 9.8 Let R be the region in the plane with a ≤ x ≤ b and g(x) ≤
y ≤ f(x). Let A be the area of R. When we use double integrals to

find centroids, the formulas for the
centroid are similar for both x̄ and
ȳ. In other courses, you may see
the formulas on the left, because
the ideas are presented without
requiring knowledge of double
integrals. Integrating the inside
integral from the double integral
formula gives the single variable
formulas.

1. Set up an iterated integral to compute the area of R. Then compute the
inside integral. You should obtain a familiar formula from first-semester
calculus.

2. Set up an iterated integral formula to compute x̄ for the centroid. By

computing the inside integral, show that x̄ =
1

A

∫ b

a

x(f − g)dx.

3. If the density depends only on x, so δ = δ(x), set up an iterated integral
formula to compute ȳ for the center of mass. Compute the inside integral
and show that

ȳ =
1

mass

∫ b

a

1

2
(f2 − g2)δ(x)dx =

1

mass

∫ b

a

1

2
(f + g)(f − g)δ(x)dx.

Problem 9.9 Consider the iterated integral

∫ 3

−3

∫ √9−y2

0

∫ 9−x2−y2

0

dzdxdy.

There are 5 other iterated integrals that are equal to this integral, by switching

the order of the bounds. One of the integrals is
∫ 9

0

∫√9−z
0

∫√9−x2−z
−
√
9−x2−z dydxdz.

Set up the equivalent integrals using the bound dydzdx and dxdzdy. [Optional:
Give the remaining two.]
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Problem 9.10 Consider the iterated integral∫ 1

−1

∫ 1−x2

0

∫ y

0

dzdydx.

The bounds for this integral describe a region in space which satisfies the 3
inequalities −1 ≤ x ≤ 1, 0 ≤ y ≤ 1− x2, and 0 ≤ z ≤ y.

1. Draw the solid domain D in space described by the bounds of the iterated
integral.

2. There are 5 other iterated integrals equivalent to this one. Set up the two
integrals that use the order dydxdz and dxdzdy.

3. Optional: Give the remaining three.

9.2 Changing Coordinates - Substitution

Earlier in the semester we explored what happens if we change from Cartesian
coordinates to another coordinate system. We found that if we want to change
from rectangular to polar coordinates, then we used∫∫

R

f(x, y)dxdy =

∫∫
R

rdrdθ,

provided the values for r were never negative. The next problem has you review
why.

Problem 9.11 Consider the polar change of coordinates x = r cos θ and
y = r sin θ, which we write in vector form as

~T (r, θ) = (r cos θ, r sin θ).

1. Compute the derivative D~T (r, θ). You should have a 2 by 2 matrix.

2. We need a single number from this matrix that tells us something about
area. Determinants are connected to area. Compute the determinant of
D~T (r, θ) and simplify.

3. Let ~T2(θ, r) = (r cos θ, r sin θ), so the same change of coordinates except

now θ is the first variable. Compute D~T2(θ, r) and then the determinant
of this 2 by 2 matrix. Verify that you obtain −r.

The problem above showed that the order in which we list variables can alter
the sign of the determinant of the derivative. Taking an absolute value gets rid
of any such possible sign changes. The Jacobian of a transformation, in general,
is the absolute value of the determinant of the derivative of the transformation.
Any time we want to change coordinates from rectangular, we’ll need to insert
the Jacobian into our computations. Let’s summarize these results in a theorem.

Theorem 9.2. Consider the polar coordinate transformation Ask me in class to give you an
informal picture approach that
explains why dA = rdrdθ.~T (r, θ) = (r cos θ, r sin θ).
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The Jacobian of x and y with respect to r and θ is the absolute value of the
determinant of the derivative of the transformation, which we write as

∂(x, y)

∂(r, θ)
=
∣∣∣det(D~T (r, θ))

∣∣∣ = |det(D(x, y)(r, θ))| .

If we require all bounds for r to be nonnegative, we can ignore the absolute value.
If Rxy is a region in the xy plane that corresponds to the region Rrθ in the rθ
plane (where r ≥ 0), then we have∫∫

Rxy

f(x, y)dxdy =

∫∫
Rrθ

f(r cos θ, r sin θ)r drdθ.

Problem 9.12 The double integral

∫ 1

0

∫ √4−y2

√
3y

(x2 + y2)dxdy computes the

mass of a region in the plane with density δ = x2 + y2 that is bounded by the
curves y = 0, y = 1, x =

√
3y, and x =

√
4− y2. Start by drawing the region.

Then convert this integral to an integral in polar coordinates (don’t forget the
Jacobian), and finish by actually computing the integral to get 2π/3.

Problem 9.13 For each region R below, draw the region in the xy-plane.
Then use the given density to set up an iterated double integral in polar
coordinates which would give the mass. You do not need to fully compute each
integral, rather just set it up. For example, if the region is the inside of the
circle x2 + y2 = 9, and the density is δ(x, y) = y, then the mass is

m =

∫∫
R

δdA =

∫ 2π

0

∫ 3

0

(r sin θ)︸ ︷︷ ︸
δ=y

rdrdθ︸ ︷︷ ︸
dA

.

1. The region R is the quarter circle in the first quadrant inside the circle
x2 + y2 = 25. The density is δ(x, y) = x.

2. The region R is below y =
√

9− x2, above y = x, and to the right of x = 0.
The density is δ(x, y) = xy2.

3. The region R is the triangular region below y =
√

3x, above the x-axis,
and to the left of x = 1. The density is δ(x, y) = 7.

Problem 9.14 Compute the integral

∫ 1

0

∫ √1−x2

−
√
1−x2

2

(1 + x2 + y2)2
dydx. [Hint:

Try switching coordinate systems to polar coordinates. This will require you to
first draw the region of integration, and then then obtain bounds for the region
in polar coordinates.]

Problem 9.15 Show that the centroid of a semicircular disc of radius a
(with y ≥ 0) is (x̄, ȳ) = (0, 4a3π ). Set up all the integral using polar coordinates,
and then actually perform the computations.

Let’s now look at some three dimensional coordinate transformations, and
their corresponding Jacobians. Just as in two dimensions, the Jacobian of a
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transformation (x, y, z) = ~T (u, v, w) is the absolute value of the determinant of
the derivative of the transformation, or simply

∂(x, y, z)

∂(u, v, w)
=
∣∣∣det(D~T (u, v, w))

∣∣∣ = |det(D(x, y, z)(u, v, w)))| .

We’ve already seen both cylindrical and spherical coordinates. The next problem
has you compute their respective Jacobians.

Problem 9.16 Recall that the cylindrical change of coordinates is

(x, y, z) = ~C(r, θ, z) = (r cos θ, r sin θ, z),

and the spherical change of coordinates is

(x, y, z) = ~S(ρ, φ, θ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ).

1. Compute the Jacobian of the cylindrical transformation by hand, and

verify that
∂(x, y, z)

∂(r, θ, z)
= |r|. If we want to drop the absolute values, what

must we require?

2. Write down the 3 by 3 matrix whose determinant you would need to
compute to obtain the Jacobian of the spherical coordinate transformation.

Use software to compute and simply the Jacobian to verify that
∂(x, y, z)

∂(ρ, φ, θ)
=

|ρ2 sinφ|. If we want to drop the absolute values, what must we require?

The previous problem shows us that we can write∫∫∫
dV =

∫∫∫
dxdydz =

∫∫∫
rdrdθdz =

∫∫∫
ρ2 sinφdρdφdθ,

provided we require r ≥ 0 and 0 ≤ φ ≤ π. Cylindrical coordinates are useful for
problems which involve cylinders, paraboloids, and cones. Spherical coordinates
are often useful for problems which involve cones and spheres.

Problem 9.17 We can find the volume of the solid D under f(x, y) = See Sage.

9− x2 − y2 for x ≥ 0 and z ≥ 0 by computing the triple integral

V =

∫∫∫
D

dV =

∫ y=3

y=−3

∫ x=
√

9−y2

x=0

∫ 9−x2−y2

0

dzdxdy.

1. Draw the solid and give bounds using cylindrical coordinates.

2. Rewrite the integral using cylindrical coordinates. Remember the Jacobian.

3. Compute the integral in the previous part by hand. [Suggestion: Simplify
9− x2 − y2 = 9− (x2 + y2) = 9− r2 before integrating.]

Problem 9.18 Set up an integral in spherical coordinates that gives the
volume of the solid ball that is inside x2 + y2 + z2 = a2, so inside a sphere of
radius a. Then actually compute the integral and simplify your result to obtain
the common formula V = 4

3πa
3 for the volume of a ball of radius a.

As a final part to this problem consider just the top half of the ball. Set up
a formula that would give z̄, the height of the centroid of top half of the ball.
Then use software to check that you are correct, as the answer is z̄ = 3

8a.

http://aleph.sagemath.org/?q=60eb3051-6680-4031-afba-893277d1ec90


CHAPTER 9. INTEGRATION 112

Problem 9.19 Consider the solid domain D in space which is above the See Sage for a picture of the
region.cone z =

√
x2 + y2 and below the paraboloid z = 6−x2− y2. Sketch the region

by hand, and then use cylindrical coordinates to set up an iterated triple integral
that would give the volume of the region. You’ll need to find where the surfaces
intersect, as their intersection will help you determine the appropriate bounds.

Problem 9.20 Consider the solid D in space that is both inside the sphere
x2 + y2 + z2 = 9 and yet outside the cylinder x2 + y2 = 4. Start by drawing the
region.

1. Set up an iterated integral in cylindrical coordinates that would give the
volume of D, using the order dzdrdθ.

2. Repeat the first part, but use the order dθdrdz.

3. Set up an iterated integral in spherical coordinates that would give the
volume of D.

Problem 9.21 The integral

∫ π

0

∫ 1

0

∫ √4−r2

√
3r

rdzdrdθ represents the volume

of solid domain D in space. Set up integrals in both rectangular coordinates
and spherical coordinates that would give the volume of the exact same region.

9.3 Surface Integrals

In first-semester calculus, we learned how to compute integrals
∫ b
a
fdx along

straight (flat) segments [a, b]. This semester, in the line integral unit, we learned
how to change the segment to a curve, which allowed us to compute integrals∫
C
fds along any curve C, instead of just along curves (segments) on the x-axis.

The integral
∫ b
a
dx = b− a gives the length of the segment [a, b]. The integral∫

C
ds gives the length s of the curve C.
This semester we’ve learned how to compute double integrals

∫∫
R
fdA along

flat regions R in the plane. We’ll now learn how to change the flat region R
into a curved surface S, and then compute integrals of the form

∫∫
S
fdσ along

curved surfaces. The differential dσ stands for a little bit of surface area. We
already know that

∫∫
R
dA gives the area of R. We’ll define

∫∫
S
dσ so that it

gives the surface area of S.

Problem 9.22 Consider the surface S given by z = 9− x2 − y2, an upside
down parabola that intersect the xy plane in a circle of radius 3. A parametriza-
tion of the portion of this surface that lies above the xy-plane is

~r(x, y) = (x, y, 9− x2 − y2) for − 3 ≤ x ≤ 3,−
√

9− x2 ≤ y ≤
√

9− x2.

1. Draw the surface S. Add to your surface plot the parabolas given by See Sage for a solution.

~r(x, 0), ~r(x, 1), and ~r(x, 2), as well as the parabolas given by ~r(0, y), ~r(1, y),
and ~r(2, y). You should have an upside down paraboloid, with at least 6
different parabolas drawn on the surface. These parabolas should divide
the surface up into a bunch of different patches. Our goal is to find the
area of each patch, where each patch is almost like a parallelogram.

http://aleph.sagemath.org/?z=eJxty00OgyAQQOF9L-IQB6PSnxUnMWqImpTEBgqTFji900V35m3e5vuYAFXCjKUSF6_ty-92sTT73ZFaoWgd34EgTX2dp14gJJQKFU_-T8EWr4J1fcbvkq1ke0675oaPH27i033BRL8tNAdD1umhQ24UB9CiL84
http://aleph.sagemath.org/?z=eJxty00OgyAQQOF9L-IQB6PSnxUnMWqImpTEBgqTFji900V35m3e5vuYAFXCjKUSF6_ty-92sTT73ZFaoWgd34EgTX2dp14gJJQKFU_-T8EWr4J1fcbvkq1ke0675oaPH27i033BRL8tNAdD1umhQ24UB9CiL84
http://aleph.sagemath.org/?z=eJx1jkEKwjAQRfc5RXadqVMXzUohJylWYtrY0NqEJGBze1MFF4KzGD7M-7wxsFFGuW86NVvfNrlvkXnpF5fEAKZrL1SujSCBBPkTkDmfohysTqDd4oKsbovSc0VpsnpexxilQGZc4JbblQe13kd4V8-Ml_EH6VVQjzEFq6-7C0yxWCT-ldX1LsH_vC2fFz7_8P4YJ_cEfAHkUEDa
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2. Find both
∂~r

∂x
and

∂~r

∂y
. Then at the point (2, 1), draw both of these partial

derivatives with their bases at (2, 1). These vectors form the edges of a
parallelogram. Add that parallelogram to your picture.

3. Show that the area of a parallelogram whose edges are the vectors
∂~r

∂x
and

∂~r

∂y
is
√

1 + 4x2 + 4y2. [Hint: think about the cross product.]

4. Notice in your work above that we drew parabolas by changing both x
and y by 1 unit. If instead we had drawn parabolas at increments of .5
instead of 1, then we’d need to multiply our partial derivatives by .5 before
finding the area of the parallelogram. If we use increments of dx and dy,
then the edges of our parallelogram are the vectors ~rxdx and ~rydy. Find
the area of this parallelogram.

In the previous problem, you showed that the area of the parallelogram with
edges given by ∂~r

∂xdx and ∂~r
∂ydy is

dσ =

∣∣∣∣ ∂~r∂x × ∂~r

∂y

∣∣∣∣ dxdy = |~rx × ~ry| dxdy.

This little bit of area approximates the surface area of a tiny patch on the
surface. When we add all these areas up, we obtain the surface area.

Definition 9.3. Let S be a surface. Let ~r(u, v) = (x, y, z) be a parametrization
of the surface, where the bounds on u and v form a region R in the uv plane.
Then the surface area element (representing a little bit of surface) is

dσ =

∣∣∣∣ ∂~r∂u × ∂~r

∂v

∣∣∣∣ dudv = |~ru × ~rv| dudv.

The surface integral of a continuous function f(x, y, z) along the surface S is∫∫
S

f(x, y, z)dσ =

∫∫
R

f(~r(u, v))

∣∣∣∣ ∂~r∂u × ∂~r

∂v

∣∣∣∣ dudv.
If we let f = 1, then the surface area of S is simply

σ =

∫∫
S

dσ =

∫∫
R

∣∣∣∣ ∂~r∂u × ∂~r

∂v

∣∣∣∣ dudv.
This definition tells us how to compute any surface integral. The steps are

almost identical to the line integral steps.

1. Start by getting a parametrization ~r of the surface S where the bounds
form a region R.

2. Find a little bit of surface area by computing dσ =
∣∣ ∂~r
∂u ×

∂~r
∂v

∣∣ dudv.
3. Multiply f by dσ, and replace each x, y, z with what they equals from

the parametrization.

4. Integrate the previous function along R, your parameterization’s bounds.
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Example 9.4. Consider again the surface S given by z = 9−x2− y2, for z ≥ 0.
We used the parametrization

~r(x, y) = (x, y, 9− x2 − y2) for − 3 ≤ x ≤ 3,−
√

9− x2 ≤ y ≤
√

9− x2.

to obtain dσ = |~rx × ~ry| dxdy =
√

4x2 + 4y2 + 1dxdy. This means that the
surface area is

σ =

∫∫
S

dσ =

∫ 3

−3

∫ √9−x2

−
√
9−x2

√
4x2 + 4y2 + 1dydx.

At this point we now have an iterated double integral. As the region described
by the integral is a circle, we can swap to polar coordinates to simplify the
computations. The bounds are 0 ≤ r ≤ 3 and 0 ≤ θ ≤ 2π, which means

σ =

∫ 3

−3

∫ √9−x2

−
√
9−x2

√
4(x2 + y2) + 1 dydx =

∫ 2π

0

∫ 3

0

√
4r2 + 1 rdrdθ.

Problem 9.23 Consider again the surface S from the example above. A
different parametrization of this surface is

~r(r, θ) = (r cos θ, r sin θ, 9− r2), where 9− r2 ≥ 0.

1. Give a set of inequalities for r and θ that describe the region Rrθ over
which we need to integrate.

2. Find the surface area element dσ = |~rr × ~rθ| drdθ. Simplify your work to
show that dσ = r

√
4r2 + 1 drdθ.

3. Set up the surface integral
∫∫
S
dσ as an iterated double integral over Rrθ,

and then actually compute the integral by hand.

Problem 9.24 Consider the parametric surface Here’s a rough sketch of the
surface.

x

y

z

~r(a, t) = (a cos t, a sin t, t) for 2 ≤ a ≤ 4 and 0 ≤ t ≤ 4π.

Find ~ra and ~rt. Then compute the surface area element dσ = |~ra × ~rt|dadt. Set
up an iterated integral for the surface area. Don’t compute the integral.

Problem 9.25 If a surface S is parametrized by ~r(x, y) = (x, y, f(x, y)),

show that dσ =
√

1 + f2x + f2y dxdy (compute a cross product). If ~r(x, z) =

(x, f(x, z), z), what does dσ equal (compute a cross product - you should see
a pattern)? Use the pattern you’ve discovered to quickly compute dσ for the
surface x = 4− y2 − z2, and then set up an iterated double integral that would
give the surface area of S for x ≥ 0.

Problem 9.26 Consider the sphere x2 + y2 + z2 = a2. We’ll find dσ using
two different parameterizations.

1. Consider the rectangular parametrization ~r(x, y) = (x, y,
√
a2 − x2 − y2).

Compute dσ? [Hint, use the previous problem.] Why can this parametriza-
tion only be use if the surface has positive z-values?
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2. Consider the spherical parametrization

~r(φ, θ) = (a sinφ cos θ, a sinφ sin θ, a cosφ).

Show that
dσ = (a2| sinφ|)dφdθ = (a2 sinφ)dφdθ,

where we can ignore the absolute values if we require 0 ≤ φ ≤ π. Along
the way, you’ll show that

~rφ × ~rθ = a2 sinφ(sinφ cos θ, sinφ sin θ, cosφ).

We can compute mass, average value, centroids, and center of mass for
surfaces. We just replace dA with dσ, and all the formulas are the same.

Problem 9.27 Consider the hemisphere x2 + y2 + z2 = a2 for z ≥ 0.

1. Set up a formula that would give z̄ for the centroid of the hemisphere. I
suggest you use a spherical parametrization, as then the bounds are fairly
simple, and we know dσ = (a2 sinφ)dφdθ from the previous problem.

2. Compute both the integrals in your formula. The combine your work to
show that z̄ = a

2 .

3. One of the integrals you computed gave the surface area of a hemisphere
of radius a. Which is it? Use that result to give the surface area of a
sphere of radius a.

Problem 9.28 Consider the surface S that is the portion of the cone x2 =
y2 + z2 with 1 ≤ x ≤ 4.

1. Give a parametrization of the cone, including bounds.

2. Use your parametrization to compute the surface area element dσ.

3. Compute the surface area of S. Yes, actually compute the integral.

4. Setup a formula that would give the center of mass x̄ of the cone if the
density is δ(x, y, z) = x. Don’t spend any time computing the integrals.
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